ORBITER
APl Reference Manual

Copyright (c) 2000-2005 Martin Schweiger 16 January 2005
Orbiter home: www.medphys.ucl.ac.uk/~martins/orbit/orbit.htm| or www.orbitersim.com

ORBITER %

SPACEFLIGHT SJIMULATOR

1 INTRODUGCTION ...ciiiitiiieiiieit ettt ettt s e e e e e s esnr e e e s nnnre e e s annes 3
2 REQUIREMENTS ..ottt ittt ettt ettt ettt et e e st e e e et e e e s snbbe e e e eneee 3
3 PREPARATION ...ttt ettt et s e e e st e e s an e e s e 3
4 SDK FILES .. ittt et e et e e st e e a e 3
5 COMPATIBILITY ISSUES..... .ottt sttt sttt e e b e e s anbeee e 4
6 CON CERPT ettt e e b e e e s b e e e e s e e e s b e e s e e e 4
7 SAMPLE MODULES ... oottt sttt et e e nabeee e 5
8 DATA TYPES .ottt e e e e e s anre e e e 5
9 CON ST ANT S ettt ettt et e et e e st e s sab e e e e ne e e e nnnee s 10
10 VESSEL MODULES. ...ttt st 11
11 CLASS VESSEL ..ottt ettt 22
11.1 CONSIIUCHION/CIEALIONcivtieeiieitee e sttt st ettt e s e e e esanr e e e eanee 22
11.2 Vessel parameters and capabilitieS ... 23
11.3 CUITENt VESSEI STALUScciiviiiiiiiiiie ettt s e e 30
B S 1 (=Y =T (0] = 37
11.5 FUEI MANAGEMENT ...ttt ettt s bt e e s ab bt e e s sbb e e e s anbbeeeenaeee 38
11.6 TRruSter MANAOEMENTeiiiiiieiie ettt e e st e e st e e e snbae e e e eaeee 43
11.7 DocKing POrt ManNAGEMENL.......c.uuiiiiiiiiiee ittt ettt s b e e e saeee 61
11.8 AttaChment ManNaAgEMENT........oouuiiiiiiiiie ettt et e b e e naeee 64
I I @ 14 o) =TI = 1= o 1= S 68
11.10 Surface-relative PAramMELEISoi i e e e reee e 70
11,21 TranSTOrMALIONScoiveeieiiieeee ettt s e s e e e s e e s anr e e e e 72
11.12 AtMOSPNEIIC PArBMELEIS.eiiiiiiee ittt e e e e e e s bbb e e e e e e e e saabeeeeeaeas 74
0 =T o To)Y = Vg [75
11.14 Surface CONTACT PAFAMETLEIS.eeiiii ittt e e e e et e e e e e e e e sanbeeeeaaeas 82
11.15 Communications/radio INEEITACEeviiiiiiiiiiii e 83
11.16 Visual ManiPUIBLION..........cueiiiiiiiiie ettt e e e 85
11,27 PArtiCIE SYSTEIMS...ciiiiiiiiiiiit ettt s bt e e st e e s nnbbe e e e aaeee 92
12 VESSEL CLASS EXTENSIONS ...ttt 94
121 ClASS VESSELZ ...ttt 94
13 CLASS MED ...ttt et 107
13,1 CONSIUCTION/CIEALIONeveee ettt e ettt ettt e skt e et e et e s e s s e e s e e e annee 107
13.2 DISPIAY FEPAINT ...t e e e e e st e e e e e e e e b e e e e e e e e e e naaeees 107

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 1

R TG T [o] o1 | SO PP PP PP PRRPRP PPN 109

13,4 LOAA/SAVE SEALE.......uveiiiiieeiiiciiiiii et e e e s e e e e e e s s e s e e e e e e s e st e e e e e e s s s nnnraeereeeeeeannnnnees 110
14 CLASS GRAPHMEDcoiitiiii ittt 111
2 R @ o 1S3 { B o3 1T Vo £ L4 [o PR 112
14.2 Graph/plot MANAGEMENTccoiiiiiiiiiiii et 112
15 PLUGIN CALLBACK FUNCTION REFERENCEcccccoiiiiiiiiiiiiieiieeeee e 114
16 PLANET MODULES ...ttt ettt st 117
16.1 INnitialisation fUNCHIONS.......cooi i e s e e e e e e 117
16.2 The CELBODY CIASS ..cciiiiiiiiiiiiiieiie ettt ettt e e e e e e st e e e e e e e e nnneees 119
16.3 OrDital PArAMELEISeiiiie i e e e e e e 121
16.4 PRYSICAl PArAMELEIS ...cooiiiiiiiiiiiie et e e e e e e e e e s 123
17 APIFUNCTION REFERENCEoctiiiiiiiie ettt 124
A R 1= =T = L o 1o PR 124
17.2 Obtaining 0ObJECt NANAIESccooiiiiiiiie e 124
17.3 Generic ODJECT PArAMELEISuiiiiiiii it e e e e 130
17.4 Vessel fuel ManagemMENtoovviiiiiiiiiiiiiecceeeeeeeeee et 130
R I @ o] [Tt BE] r= (ST =Tox (o 132
17.6 Surface-relative Parameters ... 134
A A =T o To)Y, g = Vo 1 137
A S T T 11 [IRS] = 141
17.9 Functions for planetary BOAIES.cuevi i 144
17.10 Surface base fUNCHIONScc.eviiiiiie e e e e e e e 148
17.11 Navigation radio transmitter fUNCLONSoooiiiiiiiii e 150
A 7 1 01U = LT I 0 - PR 151
A e T @ T 1= - T U Vo 1o PR 153
17.14 KeYDOAI INPUL.......eeeeiiiiie ettt ettt e e e e e e st e e e e e e e s e aabbe e e e e e e e e e nnneees 157
A T YT 0 = U = To 1= o 1T o | 157
17.16 Particle stream ManagemMENt..........oovviiiiiiiiiiiiiiiiieeeeeeeeeeeeee et e e 159
17.17 HUD, panel, virtual cockpit and MFD managementcccueeeeeeeeniiiiiieieeeee e 160
17.18 CUSLOM MED MOUES ...ceiiiiiiiiitiiei ettt ettt e e e e et e e e e e e e s aabb e e e e e e e e e e nnneees 173
A e N 1 = o = g = o =T . 1= o | 174
L17.20 USEE INPUL...eeiiiiitiee ettt ettt st et e e s sttt e e e st bt e e e aabb e e e s anbbe e e s anbbeeesannee 176
A R B T o TH T T [T T O PP TPPR 179
18 CUSTOM DIALOG CONTROLSttt 179
S A 7= 0 o = o 0] o o | 180
19 STANDARD ORBITER MODULESccociiiiiiii e 182
R RV T o 182
R 2 Y/ (o To] o PP PP PPPPPPPPPPPP 183
P20 T | G PSSR 183

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 2

1 Introduction

This reference document contains the specification for the Orbiter Programming Interface. It is
not required for running Orbiter.

The programming interface allows the development of third party modules to enhance the
functionality of the Orbiter core. Examples for modules are:

» Additional instruments, simulation monitoring devices, and spacecraft controls
e Custom flight models

e Custom instrument panels

Multiplayer modules

» Custom calculation of planetary positions

2 Requirements
The following components are required to build an addon module:

* The latest Orbiter package

The Orbiter SDK libraries and include files (contained in the Orbiter SDK package)

A C++ compiler running under Windows (the SDK was developed with VC++, the use of
other compilers may be possible, if they conform to the MS stack calling convention.)

3 Preparation

» Install the Orbiter package, if you haven't already done so.

» Install the Orbiter SDK package. This will generate the OrbiterSDK subdirectory
containing the header files and libraries required for building plugins.

Create a project for your plugin DLL (the method depends on the compiler used). Make
sure you use thread-safe system libraries (“Multithread DLL"). Add OrbiterSDK\include to
the include search path, and add OrbiterSDK\lib\Orbiter.lib and
OrbiterSDK\lib\Orbitersdk.lib to the link stage.

* Write the code for your plugin, compile and link it, and move the resulting DLL to the
Orbiter\Modules\Plugin folder.

Run Orbiter, go to the Modules tab in the launchpad dialog, and activate your new plugin.

4 SDK files
The following files are contained in the Orbiter development Kit:
Orbitersdk\doc* SDK documentation
Orbitersdk\include
Orbitersdk.h The interface header file
OrbiterAPIl.h General interface functions
VesselAPl.h Vessel interface

Orbitersdkl\lib

Orbitersdk.lib The DLL auxiliary library

Orbiter.lib The Orbiter API library
Orbitersdk\tools* Tools for model and texture generation
Orbitersdk\samples* Sample source code

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

w

A\

5 Compatibility issues

Orbiter will change its addon compatibility strategy beginning with the next release. In the
future, each Orbiter release will run only addons which have been compiled with the SDK of
that release. To migrate an addon to a new Orbiter release will therefore require a
recompilation with the new SDK. This should help to keep addons up to date and reduce
compatibilty problems. At the same time, this will allow me to purge obsolete API functions.

Latest release

* The latest release introduces a new more realistic atmospheric flight model. As a result,
some aerodynamics-related vessel functions have become obsolete and are retained for
backward compatibility only.

SetWingAspect
GetWingAspect
SetWingEffectiveness
GetWingEffectiveness
SetLiftCoeffFunc

The old atmospheric flight model will be dropped in a future version, so developers should
migrate to the new model if they want to compile vessel addons against future API
versions.

Definition of terms used in this document:

Module
A module is a dynamic link library (DLL) which extends or replaces functionality of the
core Orbiter program. Modules interact with Orbiter via callback functions conforming to
the public interface defined below.

Plugin
Plugins are generic modules not linked to any particular object. They may include
popup windows for displaying or manipulating general simulation information,
multiplayer interfaces, etc. Plugins can be activated or deactivated by the user via the
Modules tab in the Orbiter Launchpad dialog.

Planet module
Planet modules are linked to planets or moons and are used specifically for updating
planetary position and velocity data. Planet modules are referenced via the
planet/moon’s configuration file.

Vessel module
Vessel modules are linked to specific spacecraft, to allow customisation of the vessel's
behaviour. Vessel modules are referenced via the vessel class configuration file.

In all active modules, Orbiter executes callback functions corresponding to certain simulation
conditions. For example, whenever the simulation window is opened after the user presses
the Orbiter button in the launchpad dialog, Orbiter calls the opcOpenRenderViewport callback
function in all plugins to allow initialisation routines to be performed. A plugin doesn’'t need to
implement all callback functions defined in the interface. However, the programmer is
responsible for implementing callback functions in a consistent way. For example, if the plugin
allocates memory for data in opcOpenRenderViewport, then this memory should be
deallocated in opcCloseRenderViewport. The SDK allows access to core parts of the Orbiter
simulator, and bugs in active plugins may cause the program to crash.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 4

All callback functions use a C stack frame, so they need to be defined as extern “C” for
compilation with a C++ compiler. For convenience the DLLCLBK macro is provided in
Orbitersdk.h to use as modifier for callback function definitions.

The code for the callback functions may contain calls to the Orbiter API functions, to obtain
and set simulation parameters such as object positions and speed, simulation time, etc. API
functions use an oapi (“orbiter API") prefix. API functions use a C++ stack frame.

7 Sample modules

The Orbitersdk\samples folder contains a few projects which can be used as a starting point

for creating your own plugins. To compile a sample using VC++:

» Load the project file (*.dsw) into VC++.

» Build the project.

» Copy the DLL from the Debug or Release subdirectory into the Orbiter\Modules\Plugin
directory (plugins) or into the Orbiter\Modules directory (planet and vessel modules).

» To activate new plugins, run Orbiter, activate the plugin under the Modules tab, and
launch the simulation.

* New planet or vessel modules are used automatically if they are referenced by the
relevant definition files.

DialogTemplate
A trivial example demonstrating the use of Windows-style dialog boxes and custom functions
in Orbiter.

Rcontrol
A more sophisticated dialog example. This plugin opens a dialog which allows to switch
between spacecraft and remotely control the engines.

FlightData
Opens a dialog which allows to monitor vessel flight data.

CustomMFD
An example for an MFD plugin. This implements the Ascent profile MFD.

Deltaglider
Orbiter’s standard implementation of the vessel module for the Delta-glider.

Atlantis
The complete code for Orbiter’s reference implementation of the Atlantis (Space Shuttle)
module, including modules for post-separation SRBs (solid rocket boosters) and main tank.

8 Datatypes

OBJHANDLE
A handle for a logical object. Objects can be vessels, spaceports, planets, moons or
suns.

VISHANDLE
A handle for a visual object. These are representations for logical objects for the
purpose of rendering. Visuals exist only if the object is within visual range of the
camera, and are created and deleted as needed.

MESHHANDLE
A handle for object meshes.

SURFHANDLE

A handle for a bitmap surface. Surfaces are currently used for drawing instrument
panel areas.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 5

THRUSTER_HANDLE
Handle for (logical) thruster definitions.

THGROUP_HANDLE
Handle for thruster groups.

PROPELLANT_HANDLE
Handle for propellant resources.

NAVHANDLE
Handle for a navigation radio transmitter (VOR, ILS, IDS, XPDR)

VECTOR3
Double precision vector 0 R®

Synopsis:
typedef union {

doubl e data[3];
struct { double x, y, z; };
} VECTORS;

MATRIX3
Double precision matrix 0 R*®

Synopsis:
typedef union {

doubl e data[9];

struct { double mll1, ml2, m3,
21, nR22, nR3,
n31, nB82, nB3; };

} MATRI X3;
ELEMENTS
Keplerian orbital elements.
Synopsis:
typedef struct {
doubl e a; semi-major axis [m]
doubl e e; eccentricity
doubl e i; inclination [rad]
doubl e theta; longitude of ascending node [rad]
doubl e onegab; longitude of periapsis [rad]
doubl e L; mean longitude at epoch
} ELEMENTS;
ATMPARAM

Atmospheric parameters.

Synopsis:
typedef struct {
double T; temperature [K]
doubl e p; pressure [Pa]
doubl e rho; density [kg/m”3]
} ATMPARAM

ENGINESTATUS
Defines the thruster status for a spacecraft

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

Synopsis:

struct {
doubl e mai n; main/retro thruster level [-1,+1]
doubl e hover; hover thruster level [0,+1]
i nt attnode; attitude thruster mode [O=rot, 1=lin]

} ENG NESTATUS;

ENGINETYPE
Enumerates thruster types

Synopsis:
typedef enum {

ENG NE_MAI N,

ENG NE_RETRO,

ENG NE_HOVER,

ENG NE_ATTI TUDE
} ENG NETYPE;

EXHAUSTTYPE
Enumerates engine groups for exhaust rendering.

Synopsis:
typedef enum {

EXHAUST_MAI N,

EXHAUST_RETRO,

EXHAUST_HOVER,

EXHAUST_CUSTOM
} EXHAUSTTYPE;

PARTICLESTREAMSPEC
Defines the parameters of a particle stream.

Synopsis:

typedef struct {
DWORD f 1 ags;
doubl e srcsi ze;
doubl e srcrate;
doubl e vO;
doubl e srcspread;
doubl e lifetineg;
doubl e growt hrat e;
doubl e at nsl owdown;
enum LTYPE { EM SSI VE, DI FFUSE } |type;
enum LEVELMAP { LVL_FLAT, LVL_LIN, LVL_SQRT,

LVL_PLIN, LVL_PSQRT } |evel nap;

double I mn, |nmax;
enum ATMSMAP { ATM FLAT, ATM PLIN } atnsnap;
doubl e anin, anax;
SURFHANDLE t ex;

} PARTI CLESTREAMSPEC;

flags currently not used

srcsize particle size at creation [m]

srcrate average particle generation rate [Hz]

vO average particle emission velocity [m/s]

srcspread emission velocity distribution randomisation

lifetime average particle lifetime [s]

growthrate particle growth rate [m/s]

atmslowdown deceleration rate Bin atmosphere, defined as v = v, e
Itype lighting type (EMISSIVE or DIFFUSE)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

levelmap
Imin, Imax
atmsmap
amin, amax

mapping between level parameter and particle opacity.
minimum and maximum levels for alpha mapping.

mapping between atmospheric parameters and particle opacity.
minimum and maximum atmospheric values for alpha mapping.

See the Programmer’s Guide for more details on these parameters.

VESSELSTATUS

Defines vessel status parameters at a given time. This is version 1 of the vessel status
interface. It is retained for backward compatibility, but new modules should use
VESSELSTATUS2 instead to exploit the latest vessel capabilities such as individual
thruster and propellant resource settings.

Synopsis:

typedef struct {
VECTORS3 r pos;
VECTOR3 rvel ;
VECTORS3 vrot;
VECTORS3 arot;
doubl e fuel;
doubl e eng_rmai n;
doubl e eng_hovr;
OBJHANDLE r body;
OBJHANDLE base;

i nt

port;

int status;
VECTOR3 vdat a[10] ;
doubl e fdata[10];
DWORD f | ag[10]

} VESSELSTATUS;

r pos
rve

vr ot

ar ot

f uel
eng_rmain
eng_hovr
r body
base
port
status
vdat a

fdat a
flag[0] &

f1ag[0] &

position relative to reference body in ecliptic frame

velocity relative to reference body in ecliptic frame

rotation velocity about principal axes in ecliptic frame

vessel orientation against ecliptic frame (see notes)

fuel level [0...1]

main engine setting [-1...1]

hover engine setting [0...1]

handle of reference body

handle of docking or landing target

designated docking or landing port

O=freeflight, 1=landed, 2=taxiing, 3=docked, 99=undefined

vector buffer for future extensions. Currently used:

vdata[0] contains landing parameters if status==1:

vdata[0].x = longitude [rad], vdata[0].y = latitude [rad] of landing site,
vdata[0].z = orientation of vessel [rad].

Not currently used.

0: ignore eng_nai n and eng_hovr entries, do not change thruster
settings

1: set THGROUP_MAI N and THGROUP_RETROthruster groups from
eng_mai n, and THGROUP_HOVER from eng_hovr .

0: ignore fuel entry, do not change fuel levels

1: set fuel level of first propellant resource from f uel .

flag[1]-flag[9]

VESSELSTATUS2

Not currently used.

Version 2 of the vessel status interface. This interface has been introduced in post-

020419 versions.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

Synopsis:

typedef struct {
DWORD ver si on;
DWORD f 1 ag;
OBJHANDLE r body;
OBJHANDLE base;

int port;

i nt status;
VECTORS r pos;
VECTOR3 rvel ;
VECTOR3 vrot;
VECTOR3 arot;
doubl e surf_I ng;
doubl e surf _|at;
doubl e surf _hdg;
DWORD nf uel ;
struct FUELSPEC {
DWORD i dx;
doubl e | evel ;

} *fuel;

DWORD nt hrust er;
struct THRUSTSPEC {
DWORD i dx;
doubl e | evel ;
} *thruster;
DWORD ndocki nf o;
struct DOCKI NFOSPEC {

DWORD i dx;
DWORD ri dx;
OBJHANDLE rvessel ;
} *docki nfo;
DWORD xpdr ;
} VESSELSTATUS2;
Parameters:
ver si on interface version (2)
flag bitflags (see below)
r body handle of reference body
base handle of docking or landing target
port designated docking or landing port
st at us O=active, 1=landed (inactive)
r pos position relative to reference body (rbody) in ecliptic frame
rvel velocity relative to reference body in ecliptic frame
Vr ot rotation velocity about principal axes in ecliptic frame
ar ot vessel orientation against ecliptic frame
surf_Ilng longitude: vessel position in equatorial coordinates of rbody [rad]
surf _|at latitude: vessel position in equatorial coordinates of rbody [rad]
surf_hdg heading: vessel orientation on the ground
nf uel number of entries in the f uel list
fuel propellant resource list
fuel [i].idx propellant resource index (0 < i < nfuel)
fuel[i].level propellant resource level [0..1]
nt hrust er number of entries in the t hr ust er list
thruster thruster definition list
thruster[i].idx thruster index (0 < i < nfuel)
thruster[i].level thruster level [0..1]
ndocki nfo number of entries in the dockinfo list
dockinfo[i].idx dock index (0 < i < ndockinfo)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

dockinfo[i].ridx dock index of docked vessel
docki nfo[i].rvessel handle of docked vessel

xpdr transponder setting (in steps of 0.05kHz from 108.00kHz)
flag
The meaning of the bitflags in f | ag depends on whether the VESSELSTATUS2
structure is used to get (GetStatus) or set (SetStatus) a vessel status. The
following flags are currently defined:
e VS _FUELRESET
Get — not used
Set — reset all fuel levels to zero, independent of the f uel list.
e VS FUELLI ST
Get — request a list of current fuel levels in f uel . The module is responsible
for deleting the list after use.
Set — set fuel levels for all resources listed in f uel .
* VS _THRUSTRESET
Get — not used
Set —reset all thruster levels to zero, independent of the t hr ust er list
* VS _THRUSTLST
Get — request a list of current thrust levels in t hr ust er . The module is
responsible for deleting the list after use.
Set — set thrust levels for all thrusters listed in t hr ust er .
« VS DOCKI NFOLI ST
Get — request a docking port status list in docki nf 0. The module is
responsible for deleting the list after use.
Set — initialise docking status for all docking ports in docki nf o.
Notes:

e The ver si on specification is an input parameter for all function calls
(including GetStatus) and must be set by the user to tell Orbiter which
interface to use.

e surf_lng,surf_lat andsurf_hdg are currently only defined if the
vessel is landed (status=1)

« arot=(a,B,y) contains angles of rotation [rad] around x,y,z axes in ecliptic
frame to produce this rotation matrix R for mapping from the vessel’s local
frame of reference to the global frame of reference:

1 0 0O |cosf O -sng| cosy sny O

R=|0 cosa sna| 0 1 0 —-siny cosy O
0 -sing cosa|snfB 0O cosp 0 0o 1
such that

rglobal = R rIocaJ +p

where p is the vessel's global position.

9 Constants

Navmode constants

NAVMODE_KI LLROT engage attitude thrusters to kill rotation
NAVMODE_HLEVEL engage attitude thrusters to keep level with horizon
NAVMODE _PROGRADE engage attitude thrusters to turn prograde
NAVMODE RETROGRADE engage attitude thrusters to turn retrograde
NAVMODE _NORMAL engage attitude thrusters to turn orbit-normal
NAVMODE _ANTI NORMAL engage attitude thrusters to turn orbit-antinormal
NAVMODE_HOLDALT engage hover thrusters to maintain altitude

HUD mode constants

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 10

HUD_NONE
HUD_ORBI T
HUD_SURFACE
HUD_DOCKI NG

MFD mode constants
M-D_NONE
MFD ORBI T
MFD_SURFACE
MFD_MAP
MFD_HSI
MFD_LANDI NG
MFD_DOCKI NG
MFD_OPLANEALI GN
MFD_OSYNC
MFD_TRANSFER
MFD_USERTYPE

MFD identifier constants
M-D_LEFT
M-D_RI GHT
M-D_USER1
M-D_USER2
M-D_USER3

10 Vessel modules

Vessel modules are dynamic link libraries (DLL) which contain the code to manage a vessel
class. Orbiter loads a vessel library if the class configuration file of a vessel loaded during the
simulation contains a MODULE entry. Only one instance of the library is loaded for each ves-
sel class, even if multiple vessels of that class are present in the simulation. However, the Ii-
brary callback functions are called for each vessel. This means that global and static variables
should not be used for vessel-specific parameters, to avoid conflicts between vessels. In-
stead, all vessel-specific data should be stored in the derived VESSEL instance (see below).

In general, a vessel module will create an instance of a vessel class derived from the base
VESSEL class (see Section 11) during the vessel instance initialisation (ovclinit). All further
interaction will then be performed through this class instance, either by Orbiter invoking
callback functions to notify the vessel of various events, or by the module setting and query-
ing vessel parameters.

In previous versions of the API, Orbiter communicated with the vessel module via nonmember
callback functions (ovcXXX). In the current version, these have been replaced by virtual
VESSEL2 member functions (VESSELZ2::clbkXXX) which can be overloaded by the derived
class to invoke non-default actions. The only nonmember callback functions that should still
be used are the instance entry and exit points (ovclnit and ovcExit), to create and delete the
VESSEL class instance.

Vessel modules should link the Orbiter API libraries (orbiter.lib and orbitersdk.lib). The main
source file should contain the

#def i ne ORBlI TER_MODULE
directive.

The following list contains the callback functions used by Orbiter to communicate with the
module. Many of these have become obsolete with the latest API interface and may not be
supported in future versions. Developers should migrate to VESSEL2 member callback func-
tions to ensure future compatibility.

For a sample vessel module implementation, see for example
Orbitersdk\samples\DeltaGlider.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 11

Vessel module nonmember callback functions

InitModule
This is the module entry point. It is called once when the module is loaded, even if
multiple vessels of this class are present. It can be used for global (vessel instance-
independent) initialisations such as GDI resource allocation.

Synopsis:
DLLCLBK voi d I nitMdul e (H NSTANCE hMbdul €)

Parameters:
hModule DLL instance handle

Notes:

e This function will only be called if the ORBI TER_MODULE preprocessor
directive has been defined in the source code, and orbitersdk.lib has been
linked.

ExitModule

Module exit point. This is called once before the module is removed from memory
(usually at the end of a simulation run). It can be used to free resources allocated
during | ni t Modul e.

Synopsis:
DLLCLBK voi d ExitMdul e (H NSTANCE hMbdul €)

Parameters:
hModule DLL instance handle

Notes:

* This function will only be called if the ORBI TER_MODULE preprocessor
directive has been defined in the source code, and orbitersdk.lib has been
linked.

ovclnit

Called during vessel creation. A vessel module must define this function in order to
create an instance of the VESSEL interface or a derived class.

Synopsis:
DLLCLBK VESSEL *ovclnit (

OBJHANDLE hVessel ,
int flightnodel)

Parameters:
hVessel handle identfying the newly created vessel.
flightmodel level of flight model realism (0O=simple, 1=complex)

Return value:
Module-generated instance of VESSEL or a derived class.

Notes:
* The flightmodel value depends on user selection in the launchpad dialog.
The module can use this parameter to define two different sets of vessel
parameters — a simplified one for novice users, and a realistic one for
advanced users.
e Atypical implementation will look like this:

[class MyVessel : public VESSEL

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

{
}

DLLCLBK VESSEL *ovclnit (OBJHANDLE hVessel, int flightnodel)
{

}

return new My/Vessel (hVessel, flightnodel);

ovcExit

Called before killing the vessel. Should be used for cleanup operations (memory
deallocation etc.) and for deallocating the VESSEL interface.

Synopsis:

DLLCLBK void ovcExit (VESSEL *vessel)
Parameters:

vessel vessel interface

ovcSetClassCaps
PIEE. Use VESSEL2::clbkSetClassCaps instead.
Called during vessel initialisation. This allows the module to define vessel class
capabilities, such as mass, size, aerodynamic specs, thruster ratings, etc.

Synopsis:
DLLCLBK voi d ovcSet O assCaps (

VESSEL *vessel ,
FI LEHANDLE cf g)

Parameters:

vessel vessel interface

cfg handle for the vessel class configuration file.
Notes:

e This function should only set general parameters (like maximum fuel mass),
not the current state parameters for a specific ship (like current fuel mass).

* Generic parameters directly defined in the vessel class cfg file (e.g.
MaxFuel) override values set in ovcSetClassCaps. This allows to manipulate
values without need to recompile the module.

* The cfg file handle allows to read nonstandard parameters from the class
file.

ovcSetState
O FIEIE. Use VESSEL2::clbkSetStateEx instead.
Called at vessel creation to allow initialisation of the initial state.

Synopsis:
DLLCLBK voi d ovcSetState (

VESSEL *vessel ,
const VESSELSTATUS *st at us)

Parameters:

vessel vessel interface

status vessel state parameters
Notes:

e This function is called after ovcSetClassCaps.

« If this function is not defined, Orbiter will perform default state initialisations.

* To perform Orbiter’'s default initialisation from within ovcSetState, call
vessel->DefSetState (status)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 13

ovcSetStateEx
PR, Use VESSEL2::clbkSetStateEx instead.
This callback function is invoked by Orbiter when a vessel is created during the
simulation with a call to oapiCreateVesselEx. It allows the vessel to initialise its state
according to the provided VESSELSTATUSKX interface (version x = 2). To allow default
initialisation, the status can be passed to VESSEL::DefSetStateEx.

Synopsis:
DLLCLBK voi d ovcSet St at eEx (

VESSEL *vessel,
const void *status)

Parameters:

vessel vessel interface

status pointer to a VESSELSTATUSKX structure
Notes:

e This callback function receives the VESSELSTATUSKX structure passed to
oapiCreateVesselEx. It must therefore be able to process the interface
version used by those functions.

« This function remains valid even if future versions of Orbiter introduce new
VESSELSTATUSKX interfaces.

* Atypical implementation may look like this:

DLLCLBK voi d ovcSet Stat eEx (VESSEL *vessel, const void *status)
{

/'l specialised vessel initialisations

1.,

/1 default initialisation:
vessel - >Def Set St at eEx (status);

ovclLoadState
OB, Use VESSEL2::clbkLoadStateEx instead.
Called when the vessel must read its initial status from a scenario file. New modules
should use ovcLoadStateEXx instead.

Synopsis:
DLLCLBK voi d ovcLoadState (

VESSEL *vessel,
FI LEHANDLE scn,
VESSELSTATUS *def _vs)

Parameters:

vessel vessel interface

scn scenario file handle

def vs set of generic vessel parameters
Notes:

* This callback function is provided to allow the module to read non-standard
parameters from the scenario file.

e The function should define a loop which parses lines from the scenario file
via oapiReadScenario_nextline.

* Any lines which the module parser does not recognise should be forwarded
to Orbiter's default scenario parser via VESSEL::ParseScenariolLine, to allow
the processing of generic options.

« Alternatively, the module parser may intercept generic parameters and
directly write values into the generic set def_vs (dangerous!)

See also:
ovcLoadStateEx

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 14

ovcLoadStateEx
O EIEIE. Use VESSEL2::clbkLoadStateEx instead.
Called when the vessel must read its initial status from a scenario file.

Synopsis:
DLLCLBK voi d ovcLoadSt at eEx (

VESSEL *vessel,
FI LEHANDLE scn,

voi d *vs)
Parameters:
vessel vessel interface
scn scenario file handle
VS pointer to a VESSELSTATUSKX struct (x = 2)
Notes:

e This callback function allows to read module-specific status parameters from
a scenario file.

e The function should define a loop which parses lines from the scenario file
via oapiReadScenario_nextline.

* Any lines which the module parser does not recognise should be forwarded
to Orbiter's default scenario parser via VESSEL::ParseScenarioLineEx, to
allow the processing of generic options.

e Orbiter will always pass the latest supported VESSELSTATUSX version to
ovcLoadStateEx. This is currently VESSELSTATUS2, but may change in
future versions. To maintain compatibility, vs should therefore not be used
other than to pass it on to ParseScenarioLineEx.

« Atypical parser implementation may look like this:

DLLCLBK voi d ovclLoadSt at eEx (VESSEL *vessel, FILEHANDLE scn
void *vs)
{

char *line;
int ny_val ue

whi | e (oapi ReadScenari o_nextline (scn, line)) {
if (!Istrnicnp (line, “my_option”, 9)) {
sscanf (line+9, “9d”, &ny_value);
} elseif (...) { // nore itens

} else { // anything not recognised is passed on to Orbiter
vessel - >Par seScenari oLi neEx (line, vs);
}

See also:
VESSEL::ParseScenarioLineEx

ovcSaveState
@ FeIEIE. Use VESSEL2::clbkSaveState instead.
Called when a vessel needs to save its current status to a scenario file.

Synopsis:
DLLCLBK voi d ovcSaveState (

VESSEL *vessel,
FI LEHANDLE scn)

Parameters:
vessel vessel interface
scn scenario file handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 15

Notes:
e This function only needs to be implemented if the vessel must save non-
standard parameters. Otherwise Orbiter invokes a default parameter save.
e To allow Orbiter to save its default vessel parameters, use
VESSEL::SaveDefaultState.
* To write custom parameters to the scenario file, use the oapiWriteLine
method.

ovcPostCreation
O EeIEIE. Use VESSEL2::clbkPostCreation instead.
Called after a vessel has been created and its state has been set.

Synopsis:

DLLCLBK voi d ovcPost Creation (VESSEL *vessel)
Parameters:

vessel vessel interface
Notes:

« This function can be used to perform the final setup steps for the vessel,
such as animation states and instrument panel states. When this function is
called, the vessel state (e.g. position, thruster levels, etc.) have been
defined.

ovcFocusChanged
Ol el5l(=. Use VESSEL2::clbkFocusChanged instead.
Called after a vessel gained or lost input focus.

Synopsis:
DLLCLBK voi d ovcFocusChanged (

VESSEL *vessel,

bool getfocus,
OBJHANDLE hNewVessel ,
OBJHANDLE hd dVessel)

Parameters:
vessel vessel interface
getfocus true if vessel gained focus, false if it lost focus
hNewVesselhandle of vessel gaining focus
hOldVessel handle of vessel losing focus

Notes:
» If getfocus is true, then vessel is the interface to hNewVessel, otherwise it is
the interface to hOldVessel.
e Thisis also called at the beginning of the simulation to the initial focus
object. In this case hOldVessel is NULL.

ovcVisualCreated
Ol Eel5(=. Use VESSEL2::clbkVisualCreated instead.
Called after a visual representation of a vessel has been created.

Synopsis:
DLLCLBK voi d ovcVi sual Created (

VESSEL *vessel,
VI SHANDLE vi s,
int refcount)

Parameters:
vessel vessel interface
vis handle for the newly created visual

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 16

refcount visual reference count

Notes:

e The logical interface to a vessel exists as long as the vessel is present in the
simulation. However, the visual interface exists only when the vessel is
within visual range of the camera. Orbiter creates and destroys visuals as
required. This enhances simulation performance in the presence of a large
number of objects in the simulation.

* Whenever Orbiter creates a vessel’s visual it reverts to its initial configuration
(e.g. as defined in the mesh file). The module can use this function to update
the visual to the current state, wherever dynamic changes are required.

« More than one visual representation of an object may exist. The refcount
parameter defines how many visual interfaces to the object exist.

ovcVisualDestroyed
EIEEIET. Use VESSEL2::clbkVisualDestroyed instead.
Called before the visual representation of a vessel is destroyed.

DLLCLBK voi d ovcVi sual Destroyed (

VESSEL *vessel,
VI SHANDLE vi s,
int refcount)

Parameters:
vessel vessel interface
vis handle for the visual to be destroyed

refcount visual reference count

Notes:

e Orbiter calls this function before it destroys the vessel’s visual
representation, e.g. when it moves out of the visual range of the current
camera.

* The (logical) vessel may still exist, but it is no longer rendered.

ovcTimestep
. Use VESSEL2::clbkPreStep or VESSEL2::clbkPostStep instead.
Called at each simulation time step after the vessel has updated its position and
velocity for the current simulation time.

Synopsis:

DLLCLBK voi d ovcTi nestep (VESSEL *vessel, double sint)
Parameters:

vessel vessel interface

simt simulation up time (seconds since simulation start)
Notes:

« This function, if implemented, is called at each frame for each instance of
this vessel class, and is therefore time-critical. Avoid any unnecessary
calculations here which may degrade performance.

ovcRCSmode

O EIE. Use VESSEL2::clbkRCSMode instead.
Called when the RCS (reaction control system) mode changes.

Synopsis:
DLLCLBK voi d ovcRCSnode (VESSEL *vessel, int node)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 17

Parameters:
vessel vessel interface
mode new RCS mode: O=disabled, 1=rotational, 2=linear

Notes:
* This callback function is invoked when the user switches RCS mode via the

keyboard (/" or “Ctrl-/” on numerical keypad) or after a call to
VESSEL.::SetAttitudeMode or VESSEL.::ToggleAttitudeMode.

ovcADCtrimode
PR, Use VESSEL2::clbkADCtriMode instead.
Called when user input mode for aerodynamic control surfaces (elevator, rudder,
aileron) changes.

Synopsis:

DLLCLBK void ovcADCtrl| node (VESSEL *vessel, DWORD node)
Parameters:

vessel vessel interface

mode control mode
Notes:

¢ The returned control mode contains bit flags as follows:
bit O: elevator enabled/disabled
bit 1: rudder enabled/disabled
bit 2: ailerons enabled/disabled
Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates
fully enabled.

ovcNavmode
O EEIE. Use VESSEL2::clbkNavMode instead.
Called at activation/deactivation of a navmode (see also VESSEL.::ActivateNavmode)

DLLCLBK voi d ovcNavnode (

VESSEL *vessel ,
i nt node,
bool active)

Parameters:
vessel vessel interface
mode navmode constant (see section 9)
active true for activation, false for deactivation.
ovcHUDmode

PIEEET. Use VESSEL2::clbkHUDMode instead.
Called after a change of the vessel’'s HUD (head up display) mode.

Synopsis:

DLLCLBK voi d ovcHUDnmode (VESSEL *vessel, int node)
Parameters:

vessel vessel interface

mode new HUD mode
Notes:

e For currently supported HUD modes see HUD_xxx constants in section 9.
« mode HUD_NONE indicates that the HUD has been turned off.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 18

ovcMFEDmode
IR, Use VESSEL2::clbkMFDMode instead.
Called after the display mode of one of the MFDs (multifunctional displays) has
changed.

Synopsis:
DLLCLBK voi d ovcMrDnode (VESSEL *vessel, int nfd, int node)

Parameters:
vessel vessel interface
mfd MFD identifier (see Section 9).
mode new MFD mode (see Section 9).

ovcDockEvent
PR, Use VESSEL2::clbkDockEvent instead.
Called after a docking or undocking event at one of the vessel’s docking ports.

Synopsis:
voi d ovcDockEvent (

VESSEL *vessel ,
i nt dock,
OBJHANDLE connect ed)

Parameters:
vessel vessel interface
dock docking port index

connected handle to docked vessel, or NULL for undocking event

ovCcAnimate
IR, Use VESSEL2::clbkAnimate instead.
Called at each simulation time step if the module has registered an animation request
and if the vessel’s visual exists.

Synopsis:

DLLCLBK voi d ovcAni nate (VESSEL *vessel, double sint)
Parameters:

vessel vessel interface

simt simulation up time (seconds since simulation start)
Notes:

e This callback allows the module to animate the vessel’'s visual representation
(moving undercarriage, cargo bay doors, etc.)

« ltis only called as long as the vessel has registered an animation (between
matching VESSEL::RegisterAnimation and VESSEL::UnregisterAnimation
calls) and if the vessel's visual exists.

e The UnregisterAnimation call should not be placed within the body of
ovcAnimate, since it would be lost if the vessel's visual doesn't exist. This
should rather be placed in ovcTimestep.

ovcConsumeKey
PIEE. Use VESSEL2::clbkConsumeDirectKey instead.
Keyboard handler. Called at each simulation time step. This callback function allows
the installation of a custom keyboard interface for the vessel.

Synopsis:
DLLCLBK i nt ovcConsumneKey (

VESSEL *vessel,
char *keystate)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 19

Parameters:
vessel vessel interface
keystate keyboard state

Return value:
A nonzero return value will completely disable default processing of the key state
for the current time step. To disable the default processing of selected keys only,
use the RESETKEY macro (see orbitersdk.h) and return O.

Notes:
« The keystate contains the current keyboard state. Use the KEYDOWN
macro in combination with the key identifiers as defined in orbitersdk.h
(OAPI_KEY_xxx) to check for particular keys being pressed. Example:

if (KEYDOM (keystate, OAPlI _KEY_F10)) {
/1 perform action
RESETKEY (keystate, QAPI _KEY_F10);
/1 optional: prevent default processing of the key

}

< This function should be used where a key state, rather than a key event is
required, for example when engaging thrusters or similar. To test for key
events (key pressed, key released) use ovcConsumeBufferedKey instead.

ovcConsumeBufferedKey
B, Use VESSEL2::clbkConsumeBufferedKey instead.
This callback function notifies the module of a buffered key event (key pressed or key
released).

Synopsis:
DLLCLBK i nt ovcConsuneBuf f er edKey (
VESSEL *vessel
DWORD key,
bool down,
char *kstate)

Parameters:
vessel vessel interface
key key scan code (see OAPI_KEY_xxx constants in orbitersdk.h)
down true if key was pressed, false if key was released
kstate current keyboard state

Return value:
The function should return 1 if Orbiter’s default processing of the key should be
skipped, 0 otherwise.

Notes:
« The key state (kstate) can be used to test for key modifiers (Shift, Ctrl, etc.).
The KEYMOD_xxx macros defined in orbitersdk.h are useful for this
purpose.
e This function may be called repeatedly during a single frame, if multiple key
events have occurred in the last time step.
ovcLoadPanel

IR, Use VESSEL2::clbkLoadPanel instead.
Called when Orbiter needs to load a custom instrument panel from the module.

Synopsis:

DLLCLBK bool ovclLoadPanel (VESSEL *vessel, int id)
Parameters:

vessel vessel interface

id panel identifier

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 20

Return value:
false indicates failure.

Notes:

« Inthe body of this function the module should define the panel background
bitmap, and panel capabilities, e.g. the position of MFDs and other
instruments, active areas (mouse hotspots) etc.

* Avessel which implements panels must at least support panel id 0 (the main
panel. If any panels register neighbour panels (see
oapiSetPanelNeighbours), all the neighbours must be supported, too.

See also:
oapiRegisterPanelBackground, oapiRegisterPanelArea, oapiRegisterMFD.

ovcPanelMouseEvent
Ol Eel5l(s. Use VESSEL2::clbkPanelMouseEvent instead.
Called when a previously registered panel area receives a mouse button event.

DLLCLBK bool ovcPanel MouseEvent (

VESSEL *vessel ,

int id,
i nt event,
int nx,
int ny)
Parameters:
vessel vessel interface
id panel area identifier
event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)
mx, my relative mouse position in area at event

Return value:
The function should return true if it processes the event, false otherwise.

Notes:

* Mouse events are only sent for areas which requested notification during
definition (see oapiRegisterPanelArea).

ovcPanelRedrawEvent
Ol Ye][5l(=. Use VESSEL2::clbkPanelRedrawEvent instead.
Called when a panel area receives a redraw event.

Synopsis:
DLLCLBK bool ovcPanel RedrawEvent (

VESSEL *vessel,
int id,

int event,
SURFHANDLE surf)

Parameters:
vessel vessel interface
id panel area identifier
event redraw event (see PANEL_REDRAW _xxx constants in orbitersdk.h)
surf area surface handle.

Return value:
The function should return true if it processes the event, false otherwise.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 21

Notes:

* This callback function is only called for areas which were not registered with
the PANEL_REDRAW_NEVER flag.

e All redrawable panel areas receive a PANEL_REDRAW _INIT redraw
notification when the panel is created, in addition to any registered redraw
notification events.

* The surface handle surf contains either the current area state, or the area
background, depending on the flags passed during area registration.

e The surface handle may be used for blitting operations, or to receive a
Windows device context (DC) for Windows-style redrawing operations.

See also:
oapiGetDC, oapiReleaseDC, oapiTriggerPanelRedrawArea

11 Class VESSEL

This class constitutes the interface with Orbiter’s internal vessel implementation, and provides
access to the various status parameters and methods of individual spacecraft. Typically, an
instance of VESSEL or a derived class will be constructed in each vessel module. Examples
for various applications of the VESSEL class can be found in the sample vessel module im-
plementations in the Orbitersdk\samples folder.

Public member functions

11.1 Construction/creation

VESSEL
Constructor. Creates a vessel interface instance from a vessel handle.

VESSEL (OBJHANDLE hVessel, int flightnodel)
Parameters:
hVessel vessel handle

flightmodel level of realism requested. (O=simple, 1=realistic)

Notes:

e This function creates an interface to an existing vessel. It does not create a
new vessel. New vessels are created with the oapiCreateVessel and
oapiCreateVesselEx functions.

e The VESSEL constructor (or the constructor of a derived specialised vessel

class) will normally be invoked in the ovclinit callback function of a vessel

module:

cl ass MyVessel : public VESSEL

/'l MyVessel interface definition

}
DLLCLBK VESSEL *ovclnit (OBJHANDLE hvessel, int flightnodel)
{
return new MyVessel (hvessel, flightnodel);
}

DLLCLBK void ovcExit (VESSEL *vessel)

del ete (M/Vessel *)vessel ;

« The VESSEL interface instance created in ovclnit should be deleted in
ovcEXxit.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 22

See also:
oapiCreateVessel, oapiCreateVesselEx, ovclnit

Create

EIEEIET. This function has been replaced by oapiCreateVessel and
oapiCreateVesselEx.

GetHandle
Returns a handle to the vessel object.

Synopsis:
const OBJHANDLE Get Handl e (void) const

Return value:
vessel handle, as passed to the VESSEL constructor.

Notes:
* The handle is useful for various API function calls.

11.2 Vessel parameters and capabilities

GetName
Returns the vessel’s name.

Synopsis:
char *Get Nanme (void) const

Return value:
Pointer to vessel’'s name.

GetClassName
Returns the vessel’s class name.

Synopsis:
char *Get d assNane (void) const

Return value:
Pointer to vessel's class name.

GetFlightModel
Returns the requested realism level for the flight model.

Synopsis:
i nt GetFlightMdel (void) const

Return value:
Realism level. These values are currently supported:
0 = simple
1 = realistic

GetEnableFocus
Returns true if the vessel can receive the input focus, false otherwise.

Synopsis:
bool Get Enabl eFocus (voi d) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 23

Return value:
Focus enabled status.

GetSize
Returns the vessel's mean radius.

Synopsis:
doubl e Get Size (void) const

Return value:
Vessel mean radius [m].

GetEmptyMass

Returns vessel's empty mass excluding fuel. Equivalent to the oapiGetEmptyMass API

function.

Synopsis:
doubl e Get Enpt yMass (voi d) const

Return value:
Vessel empty mass [kg].

GetCOG_elev

Returns the altitude of the vessel's centre of gravity over ground level when landed [m].

Synopsis:
doubl e Get COG el ev (void) const

Return value:
elevation of vessel's centre of mass [m].

GetCrossSections

Returns the vessel’s cross sections projected in the direction of the vessel’s principal

axes [m?]
Synopsis:
voi d Get CrossSections (VECTOR3 &cs) const
Parameters:
cs vector receiving the cross sections of the vessel’s projection into the
y-z, X-z, and x-y planes, respectively [mz]
GetPMI

Returns principal moments of inertia, mass-normalised [mz]

Synopsis:

void GetPM (VECTOR3 &pmi) const
Parameters:

pmi Diagonal elements of the inertia tensor
Notes:

For the meaning of the pmi vector, see SetPMI.

GetCameraOffset
Returns the camera position for internal (cockpit) view.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

24

Synopsis:
voi d Get CaneraOf fset (VECTOR3 &ofs) const

Parameters:
ofs camera offset in the vessel's local frame of reference [m,m,m]

GetCameraDefaultDirection
Returns the default camera direction for internal (cockpit) view.

Synopsis:

voi d Get Caner aDef aul t Di rection (VECTOR3 &dir0) const
Parameters:

dir0 default camera direction in vessel coordinates
Notes:

¢ The default camera direction may change when the user selects a different
instrument panel or virtual cockpit position.
e The returned direction vector is normalised to length 1.

SetEnableFocus
Set the vessel’s ability to receive the input focus.

voi d Set Enabl eFocus (bool enabl e) const

Parameters:
enable focus enabled status

Notes:
* The default focus status before the first call to SetEnableFocus is true,
unless overridden by the config file.

SetSize
Sets the vessel's mean radius [m].

Synopsis:

voi d SetSize (double size) const
Parameters:

size vessel mean radius [m]
Notes:

e This value is used for visibility calculations, but normally has no influence on
the actual visual representation of the object (which is defined by the mesh)
unless the module performs mesh scaling operations.

SetEmptyMass

Sets the vessel's empty mass excluding fuel. Equivalent to the oapiSetEmptyMass API
function.

voi d Set Enpt yMass (double m const

Parameters:
m vessel empty mass [kg]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 25

SetCOG_elev
Olefe][E1M=. Sets the altitude of the vessel’s centre of gravity over ground level when

landed [m].
Synopsis:
voi d Set COG el ev (doubl e h) const
Parameters:
h elevation of the vessel's centre of gravity above the surface plane
when landed [m].
Notes:

e This function is obsolete and has been replaced by SetTouchdownPoints.

SetTouchdownPoints
This defines 3 surface contact points for ground contact calculations (e.g. the points
where the landing gear touches the ground).

Synopsis:
voi d Set TouchdownPoi nts (

const VECTOR3 é&pt1,
const VECTOR3 é&pt 2,
const VECTOR3 &pt4) const

Parameters:
ptl touchdown point of nose wheel (or equivalent)
pt2 touchdown point of left wheel (or equivalent)
pt3 touchdown point of right wheel (or equivalent)
Notes:

* The points are the positions at which the vessel’s undercarriage (or
equivalent) touches the surface, specified in local vessel coordinates.

* The points should be specified such that the cross product pt3-ptl x pt2-ptl
defines the horizon UP direction for the landed vessel (given a left-handed
coordinate system).

SetSurfaceFrictionCoeff
Sets the coefficients of surface friction which define the deceleration forces during
taxiing. mu_Ing is the coefficient acting in longitudinal (forward) direction, mu_lat the
coefficient acting in lateral (sideways) direction. The friction forces are proportional to
the coefficient and the weight of the vessel:

Ffriction = ,UG

Synopsis:
voi d Set SurfaceFrictionCoeff (

doubl e mu_I ng,
doubl e mu_lat) const

Parameters:
mu_lIng friction coefficient in longitudinal direction
mu_lat friction coefficient in lateral direction
Notes:

* The higher the coefficient, the faster the vessel will come to a halt.

* Typical parameters for a spacecraft equipped with landing wheels would be
mu_Ing = 0.1 and mu_lat = 0.5. If the vessel hasn’t got wheels, mu_Ing =
0.5.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 26

« The coefficients should be adjusted for belly landings when the landing gear
is retracted.
* The longitudinal and lateral directions are defined by the touchdown points:

N R 1. . . ~ ~
Sing = Po _E(p1+ pz)' St = P2 =Py

See also:
SetTouchdownPoints

SetCrossSections
Sets the vessel's cross sections projected in the direction of the vessel’s principal axes
[m?]

voi d Set CrossSections (const VECTOR3 &cs) const

Parameters:
cs vector of cross sections of the vessel’s projection into the y-z, x-z, and x-
y planes, respectively [m?]

SetPitchMomentScale
Sets the magnitude of the moment acting on the vessel's pitch angle which rotates the
vessel’s longitudinal direction towards the airspeed vector.

Synopsis:

voi d Set Pi tchMonent Scal e (doubl e scal e) const
Parameters:

scale scale factor for pitch moment

SetBankMomentScale
Sets the magnitude of the moment acting on the vessel's bank angle which rotates the
vessel’s longitudinal direction towards the airspeed vector.

Synopsis:
voi d Set BankMonent Scal e (doubl e scal €) const
Parameters:
scale scale factor for bank moment
SetPMI

Sets principal moments of inertia, mass-normalised [m?].

void SetPM (const VECTOR3 &pmi) const
Parameters:

pmi Principal moments of inertia
Notes:

e The principal moments are the diagonal elements of the inertia tensor in a
frame of reference where the off-diagonal elements are zero.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 27

e The elements of pmi should be calculated as follows:

. 1
pmi, :Vjp(r)(ry2 +r2)dr
pi, = [A(r)(r? +r)

. 1
pmiy = [p(T)(r +1)dr

where M is the total vessel mass, pis the density, and the integration is
performed over the vessel volume. The reference frame is chosen so that
the off-diagonal elements of the tensor vanish.

 The shi pedi t utility allows to calculate the inertia tensor from a mesh,
assuming a homogeneous mass distribution.

void SetTrimScale (double) const
Sets the max. magnitude of the pitch trim control.

Synopsis:

voi d SetTrintScal e (doubl e scal €) const
Parameters:

scale pitch trim scaling factor
Notes:

* If scale is set to zero (default) the vessel does not have a pitch trim control.

SetCameraOffset
Sets the camera position for internal (cockpit) view.

Synopsis:

voi d Set CaneraOf fset (const VECTOR3 &ofs) const
Parameters:

ofs camera offset in the vessel's local frame of reference [m,m,m]
Notes:

e Currently the camera direction in cockpit view is always the vessel’s local +z
axis (forward).

SetCameraDefaultDirection
Sets the default camera direction for internal (cockpit) view.

Synopsis:

voi d Set Caner aDef aul t Di rection (const VECTOR3 &cd) const
Parameters:

cd new camera direction in vessel coordinates
Notes:

¢ By default, the default direction is (0,0,1), i.e. forward.

e The supplied direction vector must be normalised to length 1.

e Calling this function automatically sets the current actual view direction to the
default direction.

e This function can either be called during ovcSetClassCaps, to define the
default camera direction globally for the vessel, or during ovcGenericCockpit,
ovcLoadPanel and clbkLoadVC, to define different default directions for
different instrument panels or virtual cockpit positions.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 28

e In Orbiter, the user can return to the default direction by pressing the “Home”
key on the cursor key pad.

SetCameraRotationRange
Sets the range over which the cockpit camera can be rotated from its default direction.

voi d Set Caner aRot ati onRange (
doubl e left,
doubl e right,
doubl e up,
doubl e down) const
Parameters:
left rotation range to the left [rad]
right rotation range to the right [rad]
up rotation range up [rad]
down rotation range down [rad]
Notes:

« Allranges must be = 0. The left and right ranges should be < 1t The up and
down ranges should be < 172.

e The default values are 0.81tfor left and right ranges, and 0.4mtfor up and
down ranges.

SetCameraShiftRange
Set the linear movement range for the cockpit camera. Defining a linear movement
allows the user to move the head forward or sideways, e.g. to get a better look out of a
window.

Synopsis:
voi d Set Caner aShi ft Range (
const VECTOR3 &f orward,
const VECTOR3 &l eft,
const VECTOR3 &right) const

Parameters:
forward offset vector when leaning forward
left offset vector when leaning left
right offset vector when leaning right
Notes:

« If alinear movement range is defined with this function, the user can 'lean
forward or sideways using the 'cockpit slew' keys. Supported keys are:

Name default action
CockpitCamDontLean Cirl +Al t +Down return to default position
CockpitCamLeanForward Crl+A t+Up lean forward
CockpitCamLeanLeft Crl +Al t +Lef t lean left
CockpitCamLeanRight Crl+Al t +Ri ght lean right

« The movement vectors are taken relative to the default cockpit position
defined via SetCameraOffset.

e This function should be called when initialising a cockpit mode (e.g. in
clbkLoadPanel or clbkLoadVC). By default, Orbiter resets the linear
movement range to zero whenever the cockpit mode changes.

ParseScenarioLine
Process an input line from a scenario file by updating a VESSELSTATUS status struct.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 29

Synopsis:
voi d ParseScenarioLi ne (

char *Iline,
VESSELSTATUS *st at us) const

Parameters:
line line to be interpreted
status status parameter set
Notes:

* Normally, this function will be called from within the body of ovcLoadState to
allow Orbiter to process any generic status parameters which are not
processed by the module.

e This function is retained for backward compatibility. New modules should
use the ovcLoadStateEx and ParseScenarioLineEx functions.

ParseScenarioLineEx
Process an input line from a scenario file by updating a VESSELSTATUSKX status struct

x=2).
Synopsis:

voi d ParseScenari oLi neEx (char *line, void *status) const
Parameters:

line line to be interpreted

status status parameters (points to a VESSELSTATUSX variable).

Notes:

e This function should be used within the body of ovcLoadStateEx.

e The parser in ovcLoadStateEx should forward all lines not recognised by the
module to Orbiter via ParseScenarioLineEx to allow processing of standard
vessel settings.

e ovclLoadStateEx currently provides a VESSELSTATUS?2 status definition.
This may change in future versions, so st at us should not be used within
ovcLoadStateEx other than passing it to ParseScenarioLineEx.

See also:
ovcLoadStateEx
11.3 Current vessel status
GetStatus

Returns vessel's current status parameters.

Synopsis:

voi d CGet Status (VESSELSTATUS &st at us) const
Parameters:

status struct receiving current vessel status
Notes:

¢ For a definition of VESSELSTATUS see Section 8.
GetStatusEx

Returns vessel’'s current status parameters in a VESSELSTATUSKX structure (version X
= 2).

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 30

Synopsis:
voi d GetStatusEx (void *status) const

Parameters:
status pointer to a VESSELSTATUSKX structure

Notes:

¢ This method can be used with any VESSELSTATUSKX interface version
supported by Orbiter. Currently only VESSELSTATUS?2 is supported.

« Theversi on field of the VESSELSTATUSKX structure must be set by the
caller prior to calling the method, to tell Orbiter which interface version is
required.

¢ In addition, the caller must set the VS_FUELLIST, VS_THRUSTLIST and
VS_DOCKINFOLIST bits in the f | ag field, if the corresponding lists are
required. Otherwise Orbiter will not produce these lists.

e If VS_FUELLIST is specified and the f uel field is NULL, Orbiter will allocate
memory for the list. The caller is responsible for deleting the list after use. If
the f uel field is not NULL, Orbiter assumes that a list of sufficient length to
store all propellant resources has been allocated by the caller.

e The same applies to the t hr ust er and docki nf o lists.

See also:
SetStateEx, VESSELSTATUS2

DefSetState
Calls the default Orbiter vessel state initialisation with the specified status.

Synopsis:

voi d Def Set State (const VESSELSTATUS *stat us) const
Parameters:

status vessel status parameters.
Notes:

¢ This function is most commonly used in ovcSetState to enable default state
initialisation.

DefSetStateEx
Calls the default Orbiter vessel state initialisation with the provided VESSELSTATUSXx
interface (version x = 2).

Synopsis:
voi d Def Set St at eEx (const void *status) const

Parameters:
status pointer to a VESSELSTATUSKX structure

Notes:

e status must point to a VESSELSTATUSKX structure. Currently only
VESSELSTATUS?2 is supported, but future Orbiter versions may introduce
new interfaces.

« Typically, this function will be called in the body of ovcSetStateEx to enable
default state initialisation.

SaveDefaultState

@ Ye]EIfE. Use a call to the base class VESSEL::clbkSaveState from within the
overloaded callback function instead.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 31

Causes Orbiter to write default vessel parameters to a scenario file.

Synopsis:

voi d SaveDefaultState (FILEHANDLE scn) const
Parameters:

scn scenario file handle
Notes:

¢ This method should normally only be invoked from within ovcSaveState, to
allow Orbiter to save its default vessel status parameters.

* If ovcSaveState is implemented but does not call SaveDefaultState, no
default parameters are written to the scenario.

GroundContact
Flag indicating contact with a planetary surface.

Synopsis:
bool G oundContact (void) const

Return value:
true indicates ground contact (at least one of the vessel's touchdown reference
points is in contact with a planet surface).

OrbitStabilised
Flag indicating whether orbit stabilisation is used for the vessel at the current time step.

Synopsis:
bool O bitStabilised (void) const

Return value:
true indicates that the vessels uses its osculating orbital elements to update its
state vectors, assuming an unperturbed Keplerian 2-body calculation to account
for the gravitational effect of the primary gravity source.

Notes:
e Avessel reverts to orbit stabilisation only if
» the user has enabled it in the launchpad dialog, and
» the user-defined perturbation and time step limits are satisfied, and
* no non-gravitational forces (thrusters, aerodynamics, etc) are active

NonsphericalGravityEnabled
Flag indicating whether the vessel uses perturbations in gravity fields due to
nonspherical planet shapes to update its state vectors for the current time step.

Synopsis:
bool Nonspherical GravityEnabl ed (void) const

Return value:
true indicates that gravity perturbations are taken into account.

Notes:
* Nonspherical gravity is applied if
» the user has enabled it in the launchpad dialog
» the vessel's orbit is not stabilised at the current time step.

GetMass
Returns current (total) vessel mass. Equivalent to the oapiGetMass API function.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 32

Synopsis:
doubl e Get Mass (void) const

Return value:
Current vessel mass [kq].

GetAttitudeMode
Returns the current RCS (reaction control system) thruster mode.

Synopsis:
int GetAttitudeMode (void) const

Return value:
Current RCS mode: RCS_NONE, RCS_ROT, or RCS_LIN.

Notes:

e The reaction control system consists of a set of small thrusters arranged
around the vessel. They can be fired in pre-defined configurations to provide
either a change in angular velocity (in RCS_ROT mode) or in linear velocity
(in RCS_LIN mode).

* RCS_NONE indicates that the RCS is disabled or not available.

e Currently Orbiter doesn’t allow simultaneous linear and rotational RCS
control via keyboard or joystick. The user has to switch between the two.
However, simultaneous operation is possible via the “RControl” plugin
module.

* Not all vessel classes may define a complete RCS.

SetAttitudeMode
Set the vessel’s attitude thruster mode.

Synopsis:
bool SetAttitudeMdde (int node) const
Parameters:
mode attitude mode (RCS_NONE, RCS_ROT, or RCS_LIN).

Return value:
Error flag; false indicates error (requested mode not available)

GetADCtrIMode
Returns current input mode for aerodynamic control surfaces (elevator, rudder,
ailerons).

DWORD Get ADCt r | Mode (void) const

Return value:
Current control mode

Notes:
¢ The returned control mode contains bit flags as follows:
bit O: elevator enabled/disabled
bit 1: rudder enabled/disabled
bit 2: ailerons enabled/disabled
Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates
fully enabled.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 33

SetADCtrIMode
Set input mode for aerodynamic control surfaces.

Synopsis:

voi d Set ADCtr| Mode (DWORD npde) const
Parameters:

mode control mode
Notes:

e See Get ADCt r | Mode() for the meaning of the bit-flags in mode,.

GetAttitudeRotLevel
Returns the current thrust level for attitude thruster groups in rotational mode.

Synopsis:

voi d VESSEL: : Get AttitudeRotLevel (VECTOR3 &t h) const
Parameters:

th vector containing thrust levels (-1 to 1)
Notes:

e The components of th are:
th.x — attitude thrusters rotating around lateral axis
th.y — attitude thrusters rotating around vertical axis
th.z — attitude thrusters rotating around longitudinal axis
« To obtain the actual thrust force magnitudes [N], the absolute values must
be multiplied with the max. attitude thrust (see GetMaxThrust())

See also:
VESSEL::GetMaxThrust(), VESSEL::GetAttitudeLinLevel(),
VESSEL::GetAttitudeMode()

SetAttitudeRotLevel (1)
Set attitude thruster levels for rotation in all 3 axes.

Synopsis:

void SetAttitudeRot Level (const VECTOR3 &t h) const
Parameters:

th attitude thruster levels for rotation around x,y,z axes
Notes:

e Thruster levels must be in the range [-1...1]
« This function works even if manual attitude mode is set to linear.

SetAttitudeRotLevel (2)
Set attitude thruster level for rotation around a single axis.

Synopsis:

void SetAttitudeRotLevel (int axis, double th) const
Parameters:

axis rotation axis (0=x, 1=y, 2=2)

th attitude thruster level
Notes:

e Thruster levels must be in the range [-1..1]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 34

* This function works even if manual attitude mode is set to linear.

SetAttitudeLinLevel (1)
Set attitude thruster levels for linear translation in all 3 axes.

Synopsis:

voi d Set AttitudeLi nLevel (const VECTOR3 &t h) const
Parameters:

th attitude thruster levels for translation along x,y,z
Notes:

e Thruster levels must be in the range [-1..1]

* This function works even if manual attitude mode is set to rotational.

SetAttitudeLinLevel (2)
Set attitude thruster level for linear translation along a single axis.

Synopsis:

void SetAttitudeLinLevel (int axis, double th) const
Parameters:

axis translation axis (0=x, 1=y, 2=2)

th attitude thruster level
Notes:

e Thruster levels must be in the range [-1..1]

* This function works even if manual attitude mode is set to rotational.

GetAttitudeLinLevel
Returns the current thrust level for attitude thrusters groups in linear mode.

Synopsis:

voi d VESSEL: : Get AttitudelLi nLevel (VECTOR3 &t h) const
Parameters:

th vector containing thrust levels (-1 to 1)
Notes:

e The components of th are:
th.x — attitude thrusters for lateral (sideways) translation
th.y — attitude thrusters for vertical (up/down) translation

th.z — attitude thrusters for longitudinal (forward/backward) translation
« To obtain the actual thrust force magnitudes [N], the absolute values must

be multiplied with the max. attitude thrust (see GetMaxThrust())

See also:
VESSEL::GetMaxThrust(), VESSEL::GetAttitudeRotLevel(),
VESSEL::GetAttitudeMode()

ActivateNavmode
Activates a navmode.

Synopsis:

bool ActivateNavnode (int node)
Parameters:

mode navmode id to be activated.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

35

Return value:

True if the specified navmode could be activated, false if not available or active
already.

Notes:

« Navmodes are high-level navigation modes which involve e.g. the
simultaneous and timed engagement of multiple attitude thrusters to get the
vessel into a defined state. Some navmodes terminate automatically once
the target state is reached (e.g. killrot), or they remain active until explicitly
terminated (hlevel). Navmodes may also terminate if a second conflicting
navmode is activated.

* For navmodes currently defined in Orbiter see the NAVMODE_ xxx
constants.

DeactivateNavmode
Deactivates a navmode.

Synopsis:

bool DeactivateNavnode (int node)
Parameters:

mode navmode id to be deactivated.

Return value:
True if the specified navmode could be deactivated, false if not available or if
deactivated already.

ToggleNavmode
Toggles a navmode on/off.

Synopsis:

bool Toggl eNavrode (int node)
Parameters:

mode navmode to be toggled.

Return value:
True if the navmode could be changed, false if it remains unchanged.

GetNavmodeState
Returns current state (on/off) of a navmode.

Synopsis:

bool Get NavnodeState (int node)
Parameters:

mode navmode id to be checked.

Return value:
True if navmode is active, false otherwise.

AddForce
Add a custom body force.

Synopsis:
voi d AddForce (const VECTOR3 &F, const VECTOR3 &r) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 36

Parameters:
F force vector (N)
r radius vector (m)

Notes:

e This function can be used to implement custom forces (braking chutes,
tethers, etc.) It should not be used for standard forces such as thrusters
which are handled internally.

* The force is applied only for the next time step. AddForce() will therefore
usually be used inside the VESSEL2::clbkPreStep() callback function.

11.4 State vectors

GetGlobalPos
Returns vessel’s current position in the global reference frame.

Synopsis:

voi d CGet d obal Pos (VECTOR3 &pos) const
Parameters:

pos: vector receiving position
Notes:

* The global reference frame is the heliocentric ecliptic system at ecliptic and
equinox of J2000.0.

e Units are meters.

e Equivalent to oapi Get d obal Pos(Get Handl e(), &pos)

GetGlobalVel
Returns vessel’s current velocity in the global reference frame.

Synopsis:

voi d CGetd obal Vel (VECTOR3 &vel) const
Parameters:

vel vector receiving velocity
Notes:

* The global reference frame is the heliocentric ecliptic system at ecliptic and
equinox of J2000.0.

* Units are meters/second.

« Equivalent to oapi Get d obal Vel (GetHandle(), &vel)

GetRelativePos
Returns vessel’s current position with respect to another object.

Synopsis:

voi d Cet Rel ati vePos (OBJHANDLE hRef, VECTOR3 &pos) const
Parameters:

hRef reference object handle

pos vector receiving position
Notes:

* Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.
« Equivalent to oapi Get Rel ati vePos (CGet Handl e(), hRef, &pos)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 37

GetRelativeVel
Returns vessel’'s current velocity relative to another object.

Synopsis:

void CetRel ati veVel (OBJHANDLE hRef, VECTOR3 &pos) const
Parameters:

hRef reference object handle

vel vector receiving relative velocity
Notes:

* Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.
« Equivalent to oapiGetRelativeVel (GetHandle(), hRef, &vel)

GetAngularVel
Returns vessel’'s current angular velocity components around its three principal axes.

Synopsis:

voi d CGet Angul ar Vel (VECTOR3 &avel) const
Parameters:

avel vector receiving angular velocity components [rad/s]
Notes:

e The velocity components ware calculated from angular moments M by
Euler’s equations for rigid body motion:

v‘\fhgre_igre_tge Briﬂcip_a*/moments of inertia (J=PMI*mass). Note that the
diffefential eqd&tiéné’ are doupled which leads to a transfer of rotational
energy between the rotation axes.

GetEquPos
Returns vessel’s current equatorial position (longitude, latitude and radius) with respect
to the closest planet or moon.

Synopsis:
OBJHANDLE Get EquPos (

doubl e &l ongi t ude,
doubl e &l atitude,
doubl e &radius) const

Parameters:
longitude variable receiving longitude value [rad]
latitude variable receiving latitude value [rad]
radius variable receiving radius value [m]

Return value:
Handle to reference body to which the parameters refer. NULL indicates failure
(no reference body available).

11.5 Fuel management

CreatePropellantResource
Creates a new propellant resource (“tank”) to be used for powering thrusters.

Synopsis:
PROPELLANT_HANDLE Cr eat ePr opel | ant Resource (

doubl e maxnmss,

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 38

doubl e mass=-1.0,
doubl e efficiency=1.0) const

Parameters:
maxmass maximum propellant capacity of the resource [kg]
mass current propellant mass of the resource [kg]

efficiency fuel efficiency factor (> 0)

Return value:
propellant resource identifier

Notes:

« Orbiter doesn’t distinguish between propellant and oxidant. A “propellant
resource” is assumed to be a combination of fuel and oxidant resources.

* The interpretation of a propellant resource (liquid or solid propulsion system,
ion drive, etc.) is up to the vessel developer.

* The rate of fuel consumption depends on the thrust level and Isp of the
thrusters attached to the resource.

* The fuel efficiency rating, together with a thruster’s Isp rating, determines
how much fuel is consumed per second to obtain a given thrust:

_ F
elsp

R: fuel rate [kg/s], F: thrust [N], e: efficiency, Isp: fuel-specific impulse [m/s]

e If mass < 0 then mass=maxmass is assumed.

DelPropellantResource
Remove a propellant resource and disable all thrusters which were linked to this
resource.

Synopsis:
voi d Del Propel | ant Resource (PROPELLANT HANDLE &ph) const

Parameters:
ph propellant resource identifier (NULL on return)

ClearPropellantResources
Remove all propellant resources and unlink all thrusters from their resources.

voi d O ear Propel | ant Resources (void) const

Notes:
e After a call to this function, all the vessel’s thrusters will be disabled until they
are linked to new resources.

GetPropellantHandleBylIndex
Returns the handle of a propellant resource for a given index.

PROPELLANT_HANDLE Get Pr opel | ant Handl eByl ndex (

DWORD i dx) const

Parameters:
idx propellant resource index

Return value:
propellant resource handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 39

Notes:

e The index must be in the range between 0 and npropellant-1, where
npropellant is the number of propellant resources defined for the vessel (use
GetPropellantCount to obtain this value). If the index is out of range, the
returned handle is NULL.

* The index of a given propellant resource may change if any resources are
deleted. The handle remains valid until the corresponding resource is
deleted.

GetPropellantCount
Returns the number of propellant resources currently defined for the vessel.

Synopsis:
DWORD Get Propel | ant Count (voi d) const

Return value:
Number of propellant resources currently defined for the vessel.

SetDefaultPropellantResource
Define a “default” propellant resource. This is used for the various legacy fuel-related
API functions, and for the “Fuel” indicator in the generic panel-less HUD display.

Synopsis:
voi d Set Def aul t Propel | ant Resource (
PROPELLANT_HANDLE ph) const

Parameters:
ph propellant resource identifier

Notes:
« If this function is not used, the first propellant resource is used as default.

See also:

GetFuelMass(), GetFuelRate(), SetFuelMass(), SetMaxFuelMass(),
GetMaxFuelMass()

SetPropellantMaxMass
Reset the maximum capacity [kg] of a fuel resource.

Synopsis:
voi d Set Propel | ant MaxMass (
PROPELLANT_HANDLE ph,
doubl e maxmass) const

Parameters:
ph propellant resource identifier
maxmass max. fuel capacity (= 0) [kq]

SetPropellantEfficiency
Reset the efficiency factor of a fuel resource.

Synopsis:
voi d Set Propel |l antEfficiency (
PROPELLANT_HANDLE ph,
doubl e efficiency) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 40

Parameters:
ph propellant resource identifier
efficiency fuel efficiency factor (> 0)

Notes:

* See Creat ePropel | ant Resour ce() for an explanation of the fuel
efficiency factor.

SetPropellantMass
Set current mass of a propellant resource.

Synopsis:
voi d Set Propel | ant Mass (
PROPELLANT_HANDLE ph,
doubl e mass) const

Parameters:
ph propellant resource identifier
mass propellant mass [kg]

Notes:

¢ 0 < mass < maxmass is required.

« This method should be used to simulate refuelling, fuel leaks, cross-feeding
between tanks, etc. but not for normal fuel consumption by thrusters (which
is handled internally by the Orbiter core).

GetPropellantMass
Returns the current mass of a propellant resource.

Synopsis:

doubl e Get Propel | ant Mass (PROPELLANT_HANDLE ph) const
Parameters:

ph propellant resource identifier

Return value:
current propellant mass [kg]

GetPropellantMaxMass
Returns the maximum capacity [kg] of a fuel resource.

Synopsis:

doubl e Get Propel | ant MaxMass (PROPELLANT_HANDLE ph) const
Parameters:

ph propellant resource identifier

Return value:
max. fuel capacity [kg]

GetPropellantEfficiency
Returns the efficiency factor of a fuel resource.

Synopsis:

doubl e Get Propel l ant Ef fi ci ency (PROPELLANT_HANDLE ph) const
Parameters:

ph propellant resource identifier

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 41

Return value:
fuel efficiency factor

GetPropellantFlowrate
Returns the mass flow rate of a fuel resource.

Synopsis:

doubl e Get Propel | ant Fl owr at e (PROPELLANT_HANDLE ph) const
Parameters:

ph propellant resource identifier

Return value:
Propellant mass flow rate [kg/s].

GetTotalPropellantMass
Returns the vessel’s current total propellant mass.

Synopsis:
doubl e Get Tot al Propel | ant Mass (voi d) const

Return value:
Current total propellant mass [kg]

GetTotalPropellantFlowrate
Returns the current total mass flow rate, summed over all propellant resources.

Synopsis:
doubl e Get Tot al Propel | ant Fl owrate (voi d) const

Return value:
Total propellant mass flow rate [kg/s]

See also:
GetPropellantFlowrate(), GetFuelRate()

GetFuelMass
Returns the current mass of the vessel’s default propellant resource.

Synopsis:
doubl e Get Fuel Mass (voi d) const

Return value:
Current fuel mass of default propellant resource [kg]

See also:
GetPropellantMass(), SetDefaultPropellantResource()

GetFuelRate

Returns the vessel’s current propellant mass flow rate for the default propellant
resource.

Synopsis:
doubl e Get Fuel Rate (void) const

Return value:
Propellant mass flow rate for default propellant resource [kg/s]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 42

See also:
GetPropellantFlowrate()

SetFuelMass
Sets the current fuel mass of the vessel’'s default propellant resource [kg].

Synopsis:
voi d Set Fuel Mass (doubl e n) const

Parameters:
m Current fuel mass [kg].

Notes:

« If the vessel has not defined any propellant resources then this function has
no effect.

See also:
SetPropellantMass(), SetDefaultPropellantResource()

SetMaxFuelMass

Sets the maximum fuel capacity of the vessel’s default propellant resource, or creates a
new resource if none exists.

Synopsis:

voi d Set MaxFuel Mass (double m const
Parameters:

m Maximum fuel mass [kg].
Notes:

« If the vessel already contains propellant resources, this function resets the
maximum capacity of the vessel’s default resource, otherwise it creates a
new resource with this capacity, and makes it the default resource.

See also:
SetPropellantMaxMass(), SetDefaultPropellantResource()

GetMaxFuelMass
Returns the maximum fuel capacity of the vessel's default propellant resource.

Synopsis:
doubl e Get MaxFuel Mass (voi d) const

Return value:
Maximum fuel mass of default propellant resource [kg].

Notes:
¢ The function returns O if no fuel resources are defined.

See also:
GetPropellantMaxMass(), SetDefaultPropellantResource()

11.6 Thruster management

CreateThruster
Add a logical thruster definition for the vessel.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 43

Synopsis:
THRUSTER_HANDLE Creat eThruster (

const VECTOR3 é&pos,

const VECTOR3 &dir,

doubl e maxt hO,
PROPELLANT_HANDLE hp=NULL,
doubl e i sp0=0. 0,

doubl e isp_ref=0.0,

doubl e p_ref=101. 4e3) const;

Parameters:
pos thrust force attack point (vessel coordinates)
dir thrust force direction (vessel coordinates)
maxth0 max. vacuum thrust rating [N]
hp propellant resource for the thruster
isp0 vacuum Isp (fuel-specific impulse) rating [m/s]
isp_ref Isp rating at ambient pressure p_ref [m/s]
p_ref reference pressure for Isp rating [Pa]

Return value:
thruster identifier

Notes:

e The fuel-specific impulse defines how much thrust is produced by burning
1kg of fuel per second. If the Isp level is not specified or is < 0, a default
value is used (see Set | SP()).

* To define the thrust and Isp ratings to be pressure-dependent, specify an
i sp_ref value >0, and set p_r ef to the corresponding atmospheric
pressure. Thrust and Isp at pressure p will then be calculated as
Isp(p) = I1sp, (1~ p77), Th(p) =Thy(1- p77) , where

« Ifi sp_ref <0 then no pressure-dependence is assum&s (% 0)

« If no propellant resource is specified, the thruster is disabled until it is linked
to a resource by Set Thr ust er Resour ce().

e Thrusters can now create simultaneous linear and angular moments,
depending on the attack point and direction.

 Use Creat eThrust er G oup() to assemble thrusters into logical groups.

See also:

DelThruster(), CreateThrusterGroup(), AddExhaust(), SetISP(),
SetThrusterISP(), SetThrusterResource()

DelThruster
Delete a logical thruster definition.

Synopsis:

bool Del Thruster (THRUSTER HANDLE &t h) const
Parameters:

th thruster identifier (NULL on return)

Return value:
true on success. The function will fail if the handle is invalid.

Notes:
« Deleted thrusters will be automatically removed from all groups they have
been assigned to.
« All exhaust render definitions which refer to the deleted thruster will be
removed.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 44

See also:
CreateThruster(), AddExhaust(), CreateThrusterGroup()

ClearThrusterDefinitions
Removes all thruster and thruster group definitions.

Synopsis:
void O earThrusterDefinitions () const

Notes:
* This also removes all previously defined exhaust render definitions.

GetThrusterHandleBylndex
Returns the handle of a thruster specified by its index.

Synopsis:

THRUSTER_HANDLE Get Thrust er Handl eByl ndex (DWORD i dx) const
Parameters:

idx thruster index

Return value:
Thruster handle

Notes:

e The index must be between 0 and nthruster-1, where nthruster is the thruster
count returned by VESSEL::GetThrusterCount. If the index is out of range,
the returned handle is NULL.

* Note that the thruster indices change if vessel thrusters are deleted. A
thruster handle remains valid until the corresponding thruster is deleted.

GetThrusterCount

Returns the number of thrusters currently defined for the vessel.

Synopsis:
DWORD Get Thrust er Count (void) const

Return value:
Number of thrusters defined for the vessel.

SetThrusterResource
Connects the thruster to a fuel resource (tank).

Synopsis:
voi d Set Thrust er Resource (

THRUSTER_HANDLE t h,
PROPELLANT_HANDLE ph) const

Parameters:

th thruster identifier

ph fuel resource identifier
Notes:

* To disconnect the thruster from its current tank, use ph=NULL.

SetThrusterRef
Reset the thrust force attack point of a thruster.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 45

Synopsis:
voi d Set ThrusterRef (

THRUSTER_HANDLE t h,
const VECTOR3 &pos) const

Parameters:
th thruster identifier
pos new attack point
Notes:

e This function should be used whenever a thruster has been physically
moved in the vessel's local frame of reference.

GetThrusterRef
Returns the thrust force attack point of a thruster.

Synopsis:
voi d CGet ThrusterRef (

THRUSTER_HANDLE t h,
VECTOR3 &pos) const

Parameters:
th thruster identifier
pos attack point

SetThrusterDir
Reset the force direction of a thruster.

Synopsis:
void Set ThrusterDir (

THRUSTER_HANDLE t h,
const VECTOR3 &dir) const

Parameters:
th thruster identifier
dir new thrust direction
Notes:

e This function should be used to reflect a tilt of the thruster (e.g. for an
implementation of thrust vectoring)

GetThrusterDir
Returns the force direction of a thruster.

Synopsis:
void GetThrusterDir (

THRUSTER_HANDLE t h,
VECTOR3 &dir) const

Parameters:
th thruster identifier
dir thrust direction
SetThrusterMax0

Reset the maximum vacuum thrust rating of a thruster.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

46

Synopsis:
voi d Set Thruster Max0 (THRUSTER HANDLE t h, doubl e maxt h0)

const
Parameters:

th thruster identifier

maxth0 new maximum vacuum thrust rating [N]
Notes:

* The max. thrust rating in the presence of atmospheric ambient pressure may
be lower if a pressure-dependent Isp value has been defined.

See also:
CreateThruster, SetThrusterlsp

GetThrusterMax0
Returns the maximum vacuum thrust rating of a thruster.

Synopsis:

doubl e Get Thrust er Max0 (THRUSTER HANDLE t h) const
Parameters:

th thruster identifier

Return value:
Maximum vacuum thrust rating [N]

Notes:

e To retrieve the actual current maximum thrust rating (which may be lower in
the presence of ambient atmospheric pressure) use GetThrusterMax.

GetThrusterMax (1)
Returns the current maximum thrust rating of a thruster.

Synopsis:

doubl e Get Thruster Max (THRUSTER HANDLE t h) const
Parameters:

th thruster identifier

Return value:
maximum thrust rating at the current atmospheric pressure [N]

Notes:

e This function will return the vacuum max thrust rating, unless a pressure-
dependent Isp value has been defined for the thruster.

See also:
CreateThruster, SetThrusterlsp

GetThrusterMax (2)
Returns maximum thrust rating of a thruster for a specific ambient pressure.

Synopsis:
doubl e Get Thruster Max (
THRUSTER_HANDLE t h,
doubl e p_ref) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 47

Parameters:
th thruster identifier
p_ref reference pressure [Pa]

Return value:
maximum thrust rating [N] at atmospheric pressure p_ref.

SetThrusterisp (1)
Reset the fuel-specific impulse rating of a thruster, assuming no pressure-dependence.

Synopsis:

void Set Thrusterlsp (THRUSTER_HANDLE th, double isp) const
Parameters:

th thruster identifier

isp new Isp rating [m/s]
Notes:

e The specified Isp value is assumed to be independent of ambient
atmospheric pressure. To define a pressure-dependent Isp value, use
SetThrusterlsp (2).

See also:
SetISP, SetThrusterlsp (2)

SetThrusterlisp (2)
Reset pressure-dependent fuel-specific impulse rating of a thruster.

Synopsis:
void Set Thrusterlsp (

THRUSTER_HANDLE t h,

doubl e i spO0,

doubl e isp_ref,

doubl e p_ref=101. 4e3) const

Parameters:
th thruster identifier
isp0 new vacuum Isp rating [m/s]
isp_ref Isp rating at ambient pressure p_ref [m/s]
p_ref reference pressure for Isp rating [Pa]
Notes:

* See CreateThruster for equations of pressure-dependent thrust and Isp.

See also:
CreateThruster, SetISP, SetThrusterlsp (1)

GetThrusterlsp (1)
Returns current fuel-specific impulse (Isp) rating of a thruster.

Synopsis:

doubl e Get Thrusterlsp (THRUSTER HANDLE th) const
Parameters:

th thruster identifier

Return value:
Current fuel-specific impulse [m/s]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 48

Notes:
e The return value will depend on the current ambient atmospheric pressure if
a pressure-dependent Isp rating has been defined for this thruster.

See also:
SetThrusterlsp, GetThrusterlsp (2)

GetThrusterlsp (2)
Returns Isp rating for a thruster at a specific ambient pressure.

Synopsis:
doubl e Get Thrusterlsp (

THRUSTER_HANDLE t h,
doubl e p_ref) const

Parameters:
th thruster identifier
p_ref reference pressure [Pa]

Return value:
Fuel-specific impulse [m/s] at ambient pressure p_ref.

Notes:
* Unless a pressure-dependent Isp rating has been defined for this thruster, it
will always return the vacuum rating, independent of the specified pressure.
e To obtain vacuum Isp rating, set p_ref to O.
« To obtain the Isp rating at (Earth) sea level, set p_ref to 101.4e3.

GetThrusterlsp0
Returns vacuum Isp rating for a thruster.

Synopsis:

doubl e Get Thrusterl sp0 (THRUSTER_HANDLE th) const
Parameters:

th thruster identifier

Return value:
Fuel-specific impulse in vacuum [m/s].

Notes:
e This function is equivalent to GetThrusterlsp (th, 0)

SetThrusterLevel
Set the current thrust level [0..1] for a thruster.

Synopsis:
voi d Set ThrusterLevel (

THRUSTER_HANDLE t h,
doubl e I evel) const

Parameters:
th thruster identifier
level thrust level [0..1].
Notes:

e Atlevel 1 the thruster generates maximum force, as defined by its maxth
parameter.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 49

« Certain thrusters are controlled directly by Orbiter via primary input controls
(e.g. joystick throttle control for main thrusters), which may override this
function.

SetThrusterLevel_SingleStep
Set thrust level for the current time step only.

Synopsis:
Set Thrust er Level _Singl eStep (

THRUSTER_HANDLE t h,
doubl e I evel) const

Parameters:
th thruster identifier
level thrust level [0..1]
Notes:

* Atlevel 1 the thruster generates maximum force, as defined by its maxth
parameter.

e This method is applied only to the current time step, so it should normally
only be used in the body of the VESSEL2::clbkPreStep() callback function.

IncThrusterLevel_SingleStep
Increment thrust level for the current time step only.

Synopsis:
voi d I ncThrusterLevel SingleStep (
THRUSTER_HANDLE t h,
doubl e dl evel) const

Parameters:
th thruster identifier
dlevel delta thrust level [0..1]
Notes:

< This method is applied only to the current time step, so it should normally
only be used in the body of the VESSEL2::clbkPreStep() callback function.

e This function may be overridden by manual user input via keyboard and
joystick, or by automatic attitude sequences.

e The resulting thrust level is clamped to range [0..1]

GetThrusterLevel
Returns the current thrust level for a thruster.

Synopsis:

double GetThrusterLevel (THRUSTER_HANDLE th) const
Parameters:

th thruster identifier

Return value:
Current thrust level [0..1]

Notes:

e To obtain the actual force [N] generated by the thruster in vacuum, multiply
the thrust level with its maximum thrust rating. However, the thrust force in
the presence of ambient atmospheric pressure may be lower if
Set Thr ust Pressur eDependency has been applied.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 50

GetThrusterMoment
Returns the linear moment (force) and angular moment (torque) currently generated by
a thruster.

Synopsis:
voi d Get Thruster Monent (

THRUSTER_HANDLE t h,
VECTOR3 &F,
VECTOR3 &T) const

Parameters:

th thruster identifier

F force (linear moment)

T torque (angular moment)
Notes:

e The returned values include the influence of ambient pressure on the thrust
generated by the engine.

CreateThrusterGroup
Combine thrusters into a logical group.

Synopsis:
THGROUP_HANDLE Cr eat eThrust er G oup (

THRUSTER_HANDLE *t h,
int nth,
THGROUP_TYPE t hgt) const

Parameters:
th array of thruster identifiers, as returned by CreateThruster()
nth number of thrusters in the array
thgt thruster group type (see notes)

Return value:
thruster group identifier

Notes:
« The following group types are defined:

THGROUP_NVAI N main thrusters
THGROUP_RETRO retro thrusters
THGROUP_HOVER hover thrusters
THGROUP_ATT_PI TCHUP rotation: pitch up
THGROUP_ATT_PI TCHDOMN rotation: pitch down
THGROUP_ATT_YAWLEFT rotation: yaw left
THCGROUP_ATT_YAWRI GHT rotation: yaw right
THGROUP_ATT_BANKLEFT rotation: bank left
THGROUP_ATT_BANKRI GHT rotation: bank right
THCROUP_ATT_RI GAT translation: move right
THGROUP_ATT LEFT translation: move left
THGROUP_ATT _UP translation: move up
THGROUP_ATT DOV translation: move down
THGROUP_ATT FORWARD translation: move forward
THGROUP_ATT_ BACK translation: move back
THGROUP_USER user-defined group

e Thruster groups (except for user-defined groups) are engaged by Orbiter as
a result of user input. For example, pushing the stick backward in rotational

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 51

attitude mode will engage the thrusters in the THGROUP_ATT_PI TCHUP
group.

* ltis the responsibility of the vessel designer to make sure that the thruster
groups are designed so that they behave in a sensible way.

e Thrusters can be added to more than one group. For example, an attitude
thruster can be simultaneously grouped into THGROUP_ATT_PI TCHUP and
THGROUP_ATT_UP.

* Rotational thrusters should be designed so that they don’t induce a
significant linear momentum. This means rotational groups require at least 2
thrusters each.

« Linear thrusters should be designed such that they don’t induce a significant
angular momentum.

* If a vessel does not define a complete set of attitude thruster groups, certain
navmode sequences (e.g. KILLROT) may fail.

See also:
CreateThruster()

DelThrusterGroup (1)
Delete a thruster group and (optionally) all associated thrusters.

Synopsis:
bool Del ThrusterGoup (

THGROUP_HANDLE &t hg,
THGROUP_TYPE t hgt ,
bool delth = fal se) const

Parameters:
thg thruster group identifier (NULL on return)
thgt thruster group type (see CreateThrusterGroup)
delth thruster destruction flag

Return value:
true on success.

Notes:
« If delth==true, all thrusters associated with the group will be destroyed. Note
that this can have side effects if the thrusters were associated with multiple
groups, since they are removed from all those groups as well.

DelThrusterGroup (2)
Delete a default thruster group and (optionally) all associated thrusters.

Synopsis:
bool Del ThrusterGoup (

THGROUP_TYPE t hgt ,
bool delth = fal se) const

Parameters:
thgt thruster group type (excluding THGROUP_USER)
delth thruster destruction flag

Return value:
true on success

Notes:
e This version can only be used for default thruster groups (< THGROUP_USER)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 52

« If delth==true, all thrusters associated with the group will be destroyed. Note
that this can have side effects if the thrusters were associated with multiple

groups, since they are removed from all those groups as well.

GetThrusterGroupHandle
Returns the handle of one of the default thruster groups, specified by its type.

Synopsis:
THCGROUP_HANDLE Cet Thrust er G oupHandl e (

THGROUP_TYPE thgt) const

Parameters:
thgt thruster group type (for a list, see notes to
Creat eThrust er G oup)

Return value:
thruster group handle (or NULL if no group is defined for the specified type).

Notes:
e The thruster group type must not be THGROUP_USER. To retrieve the
handle of a nonstandard thruster group, use
Get User Thr ust er G oupHandl eByl ndex.

GetUserThrusterGroupHandleByIndex
Returns the handle of a user-defined (nonstandard) thruster group specified by its
index.

Synopsis:
THGROUP_HANDLE Get User Thr ust er G oupHandl eByl ndex (

DWORD i dx) const

Parameters:
idx index of user-defined thruster group

Return value:
thruster group handle

Notes:

« Use this method only to retrieve handles for nonstandard thruster groups
(created with the THGROUP_USER flag). For standard groups, use
GetThrusterGroupHandle instead.

e The index must be in the range between 0 and nuserthgroup-1, where
nuserthgroup is the number of nonstandard thruster groups. Use
GetUserThrusterGroupCount to obtain this value.

GetUserThrusterGroupCount
Returns the number of user-defined (nonstandard) thruster groups.

Synopsis:
DWORD Get User Thrust er G oupCount (voi d) const

Return value:
number of user-defined thruster groups.

Notes:
e The value returned by this method only includes user-defined thruster

groups (created with the THGROUP_USER flag). It does not contain any of the

standard thruster groups (such as THGROUP_MAI N, etc.)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

SetThrusterGroupLevel (1)
Set the thrust level for all thrusters in a group.

Synopsis:
voi d Set Thruster G oupLevel (

THGROUP_HANDLE t hg,
doubl e I evel) const

Parameters:
thg thruster group identifier
level new thruster level

SetThrusterGroupLevel (2)
Set the thrust level for all thrusters in a standard group.

Synopsis:
voi d Set Thruster G oupLevel (

THGROUP_TYPE t hgt ,
doubl e I evel) const

Parameters:
thgt thruster group type
level new thruster level
Notes:

* This method can only be used for standard thruster group types (the types
listed in Cr eat eThr ust er G oup except THGROUP_USER).

IncThrusterGroupLevel (1)
Increment the thrust level for all thrusters in a group.

Synopsis:
voi d I ncThruster G oupLevel (

THGROUP_HANDLE t hg,
doubl e dl evel) const

Parameters:
thg thruster group identifier
dlevel thrust level increment
Notes:

e Thrust levels will automatically be truncated to the range [0..1]
¢ Use negative dlevel to decrement the thrust level.

IncThrusterGroupLevel (2)
Increment the thrust level for all thrusters in a standard group.

Synopsis:
voi d I ncThruster G oupLevel (

THGROUP_TYPE t hgt ,
doubl e dl evel) const

Parameters:
thgt thruster group type
dlevel thrust level increment

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 54

Notes:
* This method can only be used for standard thruster group types (the types
listed in Cr eat eThr ust er G oup except THGROUP_USER).
e Thrust levels will automatically be truncated to the range [0..1]
¢ Use negative dlevel to decrement the thrust level.

GetThrusterGroupLevel (1)
Retrieve the average thrust level for a thruster group.

Synopsis:

doubl e Get Thrust er G oupLevel (THGROUP_HANDLE thg) const
Parameters:

thg thruster group identifier

Return value:
Average thrust level [0..1]

Notes:
« This function is probably only useful if all thrusters in the group have the
same maximum thrust rating, otherwise it is difficult to interpret the average
value.

GetThrusterGroupLevel (2)
Retrieve the average thrust level for a default thruster group.

Synopsis:

doubl e Get Thrust er G oupLevel (THGROUP_TYPE thgt) const
Parameters:

thgt thruster group type

Return value:
Average thrust level [0..1]

GetManualControlLevel
Returns the thrust level of an attitude thruster group requested by the user via
keyboard or joystick input.

Synopsis:
doubl e VESSEL: : Get Manual Contr ol Level (

THGROUP_TYPE t hgt ,
DWORD node = MANCTRL_ATTMODE,
DWORD devi ce = MANCTRL_ANYDEVI CE) const

Parameters:
thgt thruster group identifier
mode attitude control mode (see notes)
device input device (see notes)

Return value:
Manual level for the specified thruster group (0..1)

Notes:

e device can be one of the following:
MANCTRL_KEYBOARD: retrieve keyboard thrust input
MANCTRL_JOYSTICK: retrieve joystick thrust input
MANCTRL_ANYDEVICE: retrieve input from any device

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 55

¢ mode can be one of the following:
MANCTRL_ATTMODE: retrieve level for the vessel's current attitude mode
MANCTRL_ROTMODE: retrieve level for rotational modes only
MANCTRL_LINMODE: retrive level for linear modes only
MANCTRL_ANYMODE: retrieve level for rotational and linear modes

e If mode is not MANCTRL_ANYMODE, only thruster groups which are of the
specified mode (linear or rotational) will return nonzero values.

AddExhaust (1)
Add an exhaust render definition for a thruster.

Synopsis:
U NT AddExhaust (

THRUSTER_HANDLE t h,

doubl e | scal e,

doubl e wscal e,

SURFHANDLE tex = 0) const

Parameters:
th thruster identifier
Iscale exhaust flame size (length) [m]
wscale exhaust flame size (width) [m]
tex texture handle for custom exhaust flames

Return value:
Exhaust identifier

Notes:

e Thrusters defined with CreateThruster do not by default render exhaust
effects, until an exhaust definition has been specified with AddExhaust.

¢ The size of the exhaust flame is automatically scaled by the thrust level.

« This version retrieves exhaust reference position and direction directly from
the thruster setting, and will therefore automatically reflect any changes
caused by SetThrusterRef and SetThrusterDir.

« To use a custom exhaust texture, set tex to a surface handle returned by
oapiRegisterExhaustTexture. If tex == 0, the default texture is used.

See also:

CreateThruster, SetThrusterRef, SetThrusterDir, SetThrusterLevel,
oapiRegisterExhaustTexture

AddExhaust (2)
Add an exhaust render definition for a thruster with explicit reference position and
direction.

Synopsis:
U NT AddExhaust (

THRUSTER_HANDLE t h,

doubl e | scal e,

doubl e wscal e,

const VECTOR3 é&pos,

const VECTOR3 &dir,
SURFHANDLE tex = 0) const

Parameters:
th thruster identifier
Iscale exhaust flame size (length) [m]
wscale exhaust flame size (width) [m]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 56

pos reference position in the local vessel frame
dir exhaust direction
tex texture handle for custom exhaust flames

Return value:
Exhaust identifier

Notes:
* Unlike AddExhaust (1), this version uses the explicitly provided reference
position and direction, rather than using the thruster parameters.
e This allows multiple exhaust render definitions to refer to a single thruster
definition, e.g. where multiple thrusters have been combined into a single
“logical” thruster definition. This technique can be used to simplify the
description of thruster groups which are always addressed synchronously.
* The exhaust direction should be opposite to the thrust direction of the
thruster it refers to.
« Exhaust positions and directions are fixed in this version, so they will not
react to changes caused by SetThrusterRef and SetThrusterDir.
« To use a custom exhaust texture, set tex to a surface handle returned by
oapiRegisterExhaustTexture. If tex == 0, the default texture is used.
See also:
oapiRegisterExhaustTexture
DelExhaust

Removes an exhaust render definition.

Synopsis:

bool Del Exhaust (Ul NT idx) const
Parameters:

idx exhaust identifier

Return value:
Error status; false if exhaust definition did not exist.

GetMaxThrust
EIEEIET. Returns maximum thrust rating [N] for one of the vessel's engine groups,
defined by eng.

Synopsis:

doubl e Get MaxThrust (ENG NETYPE eng) const
Parameters:

eng engine group identifier

Return value:
Maximum thrust rating [N]

Notes:

e This function has been replaced by Get Thr ust er G oupLevel .

* For eng==ENGINE_ATTITUDE, the function returns the group thrust rating
for the THGROUP_ATT_PITCHUP group. Other attitude thrust groups may
have different parameters.

SetMaxThrust

EIEEIET. Sets the maximum thrust rating for engine group eng to th [N].

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 57

This function has been superseded by CreateThruster and CreateThrusterGroup. It is
retained for backward compatibility and can still be used to define a simplified thruster
implementation (see notes).

Synopsis:

voi d Set MaxThrust (ENGQ NETYPE eng, double th) const
Parameters:

eng engine group identifier

th maximum thrust rating [N]
Notes:

e This method can still be used to implement a simple, idealised thruster
configuration, but it should not be mixed with the new thruster functions
CreateThruster and CreateThrusterGroup.

* Inthe context of the new thruster interface, this function now performs the
following functions:

eng action

ENG NE_MAI N thr = CreateThruster (_V(0,0,0), _V(0,0,1), th);
CreateThrusterGoup (& hr, 1, THGROUP_MAIN);

ENG NE_RETRO thr = CreateThruster (_V(0,0,0), _V(0,0,-1), th);
CreateThrusterGoup (& hr, 1, THGROUP_RETRO ;

ENG NE_HOVER thr = CreateThruster (_V(0,0,0), _V(0,1,0), th);
CreateThrusterGoup (& hr, 1, THGROUP_HOVER);

ENG NE_ATTI TUDE This creates a complete set of linear and rotational attitude
thrusters and attitude thruster groups (see below)

e Calling SetMaxThrust for ENGINE_ATTITUDE will create all 12
THGROUP_ATT_xxx groups (see CreateThrusterGroup) and add one
thruster to each linear group (max. rating t h), and 2 thrusters to each
rotational group (max. rating ¥2 t h each), creating 18 thrusters in total. Any
previous THGROUP_ATT_xxx definitions will be overwritten. Thrusters are
mounted in an ‘ideal’ configuration, such that linear groups do not induce
angular moments, and rotational groups do not induce linear moments. All
linear thrusters are mounted in the centre of gravity, all rotational thrusters
are mounted at a distance of Size from the centre of gravity. (This means
that the vessel’s size must have been set by a previous call to SetSize).

SetISP
Sets a default Isp value for subsequently created thrusters.
Synopsis:
void Setl SP (doubl e isp) const
Parameters:
isp fuel-specific impulse [m/s].
Notes:

e The Isp defines the amount of thrust [N] obtained by burning 1 kg of fuel per
second. (or conversely, the amount of fuel consumed to attain a given thrust
level)

e The effect of this function has changed from v.020419: previously it
redefined the global Isp value for all thrusters. Now it only takes effect for
subsequently defined thrusters which do not explicitly specify their own Isp
rating (see CreateThruster).

« Before the first call to SetISP, the default Isp value is 510* m/s.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 58

See also:
CreateThruster, SetThrusterISP

GetlSP
Returns vessel’'s current default fuel-specific impulse.

Synopsis:
doubl e Getl SP (void) const

Return value:

Fuel-specific impulse [m/s]. This is the amount of thrust [N] obtained by burning
1kg of fuel per second.

Notes:

* The effect of this function has changed from v.020419: previously it returned
the global Isp value for all thrusters. Now it returns the current default Isp
value which will be used for all subsequently defined thrusters which do not
define individual Isp settings.

* To obtain an actual Isp value for a thruster, use GetThrusterISP.

See also:
SetlSP, GetThrusterlSP

SetEnginelLevel

IR, Sets the thrust level for an engine group.
This function has been replaced by SetThrusterGroupLevel.

Synopsis:

voi d Set Engi neLevel (ENG NETYPE eng, double |evel) const
Parameters:

eng engine group identifier

level thrust level (0..1)
Notes:

* Main engine level —x is equivalent to retro engine level +x and vice versa.

IncEngineLevel

OJeKe][ZIEs. Increase or decrease the thrust level for an engine group.
This function has been replaced by IncThrusterGroupLevel.

Synopsis:

voi d I ncEngi neLevel (ENG NETYPE eng, doubl e dlevel) const
Parameters:

eng engine group identifier

dlevel thrust increment
Notes:

« Use negative dlevel to decrease the engine’s thrust level.
* Levels are clipped to valid range.

GetEngineLevel
OJEe]EIs. Returns the thrust level for an engine group.

This function has been replaced by GetThrusterGroupLevel.
Synopsis:
doubl e Get Engi neLevel (ENG NETYPE eng) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 59

Parameters:
eng engine group identifier

Return value:
thrust level (0..1)

Notes:
« For main engines, this does not include externally defined, module-controlled
thrusters
e This function does not work for attitude thrusters.
GetMainThrustModPtr

®JesKJe][Z1f=. This function is no longer supported.

AddExhaustRef
IR, Replaced by AddExhaust.

DelExhaustRef
EIEEIET. Replaced by DelExhaust.

ClearExhaustRefs
Deletes all exhaust render definitions.

Synopsis:
voi d O ear Exhaust Ref s (voi d)

Notes:
* This function clears the render definitions for all thrusters, but does not affect
the physical thruster behaviour. To remove thrusters physically, use
ClearThrusterDefinitions instead.

AddAttExhaustRef
EIERIET. Adds an exhaust render definition for an attitude thruster. This function is
only retained for backward compatibility and may be removed in a future version. Use
AddExhaust instead.

Synopsis:
U NT AddAtt Exhaust Ref (

const VECTOR3 é&pos,
const VECTOR3 &dir,
doubl e wscale = 1.0,
doubl e I'scale = 1.0) const

Parameters:
pos exhaust reference position (in local vessel coordinates)
dir exhaust direction (normalised)

wscale exhaust render width scaling factor
Iscale exhaust render length scaling factor

Return value:
Attitude exhaust id.

Notes:
« This function only affects the exhaust rendering, not the physical parameters
of the attitude engines.
e After creating an attitude thruster with AddAttExhaustRef, it must be
assigned to one or more attitude modes with AddAttExhaustMode.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 60

See also:
AddExhaust

AddAttExhaustMode

OJeKe][EIls. Assign an attitude thruster to an attitude mode. This function is only retained
for backward compatibility and may be removed in a future version. Use AddExhaust

instead.
Synopsis:
voi d AddAtt Exhaust Mode (
Ul NT i dx,
ATTI TUDEMODE node,
int axis,
int dir) const
Parameters:
idx attitude exhaust id, as returned by AddAttExhaustRef.
mode ATTMODE_ROT or ATTMODE_LIN
axis rotation/translation axis (0=x, 1=y, 2=2)
dir rotation/translation direction (0 or 1)
Notes:
* An attitude thruster can be assigned to more than one mode (e.g. a
rotational and a linear mode)
« Multiple attitude thrusters can be assigned to a single mode.
« The following attitude modes are available:
mode axis dir used for
ATTMODE_ROT 0 0 pitch up
ATTMODE_ROT 0 1 pitch down
ATTMODE_ROT 1 0 yaw left
ATTMODE_ROT 1 1 yaw right
ATTMODE_ROT 2 0 roll right
ATTMODE_ROT 2 1 roll left
ATTMODE_LIN 0 0 move right
ATTMODE_LIN 0 1 move left
ATTMODE_LIN 1 0 move up
ATTMODE_LIN 1 1 move down
ATTMODE_LIN 2 0 move forward
ATTMODE_LIN 2 1 move back
See also:
AddExhaust

ClearAttExhaustRefs

PRI, Replaced by DelExhaust, DelThruster and ClearThrusterDefinitions. This

function does no longer have any effect.

11.7 Docking port management

CreateDock
Create a new docking port.

Synopsis:
DOCKHANDLE Cr eat eDock (

const VECTOR3 é&pos,
const VECTOR3 &dir,
const VECTOR3 &rot) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

61

Parameters:

pos dock reference position in vessel coordinates
dir approach direction in vessel coordinates
rot longitudinal rotation alignment vector

Return value:
dock handle

Notes:
e Thedir andr ot vectors should be normalised to length 1.
e Therot vector should be perpendicular to the di r vector.

* When two vessels connect at their docking ports, the relative orientation of
the vessels is defined such that their respective approach direction vectors
(di r) are anti-parallel, and their longitudinal alignment vectors (r ot) are
parallel.

DelDock
Delete a previously defined docking port.

Synopsis:

bool Del Dock (DOCKHANDLE hDock) const
Parameters:

hDock dock handle

Return value:
false indicates failure (invalid dock handle)

Notes:

* Any object docked at the docking port will be undocked before the dock is
deleted.

ClearDockDefinitions
Delete all docking ports defined for the vessel.

Synopsis:
voi d C ear DockDefinitions (void) const

Notes:
« Any docked objects will be undocked before deleting the docking ports.

DockCount
Returns number of docking ports defined for the vessel.

Synopsis:
U NT DockCount (void) const

Return value:
Number of docking ports.

SetDockParams (1)

Set the parameters for the vessel’s primary docking port (port 0), or create a new dock
if required.

Synopsis:
voi d Set DockParans (

const VECTOR3 &pos,
const VECTOR3 &dir,

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 62

const VECTOR3 &rot) const

Parameters:
pos dock reference position in vessel coordinates
dir approach direction in vessel coordinates
rot longitudinal rotation alignment vector

Notes:

This function creates a new docking port if none was previously defined.
Otherwise it overwrites the parameters for dock 0.
See CreateDock for additional notes on the parameters.

SetDockParams (2)
Reset the parameters for for a vessel dock.

Synopsis:
voi d Set DockPar ans (

DOCKHANDLE dock,

const VECTOR3 é&pos,

const VECTOR3 &dir,

const VECTOR3 &rot) const

Parameters:
dock dock identifier
pos new dock reference position
dir new approach direction
rot new longitudinal rotation alignment vector
Notes:

This function should not be called while the dock is engaged.

GetDockParams
Returns the parameters of a docking port.

Synopsis:
voi d Get DockParans (

DOCKHANDLE dock,

VECTOR3 &pos,
VECTOR3 &dir,
VECTOR3 &rot) const;
Parameters:

dock dock handle

pos dock reference position

dir approach direction

rot longitudinal rotation alignment vector

GetDockHandle
Returns a handle to a docking port.

DOCKHANDLE Get DockHandl e (U NT n) const

Parameters:
n docking port index (= 0)

Return value:
dock handle, or NULL if index was out of range.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 63

GetDockStatus
Returns a handle to a docked vessel.

Synopsis:

OBJHANDLE Get DockSt at us (DOCKHANDLE dock) const
Parameters:

dock dock handle

Return value:

Handle to vessel docked at the specified port, or NULL if no vessel is docked at
that port.

DockingStatus
Returns a flag indicating whether a given dock is engaged.

Synopsis:

U NT Docki ngStatus (U NT port) const
Parameters:

port docking port index (=0)

Return value:
port status: 0 = free, 1 = docked

Notes:
e This function has the same functionality as
(Get DockSt at us (Get DockHandl e(port)) ? 1:0)

Undock
Release a docked vessel from a docking port.
Synopsis:
bool Undock (U NT n, const OBJHANDLE exclude = 0) const
Parameters:
n docking port index or ALLDOCKS

exclude optional handle of a vessel to be excluded from undocking

Return value:
true if at least one vessel was released from a port.

Notes:
e Ifnis setto ALLDOCKS, all docking ports are released simultaneously.
e If exclude is nonzero, this vessel will not be undocked. This is useful for
implementing remote undocking in combination with ALLDOCKS.

11.8 Attachment management

Similar to docking ports, attachment points allow to connect two or more vessel objects.

There are a few important differences:

» Docking ports establish peer connections, attachments establish parent-child hierarchies:
A parent vessel can have multiple attached children, but each child can only be attached
to a single parent.

« Attachments use a simplified physics engine: the root parent alone defines the object’s
trajectory (both for freespace and atmospheric flight). The children are assumed to have
no influence on flight behaviour.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 64

» Orbiter establishes docking connections automatically if the docking ports of two vessels
are brought close to each other. Attachment connections are only established by API
calls.

» Currently, docking connections only work in freeflight. Attachments also work for landed
vessels.

Attachment connections are useful for attaching small objects to larger vessels. For example,
Orbiter uses attachments to connect payload items to the Space Shuttle’s cargo bay or the tip
of the RMS manipulator arm (see Orbitersdk\samples\Atlantis).

Attachment points use an identifier string (up to 8 characters) which can provide a method to

establish compatibility. For example, the Atlantis RMS arm tip will only connect to attachment

points with an id string that contains “GS” in the first 2 characters (it ignores the last 6

characters).

Now let’'s assume somebody creates another Shuttle (say a Buran) with its own RMS arm. He

could then allow it to

» grapple exactly the same objects as Atlantis, by checking for “GS”.

» grapple a subset of objects grapplable by Atlantis, by checking additional characters, for
example “GSX".

» grapple all objects grapplable by Atlantis, plus additional objects, for example by checking
for “GS” or “GX”

» grapple entirely different objects, for example by checking for “GX”.

To connect a satellite into the payload bay, Atlantis uses the id “XS” (This means that the
payload bay connection can not be used for grappling. To allow a satellite to be grappled and
stored in the payload bay, it must define both a “GS” and an “XS” attachment point).

CreateAttachment
Define a new attachment point for a vessel.

Synopsis:
ATTACHVENTHANDLE Creat eAttachnent (

bool toparent,

const VECTOR3 é&pos,

const VECTOR3 &dir,

const VECTOR3 é&rot,

const char *id,

bool | oose = fal se) const

Parameters:
toparent If true, the attachment can be used to connect to a parent (i.e.
vessel acts as child). Otherwise, attachment is used to connect to a
child (i.e. vessel acts a parent).

pos attachment point position in vessel coordinates

dir attachment direction in vessel coordinates

rot longitudinal alignment vector in vessel coordinates
id compatibility identifier

loose If true, allow loose connections (see notes)

Return value:
Handle to the new attachment point

Notes:

* Avessel can define multiple parent and child attachment points, and can
subsequently have multiple children attached, but it can only be attached to
a single parent at any one time.

« the dir and rot vectors should both be normalised to length 1, and they
should be orthogonal.

* The identifier string can contain up to 8 characters. It can be used to define
compatibility between attachment points.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 65

» If the attachment point is defined as loose, then the relative orientation
between the two attached objects is frozen to the orientation between them
at the time the connection was established. Otherwise, the two objects snap

to the orientation defined by their “dir” vectors.

SetAttachmentParams
Reset attachment position and orientation for an existing attachment point.

voi d Set Attachnment Parans (

ATTACHVENTHANDLE att achment,
const VECTOR3 é&pos,

const VECTOR3 &dir,

const VECTOR3 &rot) const

Parameters:
attachment attachment handle
pos new attachment point position in vessel coordinates
dir new attachment direction in vessel coordinates
rot new longitudinal alignment vector in vessel coordinates
Notes:

« If the parameters of an attachment point are changed while a vessel is
attached to that point, the attached vessel will be shifted to the new position

automatically.
« the dir and rot vectors should both be normalised to length 1, and they

should be orthogonal.

GetAttachmentParams
Retrieve the parameters of an attachment point.

Synopsis:
voi d Cet Attachnent Parans (

ATTACHVENTHANDLE att achnent,

VECTOR3 &pos,
VECTOR3 &di r,
VECTOR3 &rot) const
Parameters:
attachment attachment handle
pos attachment point position
dir attachment direction
rot longitudinal alignment vector

GetAttachmentld
Retrieve attachment identifier string.

Synopsis:
const char *Get Attachnentld (

ATTACHVENTHANDLE attachnent) const

Parameters:
attachment attachment handle

Return value:
pointer to attachment string (8 characters)

GetAttachmentStatus
Return the current status of an attachment point.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 66

OBJHANDLE Get Attachnent Status (

ATTACHVENTHANDLE attachnent) const

Parameters:
attachment attachment handle

Return value:
Handle of the attached vessel, or NULL if no vessel is attached to this point.

AttachmentCount
Return the number of child or parent attachment points defined for a vessel.

Synopsis:
DWORD Attachment Count (bool toparent) const

Parameters:
toparent If true, return the number of attachment points to parents.
Otherwise, return the number of attachment points to children.

Return value:
Number of defined attachment points to connect to parents or to children.

GetAttachmentindex
Return the list index of a vessel's attachment point defined by its handle.

Synopsis:
DWORD Get Att achnent | ndex (

ATTACHVENTHANDLE attachnent) const

Parameters:
attachment attachment handle

Return value:
List index (= 0)

Notes:

* Avessel defines separate lists for child and parent attachment points.
Therefore two different attachment points may return the same index.

GetAttachmentHandle
Return the handle of an attachment point identified by its list index.

Synopsis:
ATTACHVENTHANDLE GCet Att achnent Handl e (

bool toparent, DWORD i) const

Parameters:
toparent If true, return handle for attachment point to parent. Otherwise,
return handle for attachment point to child.
i attachment index

Return value:
Attachment handle

AttachChild
Attach a child vessel to an attachment point.

Synopsis:
bool AttachChild (

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 67

OBJHANDLE chi | d,
ATTACHVENTHANDLE att achment,
ATTACHVENTHANDLE chil d_attachnent) const

Parameters:
child handle of child vessel to be attached
attachment attachment point to which the child is to be attached
child_attachment attachment point on the child to which we want to attach

Return value:
true indicates success, false indicates failure (child refuses attachment)

Notes:

¢ The attachment handle must refer to an attachment “to child” (i.e. created
with toparent=false); the child_attachment handle must refer to an
attachment “to parent” on the child object (i.e. created with toparent=true). It
is not possible to connect two parent or two child attachment points.

« A child can only be connected to a single parent at any one time. If the child
is already connected to a parent, the previous parent connection is severed.

e The child may check the parent attachment’s id string and, depending on the
value, refuse to connect. In that case, the function returns false.

DetachChild
Break an existing attachment to a child.

Synopsis:
bool DetachChild (

ATTACHVENTHANDLE att achnent,
doubl e vel = 0.0) const

Parameters:
attachment attachment handle
vel separation velocity [m/s]

Return value:
true when detachment is successful, false if no child was attached, or if child
refuses to detach.

11.9 Orbital elements

Note: Calculating elements from state vectors is expensive. If possible, avoid calling the
functions in this group at each frame. On the other hand, once any function in this group has
been called, calling other functions during the same time step is not expensive.

GetGravityRef

Returns a handle to the main contributor of the gravity field at the vessel's current
position.

Synopsis:
const OBJHANDLE Get GravityRef () const

Return value:
Handle to gravity reference object.

GetElements
Returns vessel's primary orbital elements w.r.t. dominant gravitational source.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 68

Synopsis:
OBJHANDLE Get El enrents (ELEMENTS &el, double &rjd ref) const

Parameters:
el primary orbital elements (semi-major axis a, eccentricity e,
inclination i, longitude of ascending node 6, longitude of periapsis @,
mean longitude at epoch L)
mjd_ref reference epoch in MJD (Modified Julian Date) format

Return value:
Handle of reference object. NULL indicates failure (no elements available).

Notes:

e There are various ways to specify orbital elements. Note that here we use
the longitude of the ascending node (not anomaly of the ascending node),
and longitude of periapsis, and that the mean anomaly L refers to epoch
(mjd_ref), not to date (so it should not change over time unless the orbit itself
changes).

GetArgPer
Returns argument of periapsis.

Synopsis:
OBJHANDLE Get ArgPer (doubl e &arg) const

Parameters:
arg argument of periapsis for current orbit [rad]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

GetSMi
Returns semi-minor axis.

Synopsis:

OBJHANDLE Get SM (doubl e &smi) const
Parameters:

smi semi-minor axis for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

GetApDist
Returns apoapsis distance.
Synopsis:
OBJHANDLE Get ApDi st (doubl e &apdi st) const
Parameters:
apdist apoapsis distance for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

GetPeDist
Returns periapsis distance.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 69

Synopsis:
OBJHANDLE Get PeDi st (doubl e &pedi st) const

Parameters:
pedist periapsis distance for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

11.10 Surface-relative parameters
GetSurfaceRef

Returns a handle to the closest planet or moon. This is the object to which all surface-
relative parameters refer.

Synopsis:
const OBJHANDLE Get SurfaceRef () const;

Return value:
Handle to surface reference object (planet or moon)

GetAltitude
Returns altitude above closest planet/moon.

Synopsis:
doubl e GetAltitude (void) const

Return value:
altitude [m]

GetAirspeed

Returns magnitude of the freestream airflow velocity vector measured in ship-relative
coordinates.

Synopsis:
doubl e Get Ai rspeed (void) const

Return value:
Magnitude of airflow velocity [m/s]

Notes:

e This function also works in the absence of an atmosphere. At low altitudes,
the returned value is a ground-speed equivalent. At high altitudes the value
diverges from ground speed, since an atmospheric drag effect is assumed.

e This function returns the length of the vector returned by
GetShipAirspeedVector.

GetHorizonAirspeedVector
Returns airspeed vector in local horizon coordinates.

Synopsis:

bool GetHori zonAi rspeedVector (VECTOR3 &v) const
Parameters:

% variable receiving airspeed vector [m/s]

Return value:
false indicates error.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 70

Notes:

* This function returns the airspeed vector in the reference frame of the local
horizon. x = longitudinal component, y = vertical component, z = latitudinal
component.

GetShipAirspeedVector
Returns airspeed vector in the vessel’s local coordinates.

Synopsis:

bool Get Shi pAi rspeedVector (VECTOR3 &v) const
Parameters:

v variable receiving airspeed vector [m/s]

Return value:
false indicates error

Notes:

* This function returns the airspeed vector in local ship coordinates. x = lateral
component, y = vertical component, z = longitudinal component.

GetAOA

Returns AOA (angle of attack). This is the pitch angle between the velocity vector and
the vessel’s longitudinal axis.

Synopsis:
doubl e Get AQA (voi d) const

Return value:
angle of attack [rad]

GetSlipAngle

Returns the lateral (yaw) angle between the velocity vector and the vessel's
longitudinal axis.

Synopsis:
doubl e Get SlipAngle (void) const

Return value:
lateral slip angle [rad]

GetPitch
Returns pitch angle in local horizon frame.

Synopsis:
doubl e GetPitch (void) const

Return value:
pitch angle [rad]

GetBank
Returns bank angle in local horizon frame.

Synopsis:
doubl e GetBank (void) const

Return value:
bank angle [rad]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 71

11.11 Transformations

ShiftCentreOfMass
Register a shift in the centre of mass after a structural change (e.g. stage separation)

Synopsis:

void ShiftCentreO Mass (const VECTOR3 &shift)
Parameters:

shift CoM displacement vector.
Notes:

* This function should be called after a vessel has undergone a structural
change which shifted the centre of mass, and which resulted in a change of
the mesh component offsets of -shift. It will do two things:

1. Translate the vessel's world reference point by +shift to compensate for
the mesh offset shift.

2. Drag the camera so that it centers at the new CoM (if in external mode
tracking the concerned vessel).

GetSuperstructureCG
Returns the centre of mass of the superstructure to which the vessel belongs, if
applicable.

Synopsis:
bool Get SuperstructureCG (VECTOR3 &cg) const

Parameters:
cg superstructure centre of mass [m,m,m]

Return value:
true if vessel is part of a superstructure, false otherwise.

Notes:

e The returned vector is the position of the superstructure centre of mass, in
coordinates of the local vessel frame.

« If the vessel is not part of a superstructure, cg returns (0,0,0).

GetRotationMatrix
Returns the vessel’s current rotation matrix for transformations from the vessel’s local
frame of reference to the global (world) frame of reference.

void GetRotationMatrix (MATRI X3 &R) const
Parameters:

R rotation matrix
Notes:

e Totransform a point r oy from local vessel coordinates to a global point
I giobal, the following formula is used:

I'giobal = R Tocal + Puesseals
where pyes iS the vessel's global position.

e This transformation can be directly performed by a call to Local2Global.

GlobalRot
Performs a rotation of a direction from the local vessel frame to the global frame.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 72

Synopsis:
voi d d obal Rot (

const VECTOR3 é&rl oc,
VECTOR3 &rrot) const

Parameters:
rloc point in local vessel coordinates (input)
rrot rotated point (output)

Notes:

e This function is equivalent to multiplying rloc with the rotation matrix returned
by GetRotationMatrix.

e Should be used to transform directions. To transform points, use

Local2Global, which additionally adds the vessel’s global position to the
rotated point.

HorizonRot

Performs a rotation of a direction from the local vessel frame to the current local
horizon frame.

Synopsis:
voi d Hori zonRot (

const VECTOR3 é&rl oc,
VECTOR3 &rhorizon) const

Parameters:
rloc vector in local vessel coordinates (input)
rhorizon vector in local horizon coordinates (output)

Notes:
* The local horizon frame is defined as follows:
y is “up” direction (planet centre to vessel centre)
Z is “north” direction
X is “east” direction

Local2Global
Performs a transformation from local vessel to global coordinates.

Synopsis:
voi d Local 2d obal (

const VECTOR3 &l ocal ,
VECTOR3 &gl obal) const

Parameters:

local point in local vessel coordinates (input)

global transformed point in global coordinates (output)
Notes:

e This function maps a point from the vessel’s local coordinate system
(centered at the vessel CG) into the global ecliptical system (centered at the
solar system barycentre).

¢ The transform has the form
pglob = Rvawe! ploc + pv&wd

where Ry iS the vessel's global rotation matrix (as given by
GetRotationMatrix), and pess IS the vessel position in the global frame.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 73

Global2Local
Performs a transformation from global to local vessel coordinates.

Synopsis:
voi d d obal 2Local (

const VECTOR3 &gl obal,
VECTOR3 &l ocal) const

Parameters:

global point in global coordinates (input)

local transformed point in local vessel coordinates (output)
Notes:

« This is the inverse transform of Local2Global; it maps a point from global
ecliptical coordinates into the vessel’s local frame.
e The transform has the form

Piec = R\;;ei (pglob - pvemd)

where Ryess IS the vessel's global rotation matrix (as given by
GetRotationMatrix), and p.ess iS the vessel position in the global frame.

Local2Rel
Performs a transformation from the local vessel frame to the global ecliptical frame,
relative to the vessel's reference body.

Synopsis:
voi d Local 2Rel (const VECTOR3 &l ocal, VECTOR3 &rel) const
Parameters:
local point in local vessel coordinates (input)
rel transformed point in reference body-relative global coordiates
(output)
Notes:

e This function maps a point from the vessel's local coordinate system
(centered at the vessel CG) into an ecliptical coordinate system centered at
the vessel's reference object’'s CG (e.g. the planet that is currently being
orbited).

< A handle to the reference object can be obtained via
VESSEL::GetGravityRef. The reference object may change if the vessel
enters a different object’s sphere of influence.

e The transformation has the form

pre! = Rvewe!ploc +pvewe| _pref

where R IS the vessel’s global rotation matrix (as given by
GetRotationMatrix), and pyesss and p, are the CG positions of the vessel and
reference body in the global frame, respectively.

11.12 Atmospheric parameters
GetAtmRef
Returns a handle to the reference body for atmospheric calculations.

Synopsis:
const OBJHANDLE Get At mRef (void) const

Return value:

Handle to the celestial body whose atmosphere the vessel is currently moving
through, or NULL if the vessel is not inside an atmosphere.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 74

GetAtmTemperature
Returns atmospheric temperature [K] at current vessel position.

Synopsis:
doubl e Get At niTenper ature (void) const

Return value:
atmospheric temperature [K] at curremt vessel position.

Notes:
e This function returns 0 if the vessel is outside all planetary atmospheric hulls,
as defined by the planets’ AtmAltLimit parameters.

GetAtmDensity
Returns atmospheric density [kg/ms] at current vessel position.

Synopsis:
doubl e Get AtmDensity (void) const

Return value:
atmospheric density [kg/ms] at current vessel position.

Note:
e This function returns 0 if the vessel is outside all planetary atmospheric hulls,
as defined by the planets’ AtmAltLimit parameters.
GetAtmPressure

Returns static atmospheric pressure [Pascal] at current vessel position.

Synopsis:
doubl e Get At nPressure (void) const

Return value:
atmospheric pressure [Pa] at current vessel position.

Note:
e This function returns 0 if the vessel is outside all planetary atmospheric hulls,
as defined by the planets’ AtmAltLimit parameters.

11.13 Aerodynamics

GetDynPressure
Returns the current dynamic pressure for the vessel.

Synopsis:
doubl e Get DynPressure (void) const

Return value:
Current vessel dynamic pressure [Pa].

Notes:
e The dynamic pressure is defined as g =% ,0V2 with density p and airflow
velocity V. Dynamic pressure is an important aerodynamic parameter.

GetMachNumber
Returns the vessel’s current Mach number.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 75

Synopsis:
doubl e Get MachNunber (void) const

value:

Return
Mach number — the ratio of current freestream airflow velocity over speed of

sound.

Notes:

* The speed of sound depends on several parameters, e.g. atmospheric

composition and temperature. The Mach number can therefore vary even if
the airspeed is constant.

SetCW
Sets the vessel’s wind resistance coefficients along the local reference axes
[dimensionless].
Synopsis:
voi d Set CW (
doubl e cw_z_pos,
doubl e cw_z neg,
doubl e cw x,
doubl e cw_y) const
Parameters:

CW_z_pos resistance in positive z direction (forward)
CW_z_neg resistance in negative z direction (back)
CW_X resistance in lateral direction

cwW_y resistance in vertical direction

Notes:

* The first value (cw_z_pos) is the coefficient used if the vessel's airspeed z-

GetCW

component is positive (vessel moving forward). The second value is used if
the z-component is negative (vessel moving backward).

e Lateral and vertical components are assumed symmetric.

« The cw coefficients are only used if no airfoils are defined (see CreateAirfoil),
in which case the flight model reverts to legacy parasite drag calculation.

Returns the vessel’'s wind resistance coefficients in the principal directions
[dimensionless].

Synopsis:

voi d Get CW (
doubl e &w z_pos,
doubl e &w z_neg,
doubl e &cw x,
doubl e &w y) const

Parameters:

CW_z pos resistance in positive z direction (forward)
CW_z_neg resistance in negative z direction (back)
CW_X resistance in lateral direction

cwW_y resistance in vertical direction

Notes:

* The first value (cw_z_pos) is the coefficient used if the vessel's airspeed z-
component is positive (vessel moving forward). The second value is used if
the z-component is negative (vessel moving backward).

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 76

e Lateral and vertical components are assumed symmetric.
« The cw coefficients are only used if no airfoils are defined (see CreateAirfoil),
in which case the flight model reverts to legacy parasite drag calculation.

SetRotDrag
Sets the vessel's resistance against rotation around axes in atmosphere.
Synopsis:
voi d SetRotDrag (const VECTOR3 &rd) const
Parameters:
rd drag components for rotation around the 3 vessel axes
GetRotDrag
Returns the vessel’s resistance ry,, , against rotation around axes in atmosphere.
Synopsis:
voi d GetRotDrag (VECTOR3 &rd) const
Parameters:
rd rotational drag coefficient in the three coordinate axes of the
vessel's frame of reference.
Notes:

» rd contains the components r,, , against rotation around axes in atmosphere,
where angular deceleration due to atmospheric friction is a,,, = -a?,, q
S, Iky.; With angular velocity o dynamic pressure g, and reference surface
S, defined by the vessel's cross section projected along the vertical (y) axis.

CreateAirfoil
Define the lift and drag characteristics of an airfoil.

Synopsis:
void CreateAirfoil (

Al RFO L_ORI ENTATI ON al i gn,
const VECTOR3 &ref,

Ai rfoil Coef f Func cf,

doubl e c,

doubl e S,

doubl e A) const

Parameters:
align lift vector orientation (LI FT_VERTI CAL or LI FT_HORI ZONTAL)
ref lift and drag vector attack point
cf pointer to coefficient callback function (see notes)
c airfoil chord length [m]
S wing area [m?]
A wing aspect ratio
Notes:

* Avessel can define multiple airfoils (for wings, main body, tail stabilisators,
etc.). In general, it should define at least one vertical and one horizontal
component.

« Airfoil definitions for wings and horizontal stabilisers set align to
LI FT_VERTI CAL. Vertical stabilisers (vertical tail fin, etc) set align to
LI FT_HORI ZONTAL.

* The location of the attack point (together with the moment coefficient) is
important for the aerodynamic stability of the vessel. Usually the attack point

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 77

will be aft of the CG, and the moment coefficient will have a negative slope
around the trim angle of attack.

e The AirfoilCoeffFunc is a callback function which must be supplied by the
module which calculates the lift, moment and drag coefficients for the airfoil.
It has the following interface:

voi d Ai rfoil Coef fFunc (
doubl e aoa, double M double Re,
doubl e *cl, double *cm double *cd)

and returns the lift coefficient (cl), moment coefficient (cn) and drag
coefficient (cd) as a function of angle of attack aoa [rad], Mach number M
and Reynolds number Re. Note that aoa can range over the full circle (-tto
). For vertical lift components, aoa is the pitch angle of attack (a), while for
horizontal components it is the yaw angle of attack (). Some useful
functions for calculating the coefficients can be found in Section 17.7.

« If the wing area Sis set to 0, then Orbiter uses the projected vessel cross
sections to define a reference area. Let v =(v,,v,,Vv,) be the unit vector of
freestream air flow in vessel coordinates. Then the reference area is
calculated as s=v,C, +v C forall FT_VERTI CAL airfoil, and as
€=v,C, +v,C, fora Ll FT_HORI ZONTAL airfoil, where C,, C,, C, are the
vessel cross-sections in x, y and z direction, respectively.

« The wing aspect ratio is defined as defined as A = b%/Swith wing span b.

« Avessel should typically define its airfoils in the ovcSetClassCaps callback
function. If no airfoils are defined, Orbiter will fall back to its legacy (pre-
030601) drag calculation, using the cw coefficients defined in SetCW.
Legacy lift calculation is no longer supported.

¢ For more details, see the Programmer’s Guide.

CreateAirfoil2
Identical to CreateAirfoil, but returns a handle for the new airfoil.

Synopsis:
Al RFO LHANDLE CreateAirfoil 2 (

Al RFO L_ORI ENTATI ON al i gn,
const VECTOR3 &ref,

Al rfoil Coef f Func cf,

doubl e c,

doubl e S,

doubl e A) const

Parameters:
See CreateAirfoil.

Return value:
Handle for the new airfoil.

Notes:
¢ Use this function if you need to reference the airfoil later (e.g. to delete it).

DelAirfoil
Delete a previously defined airfoil.

Synopsis:

bool Del Airfoil (Al RFO LHANDLE hAirfoil) const
Parameters:

hAirfoil airfoil handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 78

Return value:
false indicated failure (invalid handle)

Notes:

Avoid deleting all airfoils without creating new ones, because this will cause
Orbiter to revert to the obsolete legacy atmospheric flight model.

ClearAirfoilDefinitions
Remove all airfoil definitions currently defined for the vessel.

Synopsis:
voi

Notes:

d CearAirfoil Definitions (void) const

This function is useful if a vessel needs to re-define all its airfoil definitions as
a result of a structural change.

After clearing all airfoils, you should generate new ones. Even wingless
objects (such as capsules) should define their aerodynamic behaviour by
airfoils (see CreateAirfoil). Vessels without airfoil definitions revert to the
obsolete legacy atmospheric flight model.

CreateControlSurface

Create an

airfoil control surface (elevator, rudder, aileron, flaps, etc.) which allows

atmospheric flight control.

Synopsis:
voi d CreateControl Surface (
Al RCTRL_TYPE type,
doubl e area,
doubl e dd ,
const VECTOR3 &ref,
int axis = AIRCTRL_AXI S_AUTQ,
U NT anim= (U NT)-1) const
Parameters:
type Control type. This is a member of the Al RCTRL_TYPE enumeration
type (see notes).
area control surface area [m?]
dcl shift in lift coefficient achieved by fully extended control
ref lift/drag force attack point for the control
axis Control rotation axis. This is a member of the
Al RCTRL_AXI S_AUTOenumeration type (see notes).
anim animation reference, if applicable
Notes:

The following control types are available:

Al RCTRL_ELEVATOR elevator (pitch control)
Al RCTRL_RUDDER rudder (yaw control)

Al RCTRL_Al LERON aileron (bank control)

Al RCTRL_FLAP flaps

The following control axis types are available:

Al RCTRL_AXI S_AUTO automatic axis selection
Al RCTRL_AXI S_YPCS +Y axis (vertical)

Al RCTRL_AXI S_YNEG -Y axis (vertical)

Al RCTRL_AXI S_XPOS +X axis (transversal)

Al RCTRL_AXI S_XNEG -X axis (transversal)

where switching between positive and negative axes reverses the effect of
the control. Automatic axis control will select the following axes:

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 79

Elevator: XPOS

Rudder: YPOS

Aileron: XPOS if ref.x >0,
XNEG otherwise

Flap: XPOS

* Atleast 2 control surfaces must be defined for ailerons (e.g. on the left and
right wing) with opposite rotation axes, to obtain the angular moment for
banking the vessel.

« Elevators will usually use the XPOS axis, assuming the attack point is aft of
the CG. If pitch control is provided by a canard configuration ahead of the
CG, XNEG should be used instead.

e To improve performance, multiple control surfaces may sometimes be
defined by a single call to CreateControlSurface. For example, the elevator
controls on the left and right wing may be combined by setting a centered
attack point.

« Control surfaces can be animated, by passing an animation reference to
CreateControlSurface. The animation reference is obtained from a call to
CreateAnimation(). The animation should support a state in the range from 0
to 1, with neutral surface position at state 0.5.

SetControlSurfaceLevel
Modify the position of a control surface.

Synopsis:
voi d Set Control SurfacelLevel (

Al RCTRL_TYPE type,
doubl e I evel) const

Parameters:
type Control type. This is a member of the AIRCTRL_TYPE enumeration
type.
level new setting (-1 .. 1)
Notes:

e This function is only useful for flap and trim controls, because elevators,
rudder and ailerons are normally continuously scanned from the keyboard
and joystick inputs and overridden in each frame.

GetControlSurfaceLevel
Retrieve the current position of a control surface.

Synopsis:

doubl e Get Control SurfacelLevel (Al RCTRL_TYPE type) const
Parameters:

type Control type. This is a member of the AIRCTRL_TYPE enumeration

type.

Return value:
Current control position (-1 to 1).

CreateVariableDragElement
Attach a drag force to the vessel whose magnitude is controlled by an external variable
which may vary between 0 (no drag) and 1 (full drag). Useful for defining drag
produced by movable parts such as landing gear.

Synopsis:
voi d CreateVari abl eDragEl enent (

doubl e *drag,
doubl e factor,

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 80

const VECTOR3 &ref) const

Parameters:
drag pointer to external control parameter
factor drag magnitude scale factor
ref drag attack point
Notes:
* The magnitude of the drag force is calculated as
D=d ¥ (4,

where d is the control parameter (drag), f is the scale factor, and g. is the
freestream dynamic pressure.

« Depending on the attack point, the drag force may induce an angular
moment.

e Control parameter d should be restricted to values between 0 and 1.

ClearVariableDragElements
Remove all drag components previously defined with CreateVariableDragElement.

Synopsis:
voi d O ear Vari abl eDragEl enents () const

SetWingAspect
IR, This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
It sets the wing aspect ratio (wingspan® / wing area).

Synopsis:

voi d Set WngAspect (doubl e aspect) const
Parameters:

aspect wing aspect ratio [dimensionless]
Notes:

e The value defined by this function is only used in legacy mode, i.e. if the
vessel does not define any airfoils via CreateAirfoil.
e Default value is 1.0

GetWingAspect
EIERIET. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
Returns the vessel's wing aspect ratio (wingspan® / wing area).

Synopsis:
doubl e Get W ngAspect (void) const

Return value:
Wing aspect ratio (Wingspan2 / wing area)

Notes:
e The value returned by this function is used by Orbiter only for legacy
vessels, i.e. vessels which do not define any airfoils via CreateAirfoil.

SetWingEffectiveness

OJsEeJEIs. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
Sets the wing form factor. Used for lift and drag calculation.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 81

Synopsis:
voi d Set WngEf fecti veness (doubl e we) const

Parameters:
we wing form factor.

Notes:
* The value defined by this function is only used in legacy mode, i.e. if the
vessel does not define any airfoils via CreateAirfoil.
e Typical values are: ~3.1 for elliptic wings, ~2.8 for tapered wings, ~2.5 for
rectangular wings.

GetWingEffectiveness
EIERIET. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.

Returns wing form factor: ~3.1 for elliptic wings, ~2.8 for tapered wings, ~2.5 for
rectangular wings.

Synopsis:
doubl e Get W ngEffectiveness (void) const

Return value:
Wing form factor.

Notes:
e The value returned by this function is used by Orbiter only for legacy
vessels, i.e. vessels which do not define any airfoils via CreateAirfoil.
e This form factor describes the wing’s effectiveness in producing lift in an
atmosphere as a function of its shape.

SetLiftCoeffFunc

EIRERIET. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.

Installs callback function for calculation of lift coefficient as a function of angle of attack.

Synopsis:
voi d SetLiftCoeffFunc (LiftCoeffFunc |cf) const
Parameters:
Icf callback function pointer with the following interface:
doubl e LiftCoeff (double aoa)
Notes:

* The preferred method for defining lift and drag characteristics is via the
CreateAirfoil method, which is much more versatile. Orbiter ignores the
SetLiftCoeffFunc function if any airfoils have been created with CreateAirfoil.

¢ The callback function must be able to deal with aoa values in the range —t...
T

e If the function is not installed, the vessel is assumed not to produce any lift.

11.14 Surface contact parameters

SetSurfaceFrictionCoeff
Set the surface friction coefficients in longitudinal and lateral direction.

Synopsis:
voi d Set SurfaceFrictionCoeff (

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 82

doubl e mu_I ng,
double mu_l| at) const

Parameters:
mu_lIng longitudinal coefficient
mu_lat lateral coefficient
Notes:

* The friction forces for each touchdown reference point which intersects the
surface are calculated by
f= Ce M g
where cg: friction coefficient, M: vessel mass: g: surface g-force

e Vessels with landing gear should define mu_Ing < mu_lat. For isotropic
surface friction, mu_Ing = mu_lat should be used.

e The default values are mu_Ing = 0.1, mu_lat = 0.5.

SetMaxWheelbrakeForce
Define the maximum force which can be provided by the vessel’'s wheel brake system.

Synopsis:

voi d Set MaxWheel br akeForce (double f) const
Parameters:

f maximum force [N]

SetWheelbrakeLevel
Apply the wheel brake.

Synopsis:
voi d Set Wheel brakeLevel (

doubl e | evel
int which = 0,
bool permanent = true) const

Parameters:
level wheelbrake level (0..1)
which 0 = both, 1 = left, 2 = right main gear
permanent true sets the level permanently, false only applies to current time

step

GetWheelbrakeLevel
Returns the current wheel brake level.

Synopsis:

doubl e Get Wheel brakeLevel (int which) const
Parameters:

which 0 = average of both main gear levels, 1 = left, 2 = right

Return value:
wheel brake level (0..1)

11.15 Communications/radio interface

InitNavRadios
Defines the number of NAV radio receivers supported by the vessel.

Synopsis:
voi d | nit NavRadi os (DWORD nnav) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 83

Parameters:
nnav number of NAV radio receivers

Notes:
* Avessel requires NAV radio receivers to obtain instrument navigation aids
such as ILS or docking approach information.
* Typically, a vessel should define 2-3 NAV receivers.

« If no NAV receivers are available, then certain MFD modes such as Landing
or Docking will not be supported.

 Defaultis 2 NAV receivers.

SetNavRecv
Set the frequency step for a NAV receiver.

Synopsis:

bool Set NavRecv (DWORD n, DWORD step) const
Parameters:

n NAYV receiver index (= 0)

step frequency step (= 0)

Return value:
false if n = nnav (see InitNavRadios), otherwise true.

Notes:
¢ NAV radios can be tuned from 108.00 to 140.00 kHz in steps of 0.05 kHz.
The frequency corresponding to a receiver step is given by
f=108.0 kHz + step [0.05 kHz.

GetNavRecv
Returns the frequency step of a NAV receiver.

Synopsis:

DWORD Get NavRecv (DWORD n) const
Parameters:

n NAYV receiver index (= 0)

Return value:
frequency step (= 0). If index n is out of range, the return value is 0.

GetNavRadioFreq
Returns the current radio frequency of a NAV receiver [kHz]

Synopsis:

fl oat Get NavRadi oFreq (DWORD n) const
Parameters:

n NAYV radio index (=0)

Return value:
NAV radio frequency [kHZz]. If index n is out of range then the return value is 0.0.

EnableTransponder

Enable/disable a vessel's transponder. The transponder is a radio transmitter which
can be used by other vessels to obtain navigation information, e.g. for docking
rendezvous approaches.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 84

void EnableTransponder (bool enable) const

Parameters:
enable flag for enabling/disabling the transponder

11.16 Visual manipulation

ClearMeshes
Removes all previously declared meshes for the vessel’s visual representation.

voi d Cl ear Meshes () const

AddMesh (1)
Loads a new mesh from file and adds it to the vessel’s visual representation.

Synopsis:
i nt AddMesh (
const char *neshnane,
const VECTOR3 *of s=0) const
Parameters:

meshname mesh file name (without path and file extension) which must exist in
the Meshes subdirectory.

ofs optional pointer to a displacement vector which describes the offset
(in meter) of the mesh origin against the vessel origin.

Return value:
mesh index

AddMesh (2)
This version adds a preloaded mesh to the vessel's visual representation.

Synopsis:

voi d AddMesh (MESHHANDLE hMesh, const VECTOR3 *of s=0) const
Parameters:

hMesh mesh handle

ofs optional pointer to a displacement vector which describes the offset

(in meter) of the mesh origin against the vessel origin.

Return value:
mesh index

See also:
oapiLoadMesh

GetMesh
Returns a handle for a vessel mesh given by its index.

Synopsis:

MESHHANDLE Get Mesh (U NT idx) const
Parameters:

idx mesh index (= 0)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 85

Return value:
mesh handle, or NULL if index out of range.

SetMeshVisibilityMode
Defines whether a mesh is visible for cockpit or external camera modes.

Synopsis:

voi d Set MeshVisibilityMdde (U NT neshidx, WRD node) const
Parameters:

meshidx mesh index as returned by AddMesh

mode visibility mode
Notes:

* mode can be a combination of any of the following flags:
MESHVIS_EXTERNAL: The mesh is rendered in external camera modes
(track or ground mode).

MESHVIS_COCKPIT: The mesh is rendered in internal (cockpit) modes.
MESHVIS_VC: The mesh is rendered only in virtual cockpit mode

¢ The default behaviour is MESHVIS_EXTERNAL (render in external modes
only).

e You can use MESHVIS_ALWAYS as a shortcut for MESHVIS_EXTERNAL |
MESHVIS_COCKPIT.

* Torender a mesh only in virtual cockpit mode, but not in any other internal
modes, use MESHVIS_VC instead of MESHVIS_COCKPIT.

SetMeshVisiblelnternal
EIREEIET. This method has been replaced by SetMeshVisibilityMode.
Marks a mesh as visible from internal cockpit view.

Synopsis:
voi d Set MeshVi si bl el nternal (

Ul NT neshi dx,
bool visible) const

Parameters:
meshidx mesh index as returned by AddMesh
visible visibility flag

Notes:
* By default, a vessel is not rendered when the camera is in internal (cockpit)
view. This function can be used to force rendering of some or all of the
vessel's meshes.

SetExhaustScales
Sets the longitudinal and transversal scaling factors for exhaust rendering

Synopsis:
voi d Set Exhaust Scal es (

EXHAUSTTYPE exh,
WORD i d,

doubl e I scal e,

doubl e wscal e) const

Parameters:
exh engine group identifier (main, retro, hover, custom)
id engine identifier, as returned by AddExhaustRef

Iscale longitudinal scaling factor

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 86

wscale transversal scaling factor

Notes:
¢ This function must be called for custom engines to reflect changes in thrust
level. For standard engine types, this is done automatically.
MeshgroupTransform

Transform a mesh group of the vessel’s visual. Transformations include translation,

rotation and scaling.

Synopsis:

bool MeshgroupTransform (

VI SHANDLE vi s,
const MESHGROUP_TRANSFORM &nt) const

Parameters:

vis visual handle

mt transformation parameters
Notes:

The MESHGROUP_ TRANSFORM structure is defined as follows:

typedef struct {

uni on {
struct { /I rotation parameters
VECTOR3 ref; /I rotation axis reference point
VECTOR3 axi s; /[rotation axis direction
float angle; /l rotation angle (rad)
} rotparam
struct { /I translation parameters
VECTOR3 shift; /I translation vector
} transparam
struct { /I scaling parameters
VECTOR3 scal e; /1 scaling factors along coordinate axes
} scal eparam
} P
int nnesh; /I mesh id
int ngrp; /I group id
enum { TRANSLATE, ROTATE, SCALE }
transform /I transform type

} MESHGROUP_TRANSFORM

If ngrp is set to < 0 then the complete mesh is transformed.

SetReentryTexture

Select a previously registered texture to be used for rendering reentry flames.

Synopsis:
voi

d Set ReentryTexture (
SURFHANDLE t ex,
doubl e plimt=6e7,
doubl e I scal e=1.0,
doubl e wscal e=1. 0) const

Parameters:
tex texture handle
plimit friction power limit
Iscale texture length scaling factor
wscale texture width scaling factor
Notes:

The texture handle is obtained by a previous call to
oapiRegisterReentryTexture.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

87

« If a custom texture is not explicitly set, Orbiter uses a default texture
(reentry.dds) for rendering reentry flames. To suppress reentry flames
altogether for a vessel, call SetReentryTexture(NULL).

See also:
oapiRegisterReentryTexture

RegisterAnimation

Logs a request for calls to ovcAnimate, while the vessel’s visual exists.

Synopsis:
voi d Regi sterAnimation (void) const

Notes:

« This function allows to implement animation sequences in combination with
the ovcAnimate callback function. After a call to RegisterAnimation,
ovcAnimate is called at each time step, if the vessel's visual exists.

* Use UnregisterAnimation to stop further calls to ovcAnimate.

« Orbiter uses a reference counter to log animation requests. It calls
ovcAnimate as long as counter > 0,

« If ovcAnimate is not implemented by the module, RegisterAnimation has no
effect.

UnregisterAnimation

Unlogs an animation request.

Synopsis:
voi d Unregi sterAnimation (void) const

Notes:
* This stops a request for animation callback calls from a previous
RegisterAnimation.
e The call to UnregisterAnimation should not be placed in the body of
ovcAnimate, since it may be lost if the vessel’s visual doesn’t exist.

CreateAnimation

Create a “semi-automatic” animation sequence. The sequence can contain multiple
components (rotations, translations, scalings of mesh groups) with a fixed temporal
correlation. The animation is driven by manipulating its “state”, which is a number
between 0 and 1 used to linearly interpolate the animation within its range. See API
User’s Guide for details.

Synopsis:
U NT CreateAnimation (double initial_state) const

Parameters:
initial_state the animation state corresponding to the unmodified mesh

Return value:
Animation identifier

Notes:
¢ Once you have created an animation, use AddAnimationComponent to add
components.
* Use SetAnimation to manipulate the animation state.
« initial_state defines at which state the animation is stored in the mesh file.
Example: Landing gear animation between retracted state (0) and deployed

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 88

state (1). If the landing gear is retracted in the mesh file set initial_state to 0.
If it is deployed in the mesh file, set initial_state to 1.

AddAnimationComponent
Add a component (rotation, translation or scaling of mesh groups) to an animation.
Optionally, animations can be stacked hierachically, where transforming a parent
recursively also transforms all its children (e.g. a wheel spinning while the landing gear
is being retracted).

Synopsis:
ANl MATI ONCOVPONENT_HANDLE AddAni mat i onConponent (
U NT ani m
doubl e st at e0,
doubl e statel,
MGROUP_TRANSFORM *t r ans,
ANl MATI ONCOVPONENT_HANDLE parent = NULL) const
Parameters:
anim animation identifier, as returned by CreateAnimation
state0 animation cutoff state 0 for the component
statel animation cutoff state 1 for the component
trans transformation data (see notes)
parent parent transformation

Return value:
Animation component handle

Notes:

« stateO and statel (0..1) allow to define the temporal endpoints of the
component’s animation within the sequence. For example, state0=0 and
state1=1 perform the animation over the whole sequence animation, while
state0=0 and state1=0.5 perform the animation over the first half of the
sequence animation. This allows to build complex animations where different
components are animated in a defined temporal sequence.

* MGROUP_TRANSFORM is the base class for mesh group transforms. The
following derived classes are available:

MEROUP_ROTATE (rotation)

Constructor:

MGROUP_ROTATE (Ul NT mesh, U NT *grp, U NT ngrp,
const VECTOR3 &ref, const VECTOR3 &axi s,
float angle)

where:
mesh mesh index (O=first mesh, etc.)
arp array of mesh group indices
ngrp number of mesh groups
ref rotation reference point
axis rotation axis
angle angular range of rotation [rad]

MEROUP_TRANSLATE (translation)

Constructor:

MGROUP_TRANSLATE (Ul NT mesh, U NT *grp, U NT ngrp,
const VECTOR3 &shift)

where:
mesh mesh index
arp array of mesh group indices
ngrp number of mesh groups

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 89

shift translation vector

MEROUP_SCALE (scaling)
Constructor:
MGROUP_SCALE (U NT mesh, U NT *grp, U NT ngrp,
const VECTOR3 &ref, const VECTOR3 &scal e)
where:
mesh mesh index
arp array of mesh group indices
ngrp number of mesh groups
ref reference point for scaling origin
scale scaling factorsin x, y and z

* To animate a complete mesh, rather than individual mesh groups, set the
“grp” pointer to NULL in the constructor of the corresponding
MGROUP_TRANSFORM operator. The “ngrp” value is then ignored.

* To define a transformation as a child of another transformation, set parent to
the handle returned by the AddAnimationComponent call for the parent.

* Instead of adding mesh groups to an animation, it is also possible to add a
local VECTORS array. To do this, set “mesh” to LOCALVERTEXLIST, and
set “grp” to MAKEGROUPARRAY (vtxptr), where vtxptr is the VECTORS3
array. “ngrp” is set to the number of vertices in the array. Example:

VECTOR3 vtx[2] = {_V(0,0,0), _V(1,0,-1)};

MGROUP_TRANSFORM *nt = new MGROUP_TRANSFORM (LOCALVERTEXLI ST,
MAKEGROUPARRAY(Vvt X), 2);

AddAni mat i onConponent (anim 0, 1, nt);

Transforming local vertices in this way does not have an effect on the visual
appearance of the animation, but it can be used by the module to keep track
of a transformed point during animation. The Atlantis module uses this
method to track a grappled satellite during animation of the RMS arm.

Bugs:
* When defining a scaling transformation as a child of a parent rotation, only

homogeneous scaling is supported, i.e. scale.x = scale.y = scale.z is
required.

DelAnimationComponent
Remove a component from an animation.

Synopsis:
bool Del Ani mati onConponent (
U NT ani m
ANl MATI ONCOVPONENT_HANDLE hAC)
Parameters:
anim animation identifier
hAC animation component handle

Return value:
false indicates failure (anim out of range, or hAC invalid)

Notes:

« If the component has children belonging to the same animation, these will be
deleted as well.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 90

¢ Inthe current implementation, the component must not have children
belonging to other animations. Trying to delete such a component will result
in undefined behaviour.

SetAnimation
Set the state of an animation.

Synopsis:
bool Set Anination (U NT anim double state) const

Parameters:
anim animation identifier
state animation state (0..1)

Return value:
false indicates failure (animation identifier out of range)

Notes:

« Each animation is defined by its state, with extreme points state=0 and
state=1. When setting a state between 0 and 1, Orbiter carries out the
appropriate transformations to advance the animation to that state. It is the
responsibility of the code developer to call SetAnimation in such a way as to
provide a smooth movement of the animated parts.

RegisterAnimSequence
OJeKJe]Zits. This method has been replaced by CreateAnimation. It is available for
backward compatibility only and will be removed in a future version.

Synopsis:
U NT Regi st er Ani nSequence (doubl e defstate) const

Parameters:
defstate animation state stored in the mesh.

Return value:
Animation sequence identifier.

Notes:

« Unlike RegisterAnimation/UnregisterAnimation, this function allows to create
animation sequences which are processed by the Orbiter core, rather than
manually by the module. The user only needs to define the components of
the animation sequence once after creating the vessel, using
AddAnimComp, and can then manipulate the animation state via
SetAnimState.

« Each animation sequence is defined by its state, which has a value between
0 and 1. For example, for an animated landing gear operation state 0 may
correspond to retracted gears, state 1 to fully deployed gears.

« defstate defines at which state the animation is stored in the mesh file.

AddAnimComp
ERERIET. This method has been replaced by AddAnimationComponent. It is available
for backward compatibility only and will be removed in a future version.

Synopsis:
bool AddAni mConp (Ul NT seq, AN MCOWP *conp)
Parameters:
seq sequence identifier, as returned by RegisterAnimSequence

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 91

comp animation component description (see notes)

Return value:
false indicates failure.

Notes:
« ANIMCOMP is a structure defining the component’s animation:

typedef struct {
U NT *grp; /I array of group indices to be included in component
U NT ngrp; /I number of groups in the grp array
doubl e st at e0; /I animation cutoff state 1
doubl e statel; /I animation cutoff state 2
MESHCGROUP_TRANSFORM t r ans; // transformation parameters
} ANl MCOVP;

e For a complete description of the MESHGROUP_TRANSFORM structure
see method VESSEL::MeshgroupTransform.

* Note that in this case the angle or shift fields in
MESHGROUP_TRANSFORM describe the range of animation, e.g. the
angle over which a landing gear is rotated from fully retracted to fully
deployed.

» stateO and statel (0..1) allow to define the temporal endpoints of the
component’s animation within the sequence. For example, state0=0 and
statel=1 perform the animation over the whole sequence animation, while
state0=0 and state1=0.5 perform the animation over the first half of the
sequence animation.

RecordEvent
Not implemented yet.

11.17 Particle systems

AddExhaustStream (1)
Add a particle stream definition to generate an exhaust stream for a vessel. Exhaust
streams can be emissive (to simulate “glowing” ionised gases) or diffuse (e.g. for
simulating vapour trails).

Synopsis:
PSTREAM HANDLE AddExhaust Stream (

THRUSTER_HANDLE t h,
PARTI CLESTREAMSPEC *pss = 0) const

Parameters:
th thruster handle to which the exhaust stream is linked.
pss particle stream specification

Return value:
Handle to the newly created particle stream.

Notes:

e« The PARTICLESTREAMSPEC structure is defined in section 8. More details
can be found in the Programmer’s Guide.

e Multiple streams can be defined for a single engine. For example, an
emissive stream with short lifetime may represent the ionised exhaust gases,
while a diffuse stream with longer lifetime represents the vapour trail.

e To improve performance, closely packed engines may share a single
exhaust stream.

< If the user has disabled particle streams in the launchpad dialog, this
function will return NULL. The module must be able to cope with this case.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 92

AddExhaustStream (2)
Add a particle stream definition to generate an exhaust stream for a vessel. This
version allows to specify an independent reference point for particle emission.

Synopsis:
PSTREAM HANDLE AddExhaust St ream (

THRUSTER_HANDLE t h,
const VECTOR3 é&pos,
PARTI CLESTREAMSPEC *pss = 0) const

Parameters:
th thruster handle to which the exhaust stream is linked.
pos particle emission reference point
pss particle stream specification

Return value:
Handle to the newly created particle stream.

Notes:
« This version allows to pass an explicit particle emission reference position,
independent of the engine reference point.
« If the user has disabled particle streams in the launchpad dialog, this
function will return NULL. The module must be able to cope with this case.

AddReentryStream
Add a particle stream definition to generate a reentry stream for a vessel.

Synopsis:
PSTREAM HANDLE AddReentryStream (

PARTI CLESTREAMSPEC *pss) const

Parameters:
pss particle stream specification

Return value:
Handle to the newly created particle stream.

Notes:
* Vessels automatically define a default emissive particle stream, but you may
want to add further stream to customise the appearance.

DelExhaustStream
Delete a previously added particle stream.

Synopsis:

bool Del Exhaust Stream (PSTREAM HANDLE ch) const
Parameters:

ch particle stream handle

Return value:
false indicates failure (particle stream does not exist)

Notes:
e If athruster is deleted (with DelThruster), any attached particle streams are
deleted automatically.
* A deleted particle stream will no longer emit particles, but existing particles
persist until they expire.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 93

12 VESSEL class extensions

Additions to the VESSEL interface are implemented by a chain of classes derived from
VESSEL. Each interface in the chain inherits all methods of the previous classes. New
interfaces may add addtional callback or query functions. You should always derive your own
vessel class from the most recent interface in the chain. Older interfaces will remain valid for
backward comparison, unless explicitly stated.

12.1 Class VESSEL?2

Inheritance:
VESSEL - VESSELZ2

The VESSEL? class adds a variety of callback functions to the VESSEL interface (clbkXXX).
These are called by Orbiter to notify the vessel about different types of events and allow it to
react to them. The VESSEL?2 class implements these as virtual functions which act as
placeholders to be overwritten by derived classes whenever a non-default behaviour is
required.

Some of the callback methods defined in this section replace oveXXX vessel module callback
functions defined in section 10. In those cases, the default behaviour of VESSEL2::cIbkXXX
functions will be to call the equivalent oveXXX function (if it exists) for backward compatibility.
Addon developers should always use the VESSEL2::clbkXXX methods in preference over the
ovcXXX functions.

clbkSetClassCaps
Called after vessel creation, this function allows to set vessel class capabilities and
parameters. This can include definition of physical properties (size, mass, docking
ports, etc.), creation of propellant resources and engines, aerodynamic parameters,
including airfoil definitions, lift and drag properties, or active control surfaces.

Synopsis:

voi d cl bkSet G assCaps (FI LEHANDLE cf g)
Parameters:

cfg handle for the vessel class configuration file

Default action:
Calls module callback function ovcSetClassCaps if present, for backward
compatibility.

Notes:

e This function is called after the vessel has been created, but before its state
is read from the scenario file. This means that its state (position, velocity,
fuel level, etc.) is undefined at this point.

« Use this function to set vessel class capabilities, not vessel state
parameters.

« Orbiter will scan the vessel class configuration file for generic parameters
(like mass or size) after clbkSetClassCaps returns. This allows to override
generic caps defined in the module by editing the configuration file.

e The configuration file handle is also passed to clbkSetClassCaps, to allow
reading of vessel class-specific parameters from file.

e The default action of calling ovcSetClassCaps will be dropped in future
versions.

clbkLoadStateEx
Called when the vessel needs to load its initial state from a scenario file.

Synopsis:
voi d cl bkLoadSt at eEx (FI LEHANDLE scn, void *status)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 94

Parameters:
scn scenario file handle
status pointer to VESSELSTATUSKX structure (x = 2)

Default action:
Calls ovcLoadStateEx if defined by the module, for backward compatibility. In
ovcLoadStateEx doesn't exist, clbkLoadStateEx loads the generic vessel state.

Notes:

e This callback function allows to read custom vessel status parameters from a
scenario file.

e The function should define a loop which parses lines from the scenario file
via oapiReadScenario_nextline.

* You should not call the base class VESSEL?2::clbkLoadStateEx to parse
generic parameters, because this will skip over any custom scenario entries.
Instead, any lines which the module parser does not recognise should be
forwarded to Orbiter’s default scenario parser via
VESSEL::ParseScenarioLineEx.

* Orbiter will always pass the latest supported VESSELSTATUSKX version to
ovcLoadStateEx. This is currently VESSELSTATUS2, but may change in
future versions. To maintain compatibility, vs should therefore not be used
other than to pass it on to ParseScenarioLineEX.

e Atypical parser implementation may look like this:

voi d MyVessel :: cl bkLoadSt at eEx (FI LEHANDLE scn, void *status)
{

char *line;
int ny_val ue;

whi | e (oapi ReadScenari o_nextline (scn, line)) {
if (!strnicnp (line, “ny_option”, 9)) { // custom item
sscanf (line+9, “%l", &my_val ue);
} elseif (...) { //moreitems

} else { /I anything not recognised is passed on to Orbiter
Par seScenari oLi neEx (line, vs);
}

See also:
VESSELSTATUS?2
VESSEL::ParseScenarioLineEx
oapiReadScenario_nextline

clbkSaveState
Called when the vessel needs to save its current status to a scenario file (typically at
the end of a simulation session).

Synopsis:

voi d cl bkSaveSt at e (FI LEHANDLE scn)
Parameters:

scn scenario file handle

Default action:
Calls ovcSaveState if defined by the module, for backward compatibility. If
ovcSaveState doesn't exist, clbkSaveState saves the generic vessel state.

Notes:

¢ This function only needs to be overloaded if the vessel must save
nonstandard parameters.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 95

« If clbkSaveState is overloaded, generic state parameters will only be written
if the base class VESSEL2::clbkSaveState is called.

« To write custom parameters to the scenario file, use the oapiWriteLine
function.

e The default action of calling ovcSaveState will be dropped in future versions.

clbkSetStateEx

This callback function is invoked by Orbiter when a vessel is created during the
simulation with a call to oapiCreateVesselEx. It allows the vessel to initialise its state
according to the provided VESSELSTATUSKX interface (version x = 2). To allow default
initialisation, the status can be passed to VESSEL.::DefSetStateEx.

Synopsis:

voi d cl bkSet St at eEx (const void *status)
Parameters:

status pointer to a VESSELSTATUSKX structure

Default action:
Calls the module’s ovcSetStateEx callback function if present, to provide
backward compatibility.

Notes:

e This callback function receives the VESSELSTATUSX structure passed to
oapiCreateVesselEx. It must therefore be able to process the interface
version used by those functions.

« This function remains valid even if future versions of Orbiter introduce new
VESSELSTATUSX interfaces.

« Atypical implementation may look like this:

voi d MyVessel :: cl bkSet St at eEx (const voi d *status)
{

/'l specialised vessel initialisations
...

/1 default initialisation:
Def Set St at eEx (st atus);

}

clbkPostCreation

Called after a vessel has been created and its state has been set.

Synopsis:
voi d cl bkPost Creation ()

Default action:
Calls the module callback function ovcPostCreation if present, to provide
backward compatibility.

Notes:

« This function can be used to perform the final setup steps for the vessel,
such as animation states and instrument panel states. When this function is
called, the vessel state (e.g. position, thruster levels, etc.) have been
defined.

* The default action of calling ovcPostCreation will be dropped in future
versions.

clbkPlaybackEvent

Not implemented yet.

clbkFocusChanged

Called after a vessel gained or lost input focus.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 96

Synopsis:
voi d cl bkFocusChanged (

bool getfocus,
OBJHANDLE hNewMessel ,
OBJHANDLE hd dVessel)

Parameters:
getfocus true if the vessel gained focus, false if it lost focus
hNewVesselhandle of vessel gaining focus
hOldVessel handle of vessel losing focus

Default action:
Calls the module callback function ovcFocusChanged if present, to provide
backward compatibility.

Notes:

« Whenever the input focus is switched to a new vessel (e.g. via user selection
F3), this method is called for both the vessel losing focus (getfocus=false)
and the vessel gaining focus (getfocus=true).

< In both calls, hNewVessel and hOldVessel are the vessel handles for the
vessel gaining and the vessel losing focus, respectively.

e This method is also called at the beginning of the simulation for the initial
focus object. In this case hOldVessel is NULL.

clbkPreStep
Called at each simulation time step before the state is updated to the current simulation
time. This function allows to define actions which need to be controlled continuously.

Synopsis:
void cl bkPreStep (double Sinl, double SinDT, double njd)
Parameters:
SimT next simulation run time (second)
SimDT step length over which the current state will be integrated (seconds)
mjd next absolute simulation time (days) in Modified Julian Date format

Default action:
None

Notes:

e This function is called at each frame of the simulation, after the integration
step length has been determined, but before the time integration is applied to
the current simulation state.

e This function is useful when the step length At is required in advance of the
time integration, for example to apply a force that produces a given Av, since
the AddForce request will be applied in the next update. Using clbkPostStep
for this purpose would be wrong, because its At parameter refers to the
previous step length.

void MyVessel ::cl bkPreStep (doubl e sint, double sindt, double njd)

double F = mass * dv/sindt;
AddForce(_V(0,0,F), _V(0,0,0));
}

See also:
VESSEL2::clbkPostStep, opcPreStep, opcPostStep

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 97

clbkPostStep
Called at each simulation time step after the state has been updated to the current
simulation time. This function allows to define actions which need to be controlled
continuously.

Synopsis:

voi d cl bkPost Step (double sint, double sindt, double njd)
Parameters:

simt current simulation run time (seconds)

simdt last time step length (seconds)

mjd absolute simulation time (days) in Modified Julian Date format.

Default action:
Calls the module callback function ovcTimestep(this,simt) if present, to provide
backward compatibility.

Notes:

* This function, if implemented, is called at each frame for each instance of
this vessel class, and is therefore time-critical. Avoid any unnecessary
calculations here which may degrade performance.

e The default action of calling ovcTimestep will be dropped in future versions.

See also:
VESSEL2::clbkPreStep, opcPreStep, opcPostStep

clbkVisualCreated
Called after a visual representation (a render object) has been created for the vessel.

Synopsis:

voi d cl bkVi sual Created (VI SHANDLE vis, int refcount)
Parameters:

vis handle for the newly created visual

refcount visual reference count

Default action:
Calls the module ovcVisualCreated callback function if present, for backward
compatibility.

Notes:

e The logical interface to a vessel exists as long as the vessel is present in the
simulation. However, the visual interface exists only when the vessel is
within visual range of the camera. Orbiter creates and destroys visuals as
required. This enhances simulation performance in the presence of a large
number of objects in the simulation.

* Whenever Orbiter creates a vessel’s visual it reverts to its initial configuration
(e.g. as defined in the mesh file). The module can use this function to update
the visual to the current state, wherever dynamic changes are required.

* More than one visual representation of an object may exist. The refcount
parameter defines how many visual interfaces to the object exist.

e The default action of calling ovcVisualCreated will be dropped in future
versions.

clbkVisualDestroyed
Called before the visual representation of the vessel is destroyed.

Synopsis:
voi d cl bkVi sual Destroyed (VI SHANDLE vi s, int refcount)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 98

Parameters:
vis handle for the visual to be destroyed
refcount visual reference count

Default action:
Calls the module ovcVisualDestroyed callback function if present, for backward
compatibility.

Notes:
< Orbiter calls this function before it destroys a visual representation of the
vessel. This may be in response to the destruction of the actual vessel, but
in general simply means that the vessel has moved out of visual range of the
current camera location.
e The default action of calling ovcVisualDestroyed will be dropped in future
versions.

clbkRCSMode
Called when a vessel's RCS (reaction control system) mode changes. Usually the RCS
consists of a set of small thrusters arranged so as to allow controlled attitude changes.
In Orbiter, the RCS can be driven in either rotational mode (to change the vessel's
angular velocity) or in linear mode (to change its linear velocity), or be switched off.

Synopsis:
voi d cl bkRCSMode (int node)
Parameters:
mode new RCS mode: O=disabled, 1=rotational, 2=linear

Default action:
Calls the module ovcRCSmode callback function if present, for backward
compatibility.

Notes:

e This callback function is invoked when the user switches RCS mode via the
keyboard (/" or “Ctrl-/” on numerical keypad) or after a call to
VESSEL::SetAttitudeMode or VESSEL.::ToggleAttitudeMode.

* Not all vessel types may support a reaction control system. In that case, the
callback function can be ignored by the module.

clbkADCtrIMode
Called when user input mode for aerodynamic control surfaces (elevator, rudder,
aileron) changes.

Synopsis:

voi d cl bkADCt r| Mode (DWORD node)
Parameters:

mode control mode

Default action:
Calls module ovcADCtrimode callback function if present. Otherwise no action.

Notes:
e The returned control mode contains bit flags as follows:
bit O: elevator enabled/disabled
bit 1: rudder enabled/disabled
bit 2: ailerons enabled/disabled

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 99

Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates
fully enabled.

clbkNavMode
Called when an automated “navigation mode” is activated or deactivated for a vessel.
Most navigation modes engage the vessel's RCS to attain a specific attitude, including
pro/retrograde, normal to the orbital plane, level with the local horizon, etc.

Synopsis:
voi d cl bkNavMode (int node, bool active)
Parameters:
mode navmode identifier (see Section 9).
active true if activated, false if deactivated.

Default action:
Calls the module ovcNavmode callback function if present, for backward
compatibility.

clbkHUDMode
Called after a change of the vessel's HUD (head-up-display) mode.

voi d cl bkHUDMode (int node)
Parameters:
mode new HUD mode

Default action:
Calls the module oveHUDmode callback function if present, for backward
compatibility.

Notes:
e For currently supported HUD modes see HUD_xxx constants in section 9.
« mode HUD_NONE indicates that the HUD has been turned off.

clbkMFDMode
Called when the user has switched one of the MFD (multi-functional display)
instruments to a different display mode.

Synopsis:
voi d cl bkMFDMbde (int nfd, int node)
Parameters:
mfd MFD identifier (see Section 9)
mode new MFD mode id (see Section 9)

Default action:
Calls the module oveMFDmode callback function if present, for backward
compatibility.

clbkDrawHUD
Called when the vessel’s head-up display (HUD) needs to be redrawn (usually at each
time step, unless the HUD is turned off). Overwriting this function allows to implement
vessel-specific modifications of the HUD display (or to suppress the HUD altogether).

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 100

Synopsis:
voi d cl bkDrawHUD (

i nt node,
const HUDPAI NTSPEC * hps,
HDC hDC)
Parameters:
mode HUD mode (see HUD_xxx constants in section 9).
hps pointer to a HUDPAINTSPEC structure (see notes)
hDC GDI drawing device context

Default action:
Draws a standard HUD display with Orbiter’s default display layout.

Notes:
e If a vessel overwrites this method, Orbiter will draw the default HUD only if
the base class VESSEL::clbkDrawHUD is called.
* hps points to a HUDPAINTSPEC structure containing information about the
HUD drawing surface. It has the following format:

typedef struct {
int W H
int CX CY;
doubl e Scal e;
int Markersi ze;
} HUDPAI NTSPEC;

where W and H are width and height of the HUD drawing surface in pixels,
CX and CY are the x and y coordinates of the HUD centre (the position of
the "forward marker", which is not guaranteed to be in the middle of the
drawing surface or even within the drawing surface!), Scale represents an
angular aperture of 1° expressed in HUD pixels, and Markersize is a "typical”
size which can be used to scale objects like direction markers.

* The device context passed to clbkDrawHUD contains the appropriate
settings for the current HUD display (font, pen, colours). If you need to
change any of the GDI settings, make sure to restore the defaults before
calling the base class clbkDrawHUD. Otherwise the default display will be
corrupted.

* Tryto avoid changing HUD display colours. Orbiter has its own internal
mechanism to allow users to switch the HUD colour.

* clbkDrawHUD can be used to implement entirely new vessel-specific HUD
modes. In this case, the module would maintain its own record of the current
HUD mode, and ignore the node parameter passed to clbkDrawHUD.

clbkConsumeDirectKey

Keyboard handler. Called at each simulation time step. This callback function allows
the installation of a custom keyboard interface for the vessel.

Synopsis:

i nt ovcConsuneDi rectKey (char *kstate)
Parameters:

kstate keyboard state

Return value:
A nonzero return value will completely disable default processing of the key state
for the current time step. To disable the default processing of selected keys only,
use the RESETKEY macro (see orbiterapi.h) and return 0.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 101

Default action:
Calls the module ovcConsumeKey callback function if present. Otherwise returns
0.

Notes:
+ The keystate contains the current keyboard state. Use the KEYDOWN
macro in combination with the key identifiers as defined in orbiterapi.h
(OAPI_KEY_xxx) to check for particular keys being pressed. Example:

if (KEYDOMW (kstate, OAPI_KEY_F10)) {
/I perform action
RESETKEY (kstate, OAPlI _KEY_F10);
/I optional: prevent default processing of the key

}

e This function should be used where a key state, rather than a key event is
required, for example when engaging thrusters or similar. To test for key
events (key pressed, key released) use clbkConsumeBufferedKey instead.

clbkConsumeBufferedKey

This callback function notifies the vessel of a buffered key event (key pressed or key
released).

Synopsis:
i nt ovcConsuneBufferedKey (
DWORD key,
bool down,
char *kstate)
Parameters:
key key scan code (see OAPI_KEY_xxx constants in orbiterapi.h)
down true if key was pressed, false if key was released
kstate current keyboard state

Return value:
The function should return 1 if Orbiter’s default processing of the key should be
skipped, 0 otherwise.

Default action:
Calls the module ovcConsumeBufferedKey callback function if present.
Otherwise returns 0.

Notes:
« The key state (kstate) can be used to test for key modifiers (Shift, Ctrl, etc.).
The KEYMOD_xxx macros defined in orbiterapi.h are useful for this purpose.
« This function may be called repeatedly during a single frame, if multiple key
events have occurred in the last time step.

clbkDockEvent

Called after a docking or undocking event at one of the vessel’s docking ports.

Synopsis:

voi d cl bkDockEvent (int dock, OBJHANDLE nmat e)
Parameters:

dock docking port index

mate handle to docked vessel, or NULL for undocking event

Default action:
Calls the module ovcDockEvent callback function if present. Otherwise no action.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 102

Notes:
» dock is the index (= 0) of the vessel's docking port at which the
docking/undocking event takes place.
e mate is a handle to the vessel docking at the port, or NULL to indicate an
undocking event.

clbkAnimate

Called at each simulation time step if the module has registered at least one animation
request and if the vessel’s visual exists.

Synopsis:
voi d cl bkAni mate (doubl e sint)
Parameters:
simt simulation up time (seconds since simulation start)

Default action:
Calls the module ovcAnimate callback function if present. Otherwise no action.

Notes:
e This callback allows the module to animate the vessel’'s visual representation
(moving undercarriage, cargo bay doors, etc.)
e ltis only called as long as the vessel has registered an animation (between
matching VESSEL::RegisterAnimation and VESSEL::UnregisterAnimation
calls) and if the vessel's visual exists.

clbkLoadGenericCockpit

Called when the vessel’'s generic cockpit view (consisting of two “floating” MFD
instruments and a HUD, displayed on top of the 3-D render window) is selected by the
user pressing F8, or by a function call.

Synopsis:
bool cl bkLoadGenericCockpit ()

Return value:
The function should return true if it supports generic cockpit view, false
otherwise.

Default behaviour:
Sets camera direction to “forward” (0,0,1) and returns true.

Notes:

e The generic cockpit view is available for all vessel types by default, unless
this function is overwritten to return false.

* Only disable the generic view if the vessel supports either 2-D instrument
panels (see cl bkLoadPanel) or a virtual cockpit (see cl bkLoadVC). If no
valid cockpit view at all is available for a vessel, Orbiter will crash.

* Even if the vessel supports panels or virtual cockpits, you shouldn’t normally
disable the generic view, because it provides the best performance on
slower computers.

clbkLoadPanel

Called when Orbiter tries to switch the cockpit view to a 2-D instrument panel.

Synopsis:
bool cl bkLoadPanel (int id)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 103

Parameters:
id panel identifier (= 0)

Return value:
The function should return true if it supports the requested panel, false
otherwise.

Default action:
Calls ovcLoadPanel if defined, for backward compatibility, otherwise returns
false.

Notes:

* Inthe body of this function the module should define the panel background
bitmap and panel capabilities, e.g. the position of MFDs and other
instruments, active areas (mouse hotspots) etc.

e Avessel which implements panels must at least support panel id 0 (the main
panel). If any panels register neighbour panels (see
oapi Set Panel Nei ghbour s), all the neighbours must be supported, too.

e The default action of calling ovcLoadPanel will be dropped in future
versions.

See also:
oapi Regi st er Panel Backgr ound, oapi Regi st er Panel Ar ea,
oapi Regi st er MFD.

clbkPanelMouseEvent
Called when a mouse-activated panel area receives a mouse event.

Synopsis:
bool cl bkPanel MbuseEvent (
int id,
int event,
i nt nx,
int my)
Parameters:
id panel area identifier
event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)
mx, my relative mouse position in area at event

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
Calls ovcPanel MbuseEvent if defined, for backward compatibility, otherwise
returns false.

Notes:
* Mouse events are only sent for areas which requested notification during
definition (see oapi Regi st er Panel Ar ea).
e The default action of calling ovcPanel MouseEvent will be dropped in
future versions.

clbkPanelRedrawEvent
Called when a registered panel area needs to be redrawn.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 104

Synopsis:
bool cl bkPanel Redr awEvent (

int id,
int event,
SURFHANDLE surf)

Parameters:
id panel area identifier
event redraw event (see PANEL_REDRAW xxx constants in orbitersdk.h)
surf area surface handle

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
Calls ovcPanel Redr awEvent if defined, for backward compatibility, otherwise
returns false.

Notes:

e This callback function is only called for areas which were not registered with
the PANEL_REDRAW NEVER flag.

« All redrawable panel areas receive a PANEL_REDRAW | NI T redraw
notification when the panel is created, in addition to any registered redraw
notification events.

* The surface handle surf contains either the current area state, or the area
background, depending on the flags passed during area registration.

* The surface handle may be used for blitting operations, or to receive a
Windows device context (DC) for Windows-style redrawing operations.

e The default action of calling ovcPanel Redr awEvent will be dropped in
future versions.

See also:

oapi Get DC, oapi Rel easeDC, oapi Tri gger Panel Redr awAr ea

clbkLoadVC

Called when Orbiter tries to switch the cockpit view to a 3-D virtual cockpit mode (for
example in response to the user switching cockpit modes with F8).

Synopsis:

bool cl bkLoadVC (int id)
Parameters:

id virtual cockpit identifier (= 0)

Return value:
true if the vessel supports the requested virtual cockpit, false otherwise.

Default action:
None, returning false (i.e. virtual cockpit mode not supported).

Notes:
« Inthe body of this function the module should define MFD display targets
(with oapi VCRegi st er MFD) and other active areas (with
oapi VCRegi st er Ar ea) for the requested virtual cockpit.

clbkVCMouseEvent
Called when a mouse-activated virtual cockpit area receives a mouse event.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 105

Synopsis:
bool cl bkVCMouseEvent (int id, int event, VECTOR3 &p)

Parameters:
id area identifier
event mouse event (see PANEL MOUSE xxx constants in orbitersdk.h)
p parameter vector (area type-dependent, see notes)

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
None, returning false.

Notes:
« To generate a mouse-activated area in a virtual cockpit, you must do the
following when registering the area during cl bkLoadVC:

» register the area with a call to oapi VCRegi st er Ar ea with a mouse
mode other than PANEL_MOUSE_| GNORE.

» define a mouse-click area in the vessel’s local frame. Use one of the
oapi VCRegi st er Ar ead i cknmode_ XXX functions. You can define
spherical or quadrilateral click areas.

e Parameter p returns information about the mouse position at the mouse
event. The type of information returned depends on the area type for which
the event was generated:

Areatype p

spherical p.x is distance of mouse event from area centre
p.y and p.z not used

guadrilateral p.x and p.y are the area-relative mouse x and y positions (top
left = (0,0), bottom right = (1,1)
p.z not used

clbkVCRedrawEvent
Called when a registered virtual cockpit area needs to be redrawn.

Synopsis:

bool cl bkVCRedrawkEvent (int id, int event, SURFHANDLE surf)
Parameters:

id area identifier

event redraw event (see PANEL_REDRAW xxx constants in orbitersdk.h)

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
None, returning false.

Notes:

e To allow an area of the virtual cockpit to be redrawn dynamically, the area
must be registered with oapi VCRegi st er Ar ea during cl bkLoadVC, using
a redraw mode other than PANEL _REDRAW NEVER.

* When registering the area with oapi VCRegi st er Ar ea, you must also
provide a handle to the texture onto which the redrawn surface is mapped.
This texture must be part of the virtual cockpit mesh, and it must be listed in
the mesh file with the 'D’ (“dynamic”) flag (see 3DModel.pdf).

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 106

e “Redrawing” an area is not limited to dynamically updating textures. It may
also involve mesh transforms (e.g. to animate levers and switches rendered
in 3D).

13 Class MFD

This class acts as an interface for user defined MFD (multi functional display) modes. It
provides control over keyboard and mouse functions to manipulate the MFD mode, and
allows the module to draw the MFD display. The MFD class is a pure virtual class. Each user-
defined MFD mode requires the definition of a specialised class derived from MFD. An
example for a generic MFD mode implemented as a plugin module can be found in
orbitersdk\samples\CustomMFD.

Public member functions

13.1 Construction/creation

MFD
Constructor. Creates a new MFD.
Synopsis:
M-D (DWORD w, DWORD h, VESSEL *vessel)
Parameters:
w width of the MFD display (pixel)
h height of the MFD display (pixel)
vessel pointer to VESSEL interface associated with the MFD.
Notes:

 MFD is a pure virtual function, so it can’t be instantiated directly. It is used as
a base class for specialised MFD modes.

« New MFD modes are registered by a call to oapiRegisterMFDMode.
Whenever the new mode is selected by the user, Orbiter sends a
OAPI_MSG_MFD_OPENED signal to the message handler, to which the
module should respond by creating the MFD mode and returning a pointer to
it. Orbiter will automatically destroy the MFD mode when it is turned off.

13.2 Display repaint
Update
Callback function: Orbiter calls this method when the MFD needs to update its display.

Synopsis:

virtual void Update (HDC hDC) = 0
Parameters:

hDC Windows device context for drawing on the MFD display surface.
Notes:

* The frequency at which this function is called corresponds to the “MFD
refresh rate” setting in Orbiter's parameter settings, unless a redraw is forced
by InvalidateDisplay.

e This function must be overwritten by derived classes.

InvalidateDisplay
Force a display update in the next frame. This function causes Orbiter to call the MFD’s

Update method in the next frame.
Synopsis:
voi d I nvalidateDi splay ()

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 107

Title
Displays a title string in the upper left corner of the MFD display.

Synopsis:

void Title (HDC hDC, const char *title) const
Parameters:

hDC device context

title title string (null-terminated)
Notes:

e This method should be called from within Update()

e The title string can contain up to approx. 35 characters when displayed in the
default Courier MFD font.

* This method switches the text colour of the GDI context to white.

SelectDefaultFont
Selects a predefined MFD font into the device context.

Synopsis:

HFONT Sel ect Def aul t Font (HDC hDC, DWORD i) const
Parameters:

hDC Windows device context

i font index

Return value:
Windows font handle

Notes:

e Currently supported are font indices 0-2, where

0 = standard MFD font (Courier, fixed pitch)
1 = small font (Arial, variable pitch)
2 = small font, rotated 90 degrees (Arial, variable pitch)

* In principle, an MFD mode may create its own fonts using the standard
Windows CreateFont function, but using the predefined fonts is preferred to
provide a consistent MFD look.

» Default fonts are scaled automatically according to the MFD display size.

SelectDefaultPen
Selects a predefined pen into the device context.

Synopsis:

HPEN Sel ect Def aul t Pen (HDC hDC, DWORD i) const
Parameters:

hDC Windows device context

i pen index

Return value:
Windows pen handle

Notes:
e Currently supported are pen indices 0-5, where
0 = solid, HUD display colour
1 = solid, light green
2 = solid, medium green
3 = solid, medium yellow

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 108

4 = solid, dark yellow
5 = solid, medium grey

e In principle, an MFD mode may create its own pen resources using the
standard Windows CreatePen function, but using predefined pens is
preferred to provide a consistent MFD look.

ButtonLabel
Return the label for the specified MFD button.

Synopsis:

virtual char *ButtonLabel (int bt)
Parameters:

bt button identifier

Return value:
The function should return a O-terminated character string of up to 3 characters,
or NULL if the button is unlabelled.

ButtonMenu
Defines a list of short descriptions for the various MFD mode button/key functions.

Synopsis:

virtual int ButtonMenu (const M-DBUTTONMVENU **nmenu) const
Parameters:

menu on return this should point to an array of button menu items. (see

notes)

Return value:
number of items in the list

Notes:
e The definition of the MFDBUTTONMENU struct is:
typedef struct {
const char *linel, *line2;
char sel char;
} MFDBUTTONMENU;
containing up to 2 lines of short description, and the keyboard key to trigger
the function.
< Each line should contain no more than 16 characters, to fit into the MFD
display.
e If the menu item only uses one line, then line2 should be set to NULL.
* menu==0 is valid and indicates that the caller only requires the number of
items, not the actual list.
» Atypical implementation would be

int MyMFD: : ButtonMenu (const MFDBUTTONMENU **nenu) const

{
static const MFDBUTTONMENU mu[2] = {
{"Select target", 0, 'T'},

{"Select orbit", "reference", 'R}
i1" (menu) *menu = mu;
return 2;
}
13.3 Input
ConsumeKeyBuffered

MFD keyboard handler for buffered keys.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 109

Synopsis:
virtual bool ConsuneKeyBuffered (DWRD key)

Parameters:
key key code (see OAPI_KEY_xxx constants in orbitersdk.h)

Return value:
The function should return true if it recognises and processes the key, false
otherwise.

ConsumeKeylmmediate
MFD keyboard handler for immediate (unbuffered) keys.

Synopsis:

virtual bool ConsuneKeyl nredi ate (char *kstate)
Parameters:

kstate: keyboard state.

Return value:
The function should return true only if it wants to inhibit Orbiter’s default
immediate key handler for this time step completely.

Notes:
e The state of single keys can be queried by the KEYDOWN macro.
* The immediate key handler is useful where an action should take place while
a key is pressed.
ConsumeButton

MFD button handler. This function is called when the user performs a mouse click on a
panel button associated with the MFD.

Synopsis:
virtual bool ConsunmeButton (int bt, int event)
Parameters:
bt button identifier.
event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)

Return value:
The function should return true if it processes the button event, false otherwise.

Notes:
e This function is invoked as a response to a call to
oapi ProcessMFDBuUt t on in a vessel module.
e Typically, ConsuneBut t on will call ConsunmeKeyBuf f er ed or
ConsuneKeyl mmedi at e to emulate a keyboard event.

13.4 Load/save state

WriteStatus
Called when the MFD should write its status to a scenario file.

Synopsis:

virtual void WiteStatus (FI LEHANDLE scn) const
Parameters:

scn scenario file handle (write only)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 110

Notes:

e Use the oapiWriteScenario_xxx functions to write MFD status parameters to
the scenario.

e The default behaviour is to do nothing. MFD modes which need to save
status parameters should overwrite this function.

ReadStatus
Called when the MFD should read its status from a scenario file.

Synopsis:

virtual void ReadStatus (FILEHANDLE scn)
Parameters:

scn scenario file handle (read only)
Notes:

« Use aloop with oapiReadScenario_nextline to read MFD status parameters
from the scenario.

e The default behaviour is to do nothing. MFD modes which need to read
status parameters should overwrite this function.

StoreStatus
Called before destruction of the MFD mode, to allow the mode to save its status to
static memory.

Synopsis:
virtual void StoreStatus (void) const

Notes:

e This function is called before an MFD mode is destroyed (either because the
MFD switches to a different mode, or because the MFD itself is destroyed). It
allows the MFD to back up its status parameters, so it can restore its last
status when it is created next time.

« Since the MFD mode instance is about to be destroyed, status parameters
should be backed up either in static data members, or outside the class
instance.

« In principle this function could be implemented by opening a file and calling
WriteStatus with the file handle. However for performance reasons file I/O
should be avoided in this function.

e The default behaviour is to do nothing. MFD modes which need to save
status parameters should overwrite this function.

RecallStatus

Called after creation of the MFD mode, to allow the mode to restore its status from the
last save.

virtual void Recall Status (void)

Notes:

e This is the counterpart to the StoreStatus function. It should be implemented
if and only if StoreStatus is implemented.

14 Class GraphMFD

This class is derived from MFD and provides a template for MFD modes containing 2D
graphs. An example is the ascent profile recorder in the samples\CustomMFD folder.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 111

14.1 Construction/creation

GraphMFD
Constructor. Creates a new GraphMFD.

Synopsis:
G aphMFD (DWORD w, DWORD h, VESSEL *vessel)
Parameters:
w width of the MFD display (pixel)
h height of the MFD display (pixel)
vessel pointer to VESSEL interface associated with the MFD
14.2 Graph/plot management
AddGraph

Adds a new graph to the MFD.

Synopsis:
i nt AddGaph (void)

Return value:
graph identifier

Notes:
« This function allocates data for a new graph. To display plots in the new
graph, one or more calls to AddPlot are required.

AddPlot
Adds a plot to an existing graph.

Synopsis:
voi d AddPl ot (

int g,

fl oat *absc,
float *data,
i nt ndat a,
int col,

int *ofs = 0)

Parameters:
g graph identifier
absc pointer to array containing the abscissa (x-axis) values.
data pointer to array containing the data (y-axis) values.
ndata number of data points
col plot colour index
ofs pointer to data offset (optional)

Notes:

- Data arrays are not copied, so they should not be deleted after the call to
AddPlot.

« colis used as an index to select a pen for the plot using the
SelectDefaultPen function. Valid range is the same as for SelectDefaultPen.

< If defined, *ofs is the index of the first plot value in the data array. The plot is
drawn using the points *ofs to ndata-1, followed by points O to *ofs-1. This
allows to define continuously updated plots without having to copy blocks of
data within the arrays.

SetRange
Sets a fixed range for the x or y axis of a graph.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 112

Synopsis:
void SetRange (int g, int axis, float rmn, float rmax)

Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)
rmin minimum value
rmax maximum value
Notes:

* The range applies to all plots in the graph.

SetAutoRange
Allows the graph to set its range automatically according to the range of the plots.

Synopsis:

void Set AutoRange (int g, int axis, int p = -1)
Parameters:

g graph identifier

axis axis identifier (0=x, 1=y)

p plot identifier (-1=all)
Notes:

« If p=0, then p specifies the plot used for determining the graph range. If p =
-1, then all of the graph’s plots are used to determine the range.

FindRange
Determines the range of an array of data.
Synopsis:
voi d Fi ndRange (
float *d,
i nt ndat a,
float &dmi n,
fl oat &Jnax) const
Parameters:
d data array
ndata number of data
dmin minimum value on return
dmax maximum value on return
SetAxisTitle

Sets the title for a given graph and axis.

Synopsis:

void Set AxisTitle (int g, int axis, char *title)
Parameters:

g graph identifier

axis axis identifier (0=x, 1=y)

title axis title

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 113

Notes:

« The MFD may append an extension of the form “x <scale>" to the title,
where <scale> is a scaling factor applied to the tick labels of the axis. It is
therefore a good idea to finish the title with the units applicable to the data of
this axis, so that for example a title “Altitude: km” may become “Altitude: km
x 1000".

SetAutoTicks
Calculates tick intervals for a given graph and axis.

Synopsis:

void Set AutoTicks (int g, int axis)
Parameters:

g graph identifier

axis axis identifier (0=x, 1=y)
Notes:

e This function is called from within SetRange and normally doesn’t need to be
called explicitly by derived classes.

Plot
Displays a graph.

Synopsis:
void Plot (
HDC hDC,
int g,
i nt ho,
int hil,
const char *title = 0)
Parameters:
hDC Windows device context
g graph identifier
hO upper boundary of plot area (pixel)
hl lower boundary of plot area (pixel)
title graph title
Notes:

* This function should be called from Update to paint the graph(s) into the
provided device context.

15 Plugin callback function reference

This is a list of callback functions which Orbiter will call for all activated plugin modules. (i.e.
DLLs in the Modules\Plugin subdirectory which were activated by the user via the Launchpad
dialog). Plugin callback functions use an opc (“orbiter plugin callback”) prefix.

InitModule
Called after the DLL is loaded by Orbiter, before the simulation window is opened.

DLLs are loaded either during the program start, or when the user activates a DLL in
the Modules tab of the launchpad dialog.

Synopsis:

DLLCLBK void InitMdul e (H NSTANCE hDLL)
Parameters:

hDLL DLL module handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 114

Notes:

e To guarantee correct initialisation of your module, you must link the
Orbitersdk.lib library (found in Orbitersdk\lib) with your plugin project, and
add the line
#defi ne ORBlI TER_MODULE
at the beginning of the main source file of your project.

e If Orbitersdk.lib is not linked, the standard Windows entry point DI | Mai n will
be called instead when the library is loaded.

ExitModule
Called before the DLL is unloaded by Orbiter, after the simulation window has closed.
DLLs are unloaded either when Orbiter exits, or when the user deactivates a DLL in the
Modules tab of the launchpad dialog.

Synopsis:

DLLCLBK voi d ExitMdul e (H NSTANCE hDLL)
Parameters:

hDLL DLL module handle
Notes:

e To guarantee correct cleanup of your module, you must link the
Orbitersdk.lib library (found in Orbitersdk\lib) with your plugin project, and
add the line
#def i ne ORBI TER_MODULE
at the beginning of the main source file of your project.

o If Orbitersdk.lib is not linked, the standard Windows entry point DI | Mai n will
be called instead when the library is unloaded.

opcDLLInit
O]fHe][EIfs. Use | ni t Mbdul e instead.

opcDLLEXxit
IR, Use Exi t Modul e instead.

opcOpenRenderViewport
Called after the simulation window has been opened. The DLL should use this function
for initialisations which depend on the size of the render window. The size remains
valid until the opcCloseRenderViewport method is called. Note that for windowed
modes the width and height parameters may be smaller than the user-defined window
size, to accommodate window borders and title line.

Synopsis:
DLLCLBK voi d opcOpenRender Vi ewport (

HWND r ender Whd,
DWORD wi dt h,
DWORD hei ght
BOOL full screen)
Parameters:
renderWnd render window handle
width width of the render viewport (pixel)
height height of the render viewport (pixel)
fullscreen TRUE if a fullscreen video mode is used, FALSE for a windowed
mode

opcCloseRenderViewport
Called before the simulation window is closed.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 115

DLLCLBK voi d opcCl oseRender Vi ewport (voi d)

opcPreStep
Called at each time step of the simulation, before the state is updated to the current
simulation time. This function is only called when the “physical” state of the simulation
is propagated in time. opcPreStep is not called while the simulation is paused, even if
the user moves the camera.

DLLCKBK voi d opcPreStep (

doubl e Si nT,
doubl e Si nDT,
doubl e njd)

Parameters:
SimT elapsed simulation time since simulation start (seconds)
SimDT time interval to be applied in current time step (seconds)
mjd simulation universal time in MJD (modified Julian date) format.

Notes:

e This function is called by Orbiter after the new time step (SimDT) and
simulation time (SimT) have been calculated, but before the simulation state
is integrated to SimT. The parameters passed to opcPreStep therefore are
the values that will be applied in the current simulation step.

* A schematic flow diagram of the frame update loop is given by

Set k=0, T;" =0 and Ty* =(systemtime)
Loop
k=k+1
1> =(system time)
Akay: = kay: —kafi
AL = A1 (warptactor)
dem = Tkaflln + ATkh””
Call opcPreStep (T, AT.™)
Integrate simulation state from T to T,
Call opcPostStep (T, AT.™)
Render scene

end

e See also opcPostStep.

opcPostStep
Called at each time step of the simulation, after the state has been updated to the

current simulation time.

Synopsis:
DLLCLBK voi d opcPost Step (

doubl e Si nT,
doubl e Si nDT,
doubl e nj d)

Parameters:
SimT elapsed simulation time since simulation start (seconds)
SimDT time interval applied in last update (seconds)
mjd simulation universal time in MJD (modified Julian date) format.

opcTimestep
IR, Replaced by opcPreStep.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 116

opcFocusChanged
Called when input focus (keyboard and joystick control) is switched to a new vessel (for
example as a result of a call to oapiSetFocus).

Synopsis:
DLLCLBK opcFocusChanged (

OBJHANDLE new f ocus,
OBJHANDLE ol d_f ocus)

Parameters:
new_focus handle of vessel receiving the input focus
old_focus handle of vessel losing focus

Notes:
< Currently only objects of type “vessel” can receive the input focus. This may
change in future versions.
e This callback function is also called at the beginning of the simulation, where
new_focus is the vessel receiving the initial focus, and old_focus is NULL.
» opcFocusChanged is sent to plugin modules after the vessels receiving and
losing focus have been notified via VESSEL?2: : cl bkFocusChanged.

opcTimeAccChanged
Called when the simulation time acceleration factor changes.

DLLCLBK voi d opcTi neAccChanged (

doubl e nWar p,
doubl e oWar p)

Parameters:
nWarp new time acceleration factor
oWarp old time acceleration factor

16 Planet modules

Planet modules can be used to calculate ephemerides (position and velocity) in cases where
Orbiter’'s standard 2-body approximation or dynamic update is not sufficient. By defining a
custom module for a planet or moon, more accurate solutions, including semi-analytic pertur-
bation codes, can be implemented. Modules also allow to implement altitude-dependent at-
mospheric parameters.

See the API Guide manual on how to write a planet module. Typically, during instance initiali-
sation a planet class derived from CELBODY will be created, and Orbiter then communicates
with the module by calling its overloaded callback functions. The module must be referenced
in the planet’s configuration file.

The older standalone module callback functions (opcXXX) are obsolete and should no longer
be used.

16.1 Initialisation functions

The following global functions will be called by Orbiter during module and instance
initialisation/cleanup. They require that the module is linked with Orbitersdk\lib\orbitersdk.lib,
and defines #define ORBITER_MODULE in its main source file.

InitModule
Called after the DLL is loaded by Orbiter. This happens only once per Orbiter session.

Synopsis:
DLLCLBK voi d I nitMdul e (H NSTANCE hMbdul €)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 117

Parameters:
hModule module instance handle

Notes:

* This function is optional. You can use this function to initialise global
parameters, if required.

» ltis called the first time Orbiter loads a planet referencing this module. It will

not be called again if the user exits to the Launchpad and runs another
scenario.

ExitModule
Called before Orbiter unloads the DLL. This usually happens when Orbiter is closed.

Synopsis:
DLLCLBK voi d ExitMdul e (H NSTANCE hMbdul e)

Parameters:
hModule module instance handle

Notes:

« This function is optional. You can use it to clean up the module, e.g. by
deallocating dynamic data.

Initinstance
Called when Orbiter loads a planet referencing this module.

Synopsis:
DLLCLBK CELBCODY *Initlnstance (OBJHANDLE hBody)

Parameters:
hBody object handle for the planet

Return value:
CELBODY-derived class instance

Notes:
¢ Your module must define this function.

« Create an instance of your planet class (derived from CELBODY) here, and
return a pointer to it.

Exitinstance
Called after a simulation run when Orbiter destroys the planet.

Synopsis:

DLLCLBK void Exitlnstance (CELBODY *body)
Parameters:

body pointer to planet class
Notes:

e Use this method to destruct the planet class instance created in Initinstance.

* You should cast body to your derived class when deleting the instance, e.qg.
delete (MyPlanet*)body.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 118

16.2 The CELBODY class

CELBODY defines callback methods which Orbiter will call whenever it requires information
from your planet module. You define the behaviour of the planet by overloading the relevant
methods. Below is a list of public CELBODY methods:

bEphemeris
Returns true or false depending on whether the module supports ephemeris
calculation.

virtual bool bEpherneris() const

Return value:
If your module supports ephemeris calculation (that is, if it defines the
clbkEphemeris and clbkFastEphemeris methods) return true. Otherwise return
false.

Default action:
Returns false.

clbkinit
Called when the planet is initialised at the beginning of a simulation run. This function
allows to read any parameters from the configuration file, and perform additional
initialisation tasks such as reading data files.

Synopsis:

virtual void clbklnit (FILEHANDLE cfg);
Parameters:

cfg file handle of configuration file

Default action:
None.

clbkEphemeris
Called when Orbiter requires (non-sequential) ephemeris data from the planet for a

given time.
Synopsis:
virtual int cl bkEpheneris (
doubl e nj d,
int req,
doubl e *ret)
Parameters:
mjd ephemeris date (days, in Modified Julian Date format)
req data request bitflags (see notes)
ret pointer to result vector

Return value:
bitflags describing returned data (see notes)

Default action:
None, returning 0.

Notes:

e The ephemeris data should be calculated with respect to the body’s parent
body, in the ecliptic frame (J2000 equator and equinox).

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 119

« req specifies the data that should be calculated by the callback function. This
can be any combination of

EPHEM TRUEPCS (true body position)
EPHEM TRUEVEL (true body velocity)
EPHEM BARYPOS (barycentric position)
EPHEM BARYVEL (barycentric velocity)

where the barycentre refers to the system consisting of the body itself and all
its children (e.g. moons).
e ret is a pointer to an array of 12 doubles, to which the function should write

its results:

ret[0-2]: true position (if requested)
ret[3-5]: true velocity (if requested)
ret[6-8]: barycentric position (if requested)

ret[9-11]: barycentric velocity (if requested)

« Data can be returned in either polar or cartesian format. In cartesian format,
the position data blocks should contain X,y and z position (in meters), and
the velocity data blocks should contain dx/dt, dy/dt and dz/dt (in m/s), where
X points to the vernal equinox, y points to ecliptic zenith, and z is orthogonal
to both.

In polar format, the position data blocks should contain longitude ¢ [rad],
latitude @[rad] and radial distance r [AU], and the velocity data blocks should
contain dg/dt [rad/s], dddt [rad/s] and d r/dt [AU/s].

When returning data in polar format, include the EPHEM POLAR flag in the
return value.

e The return value should contain the flags for the data that were actually
computed. For example, if both true and barycentric data were requested,
but the module can only compute true positions, it should return
EPHEM TRUEPOS | EPHEM TRUEVEL.

< If the true and barycentric positions are identical (that is, if the body has no
child objects) the return value should contain the additional flag
EPHEM TRUEI SBARY.

< If both true and barycentric data are requested, but are computationally
expensive to compute (for example, if they require two separate series
evaluations), the module can return true positions only. Orbiter will then
calculate the barycentric data directly, after evaluating the child object
positions.

« If arequest can't be satisfied at all (e.g. if barycentric data were requested,
but the module can only compute true positions), the module should
calculate whatever data it can, and signal so via the return value. Orbiter will
then try to convert these data to the required ones.

* If the returned ephemerides are computed in terms of the barycentre of the
parent body’s system, the return value should include the
EPHEM _PARENTBARY flag. If the ephemerides are computed in terms of the
parent body’s true position, this flag should not be included.

e This function is not called by Orbiter to update the planet’s position during
the normal simulation frame update. (For that purpose, clbkFastEphemeris is
called instead). clbkEphemeris is only called if the planet state at some
arbitrary time point is required, e.g. by an instrument calculating a transfer
orbit.

clbkFastEphemeris
Called by Orbiter to update the body’s state to the next simulation frame.

Synopsis:
virtual int cl bkFastEpheneris (
doubl e sint,
int req,

doubl e *ret)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 120

Parameters:

simt simulation time (seconds)
req data request bitflags (see notes)
ret pointer to result vector

Return value:
bitflags describing returned data (see notes)

Default action:
None, returning 0.

Notes:

e This function should perform the same function as clbkEphemeris, but it will
be called at each simulation frame. This means that the sampling times will
be incremented in small steps, allowing for a potentially more efficient
implementation, e.g. by using an interpolation scheme.

« If possible, a full evaluation of a long series of perturbation terms should be
avoided here, to avoid performance hits.

* Note that the time parameter is passed in the form of simulation time
(seconds) unlike clbkEphemeris, which uses absolute MJD time. This avoids
rounding errors in the time variable, and allows higher temporal resolutions.

clbkAtmParam
Called by Orbiter to obtain atmospheric parameters at a given altitude.

Synopsis:

virtual bool cl bkAtnParam (double alt, ATMPARAM *prm
Parameters:

alt altitude over planet mean radius

prm pointer to ATMPARAM structure receiving results

Return value:
true if parameters have been retrieved sucessfully, false to indicate that the
planet has no atmosphere, or if alt is above the cutoff limit for atmospheric
calculations.

Default action:
None, returning false.

Notes:
« The ATMPARAM structure contains the following fields:
double T absolute temperature [K]
double p pressure [N/m?]

double rho density [kg/m’]
« Currently, atmospheric parameters are assumed to be functions of altitude
only. Local variations (“weather”) are not yet supported.

16.3 Orbital parameters

<Planet>_SetPrecision
@FYe][EIfE. Set the error limit in CELBODY: ::clbkinit instead.
Define the relative error for the calculations for <Planet>.

Synopsis:
DLLCLBK int <Pl anet>_Set Preci sion (doubl e prec)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 121

Parameters:
prec module-specific

Return value:
0 if successful, < 0 otherwise

Notes:

« Orbiter calls this function at the start of each simulation with the value of the
ErrorLimit entry of the planet’s configuration file. The module can use this to
set its calculation precision.

« If the ErrorLimit entry is not defined in the cfg file, then
<Planet>_SetPrecision will not be called, so the module should initialise
some default precision.

e Itis up to the module how to interpret the passed precision value, but by
convention prec should specify the relative error for position and velocity
calculations.

e This function is optional. If the module doesn’t define it, Orbiter will ignore
the ErrorLimit entry in the cfg file.

<Planet> Ephemeris
PR, Use CELBODY::clbkEphemeris instead.
Calculate ecliptic positions and velocities. Reference frame is ecliptic and equinox of
J2000. For planets (i.e. objects defined as “Planet” in the solar system cfg file)
heliocentric coordinates should be calculated. For moons (i.e. objects defined as
“Moon” in the solar system cfg file) coordinates w.r.t. the moon’s reference planet
should be calculated, e.g. geocentric for Earth’s moon.

Synopsis:
DLLCLBK int <Pl anet> Epheneris (
doubl e njd,
doubl e *ret,
int & ornmat)
Parameters:
mjd date in MJD format (MJD = JD-2400000.5)
ret array of position and velocity data calculated by the function. The
type of data depends on the format flag (see notes).
format data format flag (see notes).

Return value:
Error code (not currently used)

Notes:
« Orbiter currently accepts the following data formats:

EPHEMERIS_POLAR - returned values are polar coordinates and velocities:
ret[0] = ecliptic longitude [rad]
ret[1] = ecliptic latitude [rad]
ret[2] = radius [m]
ret[3] = velocity in longitude [rad/s]
ret[4] = velocity in latitude [rad/s]
ret[5] = radial velocity [m/s]

EPHEMERIS_CARTESIAN - returned values are cartesian coordinates and

velocities:
ret[0] = x-coordinate (direction of vernal equinox) [m]
ret[1] = y-coordinate (perpendicular to ecliptic) [m]
ret[2] = z-coordinate (perpendicular to x and y) [m]
ret[3] = velocity in x [m/s]
ret[4] = velocity in y [m/s]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 122

ret[5] = velocity in z [m/s]
When implementing this function, you should calculate the ephemeris data in
one of these formats and set the format flag accordingly.

* The function should calculate the values for ret in the J2000 ecliptic frame,
but Orbiter’s precision requirements are not very high, so the ecliptic of a
different epoch (or the ecliptic of date) is probably ok.

« Orbiter only calls this function directly to calculate positions at times other
than the current simulation time (e.qg. for trajectory predictions). Otherwise it
calls <Planet>_FastEphemeris (see below).

<Planet> FastEphemeris
EIET. Use CELBODY::clbkFastEphemeris instead.
This function is called by Orbiter at each frame to update planet positions and
velocities. Therefore the implementation can make use of interpolation methods to
increase the efficiency of the calculation.

DLLCLBK int <Pl anet> Fast Epheneris (
doubl e sint,
doubl e *ret,
int & ormat)
Parameters:
simt Time (in seconds) since simulation start
ret results (as in <Planet>_Ephemeris)
format data format flag (see <Planet>_Ephemeris for details)

Return value:
currently not used

Notes:

* Orbiter passes simt (simulation time in seconds) rather than mjd to this
function to allow more precise calculation of the interpolation point.

e The simplest way to implement this function is as
return <Pl anet>_Epheneris (oapi Ti me2MID (sint), ret,
format);

However this is not recommended. Instead the function should sample the
planet data in appropriate intervals and use an interpolation scheme to
calculate the data for a given time. This is more efficient and helps
smoothing rounding errors in the full updates.

e This function is called at every frame by Orbiter and is therefore extremely
time-critical. As a performance target, the execution of this function for all
planets should take < 10 milliseconds on a low-end machine.

* The sampling times for full position calculations should be staggered for
different planets, so that not all full updates occur at the same frame.

16.4 Physical parameters

<Planet> AtmPrm
. Use CELBODY::clbkAtmParam instead.
If defined, this function returns atmospheric parameters as a function of altitude above
zero (“sea level”).

Synopsis:

DLLCLBK voi d <Pl anet>_AtnPrm (doubl e alt, ATMPARAM *prm
Parameters:

alt altitude [m]

prm structure to be filled with atmospheric parameters

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 123

Notes:
e« The ATMPARAM structure contains the following fields:
double T absolute temperature [K]
double p pressure [N/m?]
double rho density [kg/m’]

17 API function reference

This is the reference list for the Orbiter API functions which can be used by modules to obtain
and set simulation parameters from the Orbiter kernel. See index for alphabetical listing.

17.1 General functions

oapiGetOrbiterinstance
Returns the instance handle for the running Orbiter application.

Synopsis:
H NSTANCE oapi Get Orbiterl nstance ()

Return value:
Orbiter instance handle

17.2 Obtaining object handles

oapiGetObjectByName
Retrieve the handle for an object from its name. Objects may be vessels, planets,
moons or suns. The handle remains valid until the object is deleted or the simulation
terminates.

Synopsis:
OBJHANDLE oapi Get Obj ect ByNane (char *nane)

Parameters:
name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

Notes:
« This function can not be used to obtain handles for surface bases. Use
oapi Get BaseByName or oapi Get BaseByl ndex instead.

oapiGetObjectBylndex
Retrieve the handle for an object from its index. This is useful to construct loops over a
series of objects. The handle remains valid until the object is deleted or the simulation
terminates.

Synopsis:
OBJHANDLE oapi Get Obj ect Byl ndex (int index)

Parameters:
index object index (>= 0)

Return value:
object handle. (NULL indicates that the object does not exist)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 124

Notes:

0 <= index < oapiGetObjectCount() is required. The function does not perform a
range check!

oapiGetObjectCount
Returns the number of objects currently present in the simulation.

Synopsis:
DWORD oapi Get Obj ect Count (voi d)

Return value:
object count

oapiGetVesselByName
Retrieve the handle for a vessel from its name. The handle remains valid until the
object is deleted or the simulation terminates.

OBJHANDLE oapi Get Vessel ByNane (char *nane)
Parameters:
name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the vessel does not exist)

oapiGetVesselBylndex
Retrieve the handle for a vessel from its index. This is useful to construct loops over a
series of vessels. The handle remains valid until the object is deleted or the simulation
terminates.

Synopsis:
OBJHANDLE oapi Get Vessel Byl ndex (int index)

Parameters:
index object index (>= 0)

Return value:
vessel handle. (NULL indicates that the vessel does not exist)

Notes:
0 <= index < oapiGetVesselCount() is required. The function does not perform a
range check!

oapiGetVesselCount
Returns the number of vessels currently present in the simulation.

Synopsis:
DWORD oapi Get Vessel Count (voi d)

Return value:
vessel count

oapiGetStationByName
O Yel[5)(=. Returns NULL.

OBJHANDLE oapi Get St ati onByNanme (char *nane)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 125

oapiGetStationByIndex

EIEEIET. Returns NULL.

Synopsis:
OBJHANDLE oapi Get Stati onByl ndex (int index)

oapiGetStationCount

@] Ye][EIfs. Returns O.

Synopsis:
DWORD oapi Get St ati onCount (voi d)

oapiGetGbodyByName
Retrieves the handle of a “massive” object (a gravitational field source: sun, planet or
moon) from its name.

Synopsis:

OBJHANDLE oapi Get GhodyByNane (char *nane)
Parameters:

name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

oapiGetGbodyBylIndex
Retrieves the handle of a massive object from its list index.

Synopsis:

OBJHANDLE oapi Get GbodyByl ndex (i nt index)
Parameters:

index object index (= 0)

Return value:
object handle. (NULL indicates that the index is out of range)

oapiGetGbodyCount
Returns the number of massive objects (suns, planets and moons) currently in the
simulation.

Synopsis:
DWORD oapi Get GhodyCount ()

Return value:
Number of objects

oapiGetBaseByName
Returns the handle of a surface base on a given planet or moon.

Synopsis:

OBJHANDLE oapi Get BaseByNane (OBJHANDLE hPl anet, char *nane)
Parameters:

hPlanet handle of the planet or moon on which the base is located

name base name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 126

oapiGetBaseBylndex
Returns the handle of a surface base on a given planet or moon from its list index.

Synopsis:

OBJHANDLE oapi Get BaseByl ndex (OBJHANDLE hPl anet, int index)
Parameters:

hPlanet handle of the planet or moon on which the base is located.

index object index (= 0)

Return value:
object handle. (NULL indicates that the index is out of range)

oapiGetBaseCount
Returns the number of surface bases located on the specified planet.

Synopsis:

DWORD oapi Get BaseCount (OBJHANDLE hPl anet)
Parameters:

hPlanet handle of a planet or moon.

Return value:
Number of surface bases.

oapiGetObjectName
Returns the name of an object.

Synopsis:
voi d oapi Get Obj ect Nane (
OBJHANDLE hQbj ,
char *nane,

int n)
Parameters:
hObj object handle
name pointer to character array to receive object name
n length of string buffer
Notes:

name must be allocated to at least size n by the calling function.

If the string buffer is not long enough to hold the object name, the name is
truncated.

oapiGetFocusObject

Retrieve the handle for the current focus object. The focus object is the user-controlled
vessel which receives keyboard and joystick input.

Synopsis:
OBJHANDLE oapi Get FocusObj ect (voi d)

Return value:

focus object handle. This is guaranteed to exist during the simulation (between
opcOpenRenderViewport and opcCloseRenderViewport)

Notes:

Currently the focus object is guaranteed to be a vessel. This may change in
future versions.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 127

oapiSetFocusObject
Switches the input focus to a different vessel object.

Synopsis:
OBJHANDLE oapi Set FocusObj ect (OBJHANDLE hVessel)

Parameters:
hVessel handle of vessel to receive the focus

Return value:
handle of vessel losing focus, or NULL if focus did not change

Notes:
hVessel must refer to a vessel object. Trying to set the focus to a different object
type (e.g. a planet or moon) will fail.

oapiGetVessellnterface
Returns the VESSEL class interface for a vessel handle.

Synopsis:

VESSEL *oapi Get Vessel Interface (OBJHANDLE hVessel)
Parameters:

hVessel vessel handle

Return value:
Pointer to VESSEL class interface for this vessel (see section 11).

oapiGetFocusinterface
Returns the VESSEL class interface for the current focus object.

Synopsis:
VESSEL *oapi Get Focusl nterface ()

Return value:
Pointer to VESSEL class interface for focus object (see section 11).

oapiCreateVessel
Creates a new vessel. This version uses the original VESSELSTATUS interface.

Synopsis:
OBJHANDLE oapi Creat eVessel (

const char *nane,
const char *cl assnane,
const VESSELSTATUS &st at us)

Parameters:
name vessel name
classname vessel class name
status status parameters

Return value:
handle of the newly created vessel

Notes:
« A configuration file for the specified vessel class must exist in the Config
subdirectory.
e This function replaces VESSEL::Create().

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 128

See also:
oapiCreateVesselEx, ovcSetState, VESSELSTATUS

oapiCreateVesselEx
Creates a new vessel. This version allows to use a VESSELSTATUSKX interface
(version x = 2).

Synopsis:
OBJHANDLE oapi Cr eat eVessel Ex (

const char *nane,
const char *cl assnane,
const void *status)

Parameters:
name vessel name
classname vessel class name
status pointer to a VESSELSTATUSKX structure

Return value:

< A configuration file for the specified vessel class must exist in the Config
subdirectory.

e status must point to a VESSELSTATUSKX structure. Currently only
VESSELSTATUS?2 is supported, but future Orbiter versions may add new
interfaces.

« During the vessel creation process Orbiter will call the module’s
ovcSetStateEx callback function if it exists. Orbiter will not try to call the
ovcSetState function.

See also:
oapiCreateVessel, ovcSetStateEx, VESSELSTATUS2

oapiDeleteVessel
Deletes an existing vessel.

Synopsis:
bool oapi Del et eVessel (

OBJHANDLE hVessel
OBJHANDLE hAl ternati veCaneraTarget = 0)

Parameters:
hVessel vessel handle
hAlternativeCameraTarget optional new camera target

Return value:
true if vessel could be deleted.

Notes:

« If the current focus vessel is deleted, Orbiter will switch focus to the closest
focus-enabled vessel. If the last focus-enabled vessel is deleted, Orbiter
returns to the launchpad.

< If the current camera target is deleted, a new camera target can be provided
in hAlternativeCameraTarget. If not specified, the focus object is used as
default camera target.

* The actual vessel destruction does not occur until the end of the current
frame. Self-destruct calls are therefore permitted.

e Avessel will undock all its docking ports before being destructed.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 129

17.3 Generic object parameters

oapiGetSize
Returns the size (mean radius) of an object.

Synopsis:

doubl e oapi Get Si ze (OBJHANDLE hObj)
Parameters:

hObj object handle

Return value:
Object size (mean radius) in meter.

oapiGetMass
Returns the mass [kg] of an object. For vessels, this is the total mass, including current
fuel mass.

Synopsis:
doubl e oapi Get Mass (OBJHANDLE hnj)

Parameters:
hObj object handle

Return value:
object mass [kg]

17.4 Vessel fuel management

oapiGetEmptyMass
Returns empty mass of a vessel, excluding fuel.

Synopsis:
doubl e oapi Get Enpt yMass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
empty vessel mass [kg]

Notes:
* hVessel must be a vessel handle. Other object types are invalid.
* Do not rely on a constant empty mass. Structural changes (e.g. discarding a
rocket stage) will affect the empty mass.
< For multistage configurations, the fuel mass of all currently inactive stages
contributes to the empty mass. Only the fuel mass of active stages is
excluded.

oapiGetPropellantHandle
Returns an identifier of a vessel's propellant resource.

PROPELLANT_HANDLE oapi Get Propel | ant Handl e (

OBJHANDLE hVessel

DWORD i dx)
Parameters:
hVessel vessel handle
idx propellant resource index (= 0)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 130

Return value:
propellant resource id, or NULL if idx > # propellant resources

oapiGetPropellantMaxMass
Returns the maximum capacity [kg] of a propellant resource.

Synopsis:

doubl e oapi Get Propel | ant MaxMass (PROPELLANT_HANDLE ph)
Parameters:

ph propellant resource identifier

Return value:
maximum fuel capacity [kg] of the resource.

See also:
oapiGetPropellantHandle(), VESSEL::GetPropellantMaxMass()

oapiGetPropellantMass
Returns the current fuel mass [kg] of a propellant resource.

Synopsis:

doubl e oapi Get Propel | ant Mass (PROPELLANT_HANDLE ph)
Parameters:

ph propellant resource identifier

Return value:
current fuel mass [kg] of the resource.

oapiGetFuelMass
Returns current fuel mass of the first propellant resource of a vessel.

Synopsis:
doubl e oapi Get Fuel Mass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
Current fuel mass [kg]

Notes:

« This function is equivalent to
oapi Get Propel | ant Mass (oapi Get Propel | ant Handl e (hVessel, 0))

« hVessel must be a vessel handle. Other object types are invalid.

< For multistage configurations, this returns the current fuel mass of active
stages only.

oapiGetMaxFuelMass
Returns maximum fuel capacity of the first propellant resource of a vessel.

Synopsis:
doubl e oapi Get MaxFuel Mass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 131

Return value:
Maximum fuel mass [kg]

Notes:

« This function is equivalent to
oapi Get Propel | ant MaxMass (oapi Get Propel | ant Handl e (hVessel, 0))
hVessel must be a vessel handle. Other object types are invalid.

For multistage configurations, this returns the sum of the max fuel mass of
active stages only.

oapiSetEmptyMass
Set the empty mass of a vessel (excluding fuel)

Synopsis:

voi d oapi Set Enpt yMass (OBJHANDLE hVessel , doubl e mass)
Parameters:

hVessel vessel handle

mass empty mass [kg]
Notes:

Use this function to register structural mass changes, for example as a result
of jettisoning a fuel tank, etc.

17.5 Object state vectors

oapiGetGlobalPos
Returns the position of an object in the global reference frame.

Synopsis:

voi d oapi Get G obal Pos (OBJHANDLE hCbj, VECTOR3 *pos)
Parameters:

hObj object handle

pos pointer to vector receiving coordinates
Notes:

The global reference frame is the heliocentric ecliptic system at ecliptic and
equinox of J2000.

e Units are meters.

oapiGetGlobalVel
Returns the velocity of an object in the global reference frame.

Synopsis:

voi d oapi Get G obal Vel (OBJHANDLE hCbj, VECTOR3 *vel)
Parameters:

hObj object handle

vel pointer to vector receiving velocity data
Notes:

The global reference frame is the heliocentric ecliptic system at ecliptic and
equinox of J2000.

* Units are meters/second.

oapiGetFocusGlobalPos
Returns the position of the current focus object in the global reference frame.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 132

voi d oapi Get Focusd obal Pos (VECTOR3 *pos)

Parameters:

pos pointer to vector receiving coordinates

Notes:
The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.0.
¢ Units are meters.

oapiGetFocusGlobalVel
Returns the velocity of the current focus object in the global reference frame.

Synopsis:
voi d oapi Get Focusd obal Vel (VECTOR3 *vel)

Parameters:

vel pointer to vector receiving velocity data

Notes:
The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.
* Units are meters/second.

oapiGetRelativePos
Returns the distance vector from hRef to hObj in the ecliptic reference frame.

Synopsis:
voi d oapi Get Rel ativePos (

OBJHANDLE hQbj ,
OBJHANDLE hRef,
VECTOR3 *pos)

Parameters:

hObj object handle
hRef reference object handle
pos pointer to vector receiving distance data

Notes:
Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetRelativeVel
Returns the velocity difference vector of hObj relative to hRef in the ecliptic reference

frame.

Synopsis:
voi d oapi Get Rel ativeVel (

OBJHANDLE hQbj ,
OBJHANDLE hRef,
VECTOR3 *vel)

Parameters:

hObj object handle
hRef reference object handle
vel pointer to vector receiving velocity difference data

Notes:
Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 133

oapiGetFocusRelativePos
Returns the distance vector from hRef to the current focus object.

Synopsis:

voi d oapi Get FocusRel ati vePos (OBJHANDLE hRef, VECTOR3 *pos)
Parameters:

hRef reference object handle

pos pointer to vector receiving distance data
Notes:

Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetFocusRelativeVel
Returns the velocity difference vector of the current focus object relative to hRef.

voi d oapi Get FocusRel ati veVel (OBJHANDLE hRef, VECTOR3 *vel)
Parameters:

hRef reference object handle

vel pointer to vector receiving velocity difference data
Notes:

Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetBarycentre
Returns the global position of the barycentre of a complete planetary system or a single
planet-moons system.

Synopsis:

voi d oapi GetBarycentre (OBJHANDLE hOhj, VECTOR3 *bary)
Parameters:

hObj celestial body handle

bary pointer to vector receiving barycentre data
Notes:

* The barycentre is the centre of mass of a distribution of objects. In this case,
all involved celestial bodies are considered point masses, and the barycentre
is defined as

*<[zn] Zm

* hObj must be the handle of a celestial body.

« The summation involves the body itself and all its secondaries, e.g. a planet
and its moons.

e The barycentre of a star (OIh level object) is always the origin (0,0,0).

* The barycentre of an object without associated secondaries is identical to its
position.

17.6 Surface-relative parameters

oapiGetAltitude
Returns the altitude of a vessel over a planetary surface.

Synopsis:
BOOL oapi Get Altitude (OBIJHANDLE hVessel, double *alt)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 134

Parameters:
hVessel vessel handle
alt pointer to variable receiving altitude value

Return value:
Error flag (FALSE on failure)

Notes:
e Unitis meter [m]
* Returns altitude above closest planet.
« Altitude is measured above mean planet radius (as defined by SIZE
parameter in planet’s cfg file)
* The handle passed to the function must refer to a vessel.

oapiGetFocusAltitude
Returns the altitude of the current focus vessel over a planetary surface.

Synopsis:

BOOL oapi Get FocusAl titude (double *alt)
Parameters:

alt pointer to variable receiving altitude value [m]

Return value:
Error flag (FALSE on failure)

oapiGetPitch
Returns a vessel's pitch angle w.r.t. the local horizon.

Synopsis:

BOOL oapi Get Pitch (OBJHANDLE hVessel, double *pitch)
Parameters:

hVessel vessel handle

pitch pointer to variable receiving pitch value

Return value:
Error flag (FALSE on failure)

Notes:
e Unit is radian [rad]
< Returns pitch angle w.r.t. closest planet
e The local horizon is the plane whose normal is defined by the distance
vector from the planet centre to the vessel.
e The handle passed to the function must refer to a vessel.

oapiGetFocusPitch
Returns the pitch angle of the current focus vessel w.r.t. the local horizon.

Synopsis:

BOOL oapi Get FocusPitch (double *pitch)
Parameters:

pitch pointer to variable receiving pitch value

Return value:
Error flag (FALSE on failure)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

135

oapiGetBank
Returns a vessel's bank angle w.r.t. the local horizon.

Synopsis:

BOOL oapi Get Bank (OBJHANDLE hVessel, doubl e *bank)
Parameters:

hVessel vessel handle

bank pointer to variable receiving bank value

Return value:
Error flag (FALSE on failure)

Notes:
e Unit is radian [rad]
e Returns bank angle w.r.t. closest planet
e The local horizon is the plane whose normal is defined by the distance
vector from the planet centre to the vessel.
* The handle passed to the function must refer to a vessel.

oapiGetFocusBank
Returns the bank angle of the current focus vessel w.r.t. the local horizon.

Synopsis:

BOOL oapi Get FocusBank (doubl e *bank)
Parameters:

bank pointer to variable receiving bank angle [rad]

Return value:
Error flag (FALSE on failure)

oapiGetHeading
Returns a vessel's heading (against geometric north) calculated for the local horizon
plane.

Synopsis:
BOOL oapi Get Headi ng (OBJHANDLE hVessel, doubl e *headi ng)

Parameters:
hVessel vessel handle
heading pointer to variable receiving heading value [rad]

Return value:
Error flag (FALSE on failure)

Notes:
e Unit is radian [rad] O=north, Tv2=east, etc.
e The handle passed to the function must refer to a vessel.

oapiGetFocusHeading

Returns the heading (against geometric north) of the current focus vessel calculated for
the local horizon plane.

Synopsis:
BOOL oapi Get FocusHeadi ng (doubl e *headi ng)

Parameters:
heading pointer to variable receiving heading value [rad]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 136

Return value:
Error flag (FALSE on failure)

oapiGetEquPos
Returns a vessel's spherical equatorial coordinates (longitude, latitude and radius) with
respect to the closest planet or moon.

Synopsis:
BOOL oapi Get EQuPos (

OBJHANDLE hVessel ,
doubl e *1 ongi t ude,
doubl e *l atitude,
doubl e *radi us)

Parameters:
hVessel vessel handle
longitude pointer to variable receiving longitude value [rad]
latitude pointer to variable receiving latitude value [rad]
radius pointer to variable receiving radius value [m]

Return value:
Error flag (FALSE on failure)

Notes:
* The handle passed to the function must refer to a vessel.

oapiGetFocusEquPos
Returns the current focus vessel’s spherical equatorial coordinates (longitude, latitude
and radius) with respect to the closest planet or moon.

Synopsis:
BOOL oapi Get FocusEquPos (

doubl e *1 ongi t ude,
doubl e *l ati tude,
doubl e *radi us)

Parameters:
longitude pointer to variable receiving longitude value [rad]
latitude pointer to variable receiving latitude value [rad]
radius pointer to variable receiving radius value [m]

Return value:
Error flag (FALSE on failure)

17.7 Aerodynamics

oapiGetAirspeed
Returns a vessel's airspeed w.r.t. the closest planet or moon.

Synopsis:
BOOL oapi Get Ai rspeed (OBJHANDLE hVessel , doubl e *ai rspeed)

Parameters:
hVessel vessel handle
airspeed pointer to variable receiving airspeed value [m/s]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 137

Return value
Error flag (FALSE on failure)

Notes:

e This function works even for planets or moons without atmosphere. It returns
an “airspeed-equivalent” value.

oapiGetFocusAirspeed
Returns the current focus vessel's airspeed w.r.t. the closest planet or moon.

BOOL oapi Get FocusAi rspeed (doubl e *airspeed)

Parameters:
airspeed pointer to variable receiving airspeed value [m/s]

Return value:
Error flag (FALSE on failure)

oapiGetAirspeedVector
Returns a vessel’s airspeed vector w.r.t. the closest planet or moon in the local
horizon’s frame of reference.

Synopsis:
BOOL oapi Get Ai r speedVector (

OBJHANDLE hVessel ,
VECTOR3 *speedvec)

Parameters:
hVessel vessel handle
speedvec pointer to variable receiving airspeed vector [m/s in x,y,z]

Return value:
Error flag (FALSE on failure)

Notes:
e This function returns the airspeed vector with respect to the local horizon
reference frame. To get the vector with respect to the local vessel
coordinates, use oapiGetShipAirspeedVector.

oapiGetFocusAirspeedVector
Returns the current focus vessel’s airspeed vector w.r.t. the closest planet or moon in
the local horizon’s frame of reference.

Synopsis:
BOOL oapi Get FocusAi r speedVect or (VECTOR3 *speedvec)

Parameters:
speedvec pointer to variable receiving airspeed vector [m/s in x,y,z]

Return value:
Error flag (FALSE on failure)

oapiGetShipAirspeedVector
Returns a vessel's airspeed vector w.r.t. the closest planet or moon in the vessel’s local
frame of reference.

Synopsis:
BOOL oapi Get Shi pAi rspeedVect or (

OBJHANDLE hVessel

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 138

VECTOR3 *speedvec)

Parameters:
hVessel vessel handle
speedvec pointer to variable receiving airspeed vector [m/s in x,y,z]

Return value:
Error flag (FALSE on failure)

Notes:
* This function returns the airspeed vector with respect to the vessel's frame of
reference. The get the vector with respect to the local horizon’s frame of
reference, use oapiGetAirspeedVector.

oapiGetFocusShipAirspeedVector
Returns the current focus vessel’s airspeed vector w.r.t. closest planet or moon in the
vessel’s local frame of reference.

Synopsis:
BOOL oapi Get FocusShi pAi rspeedVect or (VECTOR3 *speedvec)

Parameters:
speedvec pointer to variable receiving airspeed vector [m/s in x,y,z]

Return value:
Error flag (FALSE on failure)

oapiGetAtmPressureDensity
Returns the atmospheric pressure and density caused by a planetary atmosphere at

the current vessel position.

Synopsis:
voi d oapi Get At nPressurebDensity (

OBJHANDLE hVessel ,
doubl e *pressure,
doubl e *density)

Parameters:
hVessel vessel handle
pressure pointer to variable receiving pressure value [Pa]
density pointer to variable receiving density value [kg/m°]

Notes:
e Pressure and density are calculated using an exponential barometric
equation, without accounting for local variations.

oapiGetFocusAtmPressureDensity
Returns the atmospheric pressure and density caused by a planetary atmosphere at
the current focus vessel’'s position.

voi d oapi Get FocusAt nPressureDensity (

doubl e *pressure,
doubl e *density)

Parameters:
pressure pointer to variable receiving pressure value [Pa]
density pointer to variable receiving density value [kg/m°]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 139

oapiGetinducedDrag
This is a helper function which is useful when implementing the callback function
calculating the aerodynamics coefficients for an airfoil (see VESSEL::CreateAirfoil). It
computes the lift-induced component cp; of the drag coefficient as a function of lift
coefficient ¢, wing aspect ratio A, and wing efficiency factor e, as

¢l

e

D,i

Synopsis:
doubl e oapi Get I nducedDrag (double cl, double A double e)

Parameters:
cl lift coefficient
A wing aspect ratio
e wing efficiency factor

Return value:
Induced drag coefficient cp;

Notes:
« The full drag coefficient required by the airfoil callback function consists of
several components: profile drag cp e, induced drag cp,; and wave drag Cp
CD = CD,e +CD,i +CD,W

where cp ¢ is caused by skin friction and pressure components, and cp, is a
result of the shock wave and flow separation in transonic and supersonic
flight.

« The wing aspect ratio is defined as b%S, where b is the wing span, and Sis
the wing area.

* The efficiency factor depends on the wing shape. The most efficient wings
are elliptical, with e = 1. For all other shapes, e< 1.

* This function can be interpreted slightly differently by moving the angle of
attack-dependency of the profile drag into the induced drag component:
Cp =Cppo +C:D,i *Copu
where cp is the zero-lift component of the profile drag, and ¢'p; is a modified
induced drag obtained by replacing the shape factor e with the Oswald
efficiency factor. See Programmer’s Guide for more details.

oapiGetWaveDrag
This is a helper function which is useful when implementing the callback function
calculating the aerodynamics coefficients for an airfoil (see VESSEL.::CreateAirfoil). It
uses a simple model to compute the wave drag component of the drag coefficient, cp .
Wave drag significantly affects the vessel drag around Mach 1, and falls off towards
lower and higher airspeeds.
This function uses the following model:

0 if M <M,
cmM if M, <M <M,
Cow = M,-M,
C, if M, <M <M,
(i

where 0 < M; < M, < 1 < Mj; are characteristic Mach numbers, and cm is the maximum
wave drag coefficient at transonic speeds.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 140

Synopsis:
doubl e oapi Get WaveDrag (

double M
doubl e ML, double M, double M,
doubl e cnax)

Parameters:
M current Mach number
M1, M2, M3 characteristic Mach numbers
cmax maximum wave drag coefficient

Return value:
Wave drag coefficient ¢p

Notes:

* The model underlying this function assumes a piecewise linear wave drag
profile for M < Ms, and a decay with (M*-1)™"? for M > M. If this profile is not
suitable for a given airfoil, the programmer must implement wave drag
manually.

17.8 Engine status

oapiGetEngineStatus
Retrieve the status of main, retro and hover thrusters for a vessel.

Synopsis:
voi d oapi Get Engi neSt atus (

OBJHANDLE hVessel ,
ENG NESTATUS *es)

Parameters:
hVessel vessel handle
es pointer to an ENGINESTATUS structure which will receive the
engine level parameters
Notes:

The main/retro engine level has a range of [-1,+1]. A positive value indicates
engaged main/disengaged retro thrusters, a negative value indicates engaged
retro/disengaged main thrusters. Main and retro thrusters cannot be engaged
simultaneously. For vessels without retro thrusters the valid range is [0,+1]. The
valid range for hover thrusters is [0,+1].

oapiGetFocusEngineStatus
Retrieve the engine status for the focus vessel.

Synopsis:
voi d oapi Get FocusEngi neSt at us (ENG NESTATUS *es)
Parameters:
es pointer to an ENGINESTATUS structure which will receive the
engine level parameters
Notes:

See oapiGetEngineStatus

oapiSetEnginelLevel
Engage the specified engines.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 141

Synopsis:
voi d oapi Set Engi neLevel (

OBJHANDLE hVessel ,
ENG NETYPE engi ne,
doubl e | evel)

Parameters:
hVessel vessel handle
engine identifies the engine to be set
level engine thrust level [0,1]
Notes:

* Not all vessels support all types of engines.

e Setting main thrusters >0 implies setting retro thrusters to 0 and vice versa.

e Setting main thrusters to —level is equivalent to setting retro thrusters to
+level and vice versa.

oapiGetAttitudeMode
Returns a vessel's current attitude thruster mode.

Synopsis:
i nt oapi Get AttitudeMbde (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
Current attitude mode (O=disabled or not available, 1=rotational, 2=linear)

Notes:
e The handle must refer to a vessel. This function does not support other
object types.

oapiToggleAttitudeMode
Flip a vessel's attitude thruster mode between rotational and linear.

Synopsis:
i nt oapi Toggl eAttitudeMbde (OBIJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
The new attitude mode (1=rotational, 2=linear, 0O=unchanged disabled)

Notes:
e The handle must refer to a vessel. This function does not support other
object types.
* This function flips between linear and rotational, but has no effect if attitude
thrusters were disabled.

oapiSetAttitudeMode
Set a vessel's attitude thruster mode.

Synopsis:
bool oapi Set AttitudeMbde (OBIJHANDLE hVessel, int nopde)

Parameters:
hVessel vessel handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 142

mode attitude mode (O=disable, 1=rotational, 2=linear)

Return value:
Error flag; false indicates failure (requested mode not available)

Notes:

e The handle must refer to a vessel. This function does not support other
object types.

oapiGetFocusAttitudeMode
Returns the current focus vessel’s attitude thruster mode (rotational or linear)

i nt oapi Get FocusAttitudeMde ()

Return value:
Current attitude mode (O=disabled or not available, 1=rotational, 2=linear)

oapiToggleFocusAttitudeMode
Flip the current focus vessel’s attitude thruster mode between rotational and linear.

Synopsis:
i nt oapi Toggl eFocusAttitudehMde ()

Return value:
The new attitude mode (1=rotational, 2=linear, 0O=unchanged disabled)

Notes:

* This function flips between linear and rotational, but has no effect if attitude
thrusters were disabled.

oapiSetFocusAttitudeMode
Set the current focus vessel's attitude thruster mode.

Synopsis:

bool oapi Set FocusAttitudeMdde (int node)
Parameters:

mode attitude mode (O=disable, 1=rotational, 2=linear)

Return value:
Error flag; false indicates error (requested mode not available)

oapiRegisterExhaustTexture
Request a custom texture for vessel exhaust rendering.

Synopsis:

SURFHANDLE oapi Regi st er Exhaust Texture (char *nane)
Parameters:

name exhaust texture file name (without path and extension)

Return value:
texture handle

Notes:

* The exhaust texture must be stored in DDS format in Orbiter’s default texture
directory.

« If the texture is not found the function returns NULL.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 143

* The texture can be used to define custom textures in VESSEL::AddExhaust.

See also:
VESSEL::AddExhaust

oapiRegisterReentryTexture
Request a custom texture for vessel reentry flame rendering.

Synopsis:

SURFHANDLE oapi Regi st er ReentryTexture (char *nane)
Parameters:

name reentry texture file name (without path and extension)

Return value:
texture handle

Notes:
* The exhaust texture must be stored in DDS format in Orbiter’s default texture
directory.
+ |f the texture is not found the function returns NULL.
e The texture can be used to define custom textures in
VESSEL::SetReentryTexture.

See also:
VESSEL::SetReentryTexture

17.9 Functions for planetary bodies

All OBJHANDLE function parameters used in this section must refer to planetary bodies
(planets, moons, astereoids, etc.) unless stated otherwise. Invalid handles may lead to
crashes.

Currently, the orientation of planetary rotation axes is assumed time-invariant. Precession,
nutation and similar effects are not currently simulated.

oapiGetPlanetPeriod
Returns the rotation period (the length of a siderial day) of a planet.

Synopsis:

doubl e oapi Get Pl anet Peri od (OBJHANDLE hPI anet)
Parameters:

hPlanet planet handle

Return value:
planet rotation period [seconds]

oapiGetPlanetObliquity

Returns the obliquity of the planet’s rotation axis (the angle between the rotation axis
and the ecliptic zenith).

Synopsis:

doubl e oapi Get Pl anet Obl i quity (OBJHANDLE hPl anet)
Parameters:

hPlanet planet handle

Return value:
obliquity [rad]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 144

Notes:

< In Orbiter, the ecliptic zenith (at epoch J2000) is the positive y-axis of the
global frame of reference.

oapiGetPlanetTheta
Returns the longitude of the ascending node of the equatorial plane (denoted by 6),
that is, the angle between the vernal equinox and the ascending node of the equator
w.r.t. the ecliptic.

Synopsis:

doubl e oapi Get Pl anet Theta (OBJHANDLE hPI anet)
Parameters:

hPlanet planet handle

Return value:
longitude of ascending node of the equator [rad]

Notes:

* For Earth, this function will return 0. (The ascending node of Earth’s
equatorial plane is the definition of the vernal equinox).

oapiGetPlanetObliquityMatrix
Returns a rotation matrix which performs the transformation from the planet’s tilted
coordinates into global coordinates.

Synopsis:
voi d oapi Get Pl anet Obl i quityMatrix (

OBJHANDLE hPI anet
MATRI X3 *nmat)

Parameters:

hPlanet planet handle

mat pointer to a matrix receiving the rotation data
Notes:

e The returned matrix is given by
cosd 0 -snd|1 O 0
R,=| 0 1 0 0 cosg -sng
sngd 0 cosfd |0 sing cosg
where Gis the longitude of the ascending node of the equator, as returned by
oapiGetPlanetTheta, and ¢ is the obliquity as returned by
oapiGetPlanetObliquity.

* Radoes not include the current rotation of the planet around its axis. Ry is
therefore time-independent.

oapiGetPlanetCurrentRotation
Returns the current rotation angle of the planet around its axis.

Synopsis:

doubl e oapi Get Pl anet Current Rot ati on (OBJHANDLE hPI anet)
Parameters:

hPlanet planet handle

Return value:
Rotation angle [rad]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 145

Notes:
e The complete rotation matrix from planet local to global (ecliptic) coordinates
is given by
cosw 0 -snw
R=R,|] 0 1 0
snw 0 cosw
where R, is the obliquity matrix as returned by oapiGetPlanetObliquityMatrix,
and wis the rotation angle returned by oapiGetPlanetCurrentRotation.

oapiPlanetHasAtmosphere
Test for existence of planetary atmosphere.

Synopsis:

doubl e oapi Pl anet HasAt nosphere (OBJHANDLE hPI anet)
Parameters:

hPlanet planet handle

Return value:
true if an atmosphere has been defined for the planet, false otherwise.

oapiGetPlanetAtmConstants
Returns atmospheric constants for a planet.

const ATMCONST *oapi Get Pl anet At nConstants (

OBJHANDLE hPI anet)

Parameters:
hPlanet planet handle

Return value:
pointer to ATMCONST structure containing atmospheric coefficients for the
planet (see notes)

Notes:
« ATMCONST has the following components:

typedef struct {
doubl e pO; /I pressure at mean radius (‘sea level') [Pa]
doubl e rhoO; Il density at mean radius [kg/m’]
doubl e R Il specific gas constant [J/(K kg)]
doubl e ganmeg; /I ratio of specific heats, c_p/c_v
doubl e G /I exponent for pressure equation (temporary)
doubl e 2pp; /I partial pressure of oxygen
double altlimt; /I atmosphere altitude limit [m]
double radlimt; /I radius limit (altlimit + mean radius)
doubl e horizonalt; // horizon rendering altitude
VECTOR3 col or 0; /I sky colour at sea level during daytime
} ATMCONST;

« If the specified planet does not have an atmosphere, return value is NULL.

oapiGetPlanetAtmParams
Returns atmospheric parameters as a function of distance from the planet centre.

Synopsis:
voi d oapi Get Pl anet At mPar ans (

OBJHANDLE hPI anet,
doubl e rad,
ATMPARAM * pr m

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 146

Parameters:

hPlanet planet handle
rad radius from planet centre [m]
prm pointer to ATMPARAM structure receiving parameters

Notes:
* See section 8 for definition of ATMPARAM structure.
« If the planet has no atmosphere, or if the defined radius is beyond the
defined upper atmosphere limit, all parameters are set to 0.

oapiGetPlanetJCoeffCount
Returns the number of perturbation coefficients defined for a planet to describe the
latitude-dependent perturbation of its gaviational potential. A return value of 0 indicates
that the planet is considered to have a spherically symmetric gravity field.

DWORD oapi Get Pl anet JCoef f Count (OBJHANDLE hPl anet)

Parameters:
hPlanet planet handle

Return value:
Number of perturbation coefficients.

Notes:

< Even if a planet defines perturbation coefficients, its gravity perturbation may
be ignored, if the user disabled nonspherical gravity sources, or if orbit
stabilisation is active at a given time step. Use the
VESSEL::NonsphericalGravityEnabled function to check if a vessel uses the
perturbation terms in the update of its state vectors.

« Depending on the distance to the planet, Orbiter may use fewer perturbation
terms than defined, if their contribution is negligible:

r
where Ris the planet radius, r is the distance from the planet, and J, is the n-
2" perturbation term defined for the planet. Orbiter uses £= 10.

If Jn(Rj <g, (n=2),ignore all terms = n,

oapiGetPlanetJCoeff
Returns a perturbation coefficient for the calculation of a planet’s gravitational potential.

Synopsis:

doubl e oapi Get Pl anet JCoef f (OBJHANDLE hPl anet, DWORD n)
Parameters:

hPlanet planet handle

n coefficient index

Return value:
Perturbation coefficient Juo.

Notes:
* Valid indices n are 0 to oapiGetPlanetJCoeffCount()-1.
< Orbiter calculates the planet’s gravitational potential U for a given distance r
and latitude @by
N 2
U(r,@:%[l-zan(ﬁj Pn(snw)l

r n=2 r

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 147

where Ris the planet’s equatorial radius, M is its mass, G is the gravitational
constant, and P, is the Legendre polynomial of order n.

« Orbiter currently considers perturbations to be only a function of latitude
(polar), not of longitude.

« The first coefficient, n = 0, returns J,, which accounts for the ellipsoid shape
of a planet (flattening). Higher perturbation terms are usually small compared
to J, (and not known for most planets).

17.10 Surface base functions

oapiGetBaseEquPos
Returns the equatorial coordinates (longitude, latitude and radius) of the location of a

surface base.

Synopsis:
voi d oapi Get BaseEquPos (

OBJHANDLE hBase,
doubl e *I ng,
doubl e *I at,
double *rad = 0)

Parameters:
hBase surface base handle
Ing pointer to variable to receive longitude value [rad]
lat pointer to variable to receive latitude value [rad]
rad pointer to variable to receive radius value [m]
Notes:

« hBase must be a valid base handle (e.g. from oapiGetBaseByName)
* The radius pointer can be omitted if not required.
e Currently, rad will always return the planet mean radius.

oapiGetBasePadCount
Returns the number of VTOL landing pads owned by the base.

Synopsis:

DWORD oapi Get BasePadCount (OBJHANDLE hBase)
Parameters:

hBase surface base handle

Return value:
Number of landing pads

Notes:
« hBase must be a valid base handle (e.g. from oapiGetBaseByName)
e This function only counts VTOL pads, not runways.

oapiGetBasePadEquPos
Returns the equatorial coordinates (longitude, latitude and radius) of the location of a

VTOL landing pad.

Synopsis:
bool oapi Get BasePadEquPos (

OBJHANDLE hBase,
DWORD pad,

doubl e *I ng,
doubl e *I at,
doubl e *rad = 0)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 148

Parameters:

hBase surface base handle

pad pad index

Ing pointer to variable to receive longitude value [rad]
lat pointer to variable to receive latitude value [rad]
rad pointer to variable to receive radius value [m]

Return value:
false indicates failure (pad index out of range). In that case, the return values are
undefined.

Notes:
« hBase must be a valid base handle (e.g. from oapiGetBaseByName)
* 0 < pad < oapiGetBasePadCount() is required.
e The radius pointer can be omitted if not required.

oapiGetBasePadStatus
Returns the status of a VTOL landing pad (free, occupied or cleared).

Synopsis:
bool oapi Get BasePadSt at us (

OBJHANDLE hBase,
DWORD pad,
int *status)

Parameters:
hBase surface base handle
pad pad index
status pointer to variable to receive pad status

Return value:
false indicates failure (pad index out of range)

Notes:
« hBase must be a valid base handle (e.g. from oapiGetBaseByName)
* 0 < pad < oapiGetBasePadCount() is required.
e status can be one of the following:
0 =pad is free
1 = pad is occupied
2 = pad is cleared for an incoming vessel

oapiGetBasePadNav
Returns a handle to the ILS transmitter of a VTOL landing pad, if available.

Synopsis:

NAVHANDLE oapi Get BasePadNav (OBJHANDLE hBase, DWORD pad)
Parameters:

hBase surface base handle

pad pad index

Return value:
Handle of a ILS transmitter, or NULL if the pad index is out of range or the pad
has no ILS.

Notes:

« hBase must be a valid base handle (e.g. from oapiGetBaseByName)
* 0 < pad < oapiGetBasePadCount() is required.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 149

17.11 Navigation radio transmitter functions

oapiGetNavPos

Returns the current position of a NAV transmitter (in global coordinates, i.e. heliocentric
ecliptic).

Synopsis:
voi d oapi Get NavPos (NAVHANDLE hNav, VECTOR3 *gpos)

Parameters:
hNav NAV transmitter handle
gpos pointer to variable to receive global position

oapiGetNavChannel
Returns the channel number of a NAV transmitter.

Synopsis:

DWORD oapi Get NavChannel (NAVHANDLE hNav)
Parameters:

hNav NAV transmitter handle

Return value:
channel number

Notes:
e Channel numbers range from 0 to 639.

e To convert a channel number ch into a frequency, use
f=(108.0 + 0.05 ch) kHz

oapiGetNavFreq
Returns the frequency of a NAV transmitter.

Synopsis:

fl oat oapi Get NavFreq (NAVHANDLE hNav)
Parameters:

hNav NAV transmitter handle

Return value:
Transmitter frequency [kHz]

Notes:

* In Orbiter, NAV transmitter frequencies range from 108.0 to 139.95 kHz and
are incremented in 0.05 kHz steps.

oapiGetNavRange
Returns the range of a NAV transmitter.

Synopsis:

fl oat oapi Get NavRange (NAVHANDLE hNav)
Parameters:

hNav NAV transmitter handle

Return value:
Transmitter range [m]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 150

Notes:

* A NAV receiver will only receive a signal when within the range of a
transmitter.

e Variable receiver sensitivity is not currently implemented.

e Shadowing of a transmitter by obstacles between transmitter and receiver is
not currently implemented.

oapiNavinRange
Determines whether a given global coordinate is within the range of a NAV transmitter.

Synopsis:

bool oapi Navl nRange (NAVHANDLE hNav, const VECTOR3 &gpos)
Parameters:

hNav NAV transmitter handle

gpos Global coordinates [m,m,m] of a point (cartesian heliocentric

ecliptic)

Return value:
true if the point is within range of the transmitter.

17.12 Simulation time

oapiGetSimTime
Retrieve simulation time (in seconds) since simulation start.

Synopsis:
doubl e oapi Get Si nili me ()

Return value:
Simulation up time (seconds)

Notes:
Since the simulation up time depends on the simulation start time, this parameter

is useful mainly for time differences. To get an absolute time parameter, use
oapiGetSimMJD.

oapiGetSimStep
Retrieve length of last simulation time step (from previous to current frame) in seconds.

Synopsis:
doubl e oapi Get Si nStep ()

Return value:
Simulation time step (seconds)

Notes:
This parameter is useful for numerical (finite difference) calculation of time
derivatives.

oapiGetSysTime
Retrieve system (real) time since simulation start.

Synopsis:
doubl e oapi Get SysTine ()

Return value:
Real-time simulation up time (seconds)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 151

Notes:
e This function measures the real time elapsed since the simulation was
started. Unlike oapiGetSimTime, it doesn’t take into account time
acceleration.

oapiGetSysStep
Retrieve length of last system time step in seconds.

Synopsis:
QAPI FUNC doubl e oapi Get SysStep ()

Return value:
System time step (seconds)

Notes:
* Unlike oapiGetSimStep, this function does not include the time compression
factor. It is useful to control actions which do not depend on the simulation
time acceleration.

oapiGetSimMJD
Retrieve absolute time measure (Modified Julian Date) for current simulation state.

Synopsis:
doubl e oapi Get Si mMID ()

Return value:
Current Modified Julian Date (days)

Notes:
Orbiter defines the Modified Julian Date (MJD) as JD — 240 0000.5, where JD is
the Julian Date. JD is the interval of time in mean solar days elapsed since 4713
BC January 1 at Greenwich mean noon.

oapiTime2MJD
Convert a simulation up time value into a Modified Julian Date.

Synopsis:

doubl e oapi Ti mre2MID (doubl e sint)
Parameters:

simt simulation time (seconds)

Return value:
Modified Julian Date (MJD) corresponding to simt.

oapiGetTimeAcceleration
Returns simulation time acceleration factor.

Synopsis:
doubl e oapi Get Ti meAccel eration (void)

Return value:
time acceleration factor

Notes:

This function will not return 0 when the simulation is paused. Instead it will return
the acceleration factor at which the simulation will resume when unpaused.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 152

oapiSetTimeAcceleration
Set the simulation time acceleration factor

Synopsis:

voi d oapi Set Ti neAccel erati on (doubl e warp)
Parameters:

warp new time acceleration factor
Notes:

Warp factors will be clamped to the valid range [1,1000]. If the new warp factor is
different from the previous one, all DLLs (including the one that called
oapiSetTimeAcceleration) will be sent a opcTimeAccChanged message.

oapiGetFrameRate
Returns current simulation frame rate (frames/sec).

Synopsis:
doubl e oapi Get FraneRate (void)

Return value:
Current frame rate (fps)

17.13 Camera functions

oapiCameralnternal
Returns flag to indicate internal/external camera mode.

Synopsis:
bool oapi Caneral nternal (void)

Return value:
true indicates an internal camera mode, i.e. the camera is located inside a vessel
cockpit. In this case, the camera target is always the current focus object.
false indicates an external camera mode, i.e. the camera points toward an object
from outside. The camera target may be a vessel, planet, spaceport, etc.

oapiCameraMode
Returns the current camera view mode.

Synopsis:
i nt oapi Caner albde ()

Return value:

CAM_COCKPIT cockpit (internal) mode
CAM_TARGETRELATIVE tracking mode (relative direction)
CAM_ABSDIRECTION tracking mode (absolute direction)
CAM_GLOBALFRAME tracking mode (global frame)

CAM_TARGETTOOBJECT tracking mode (target to object)
CAM_TARGETFROMOBJECT tracking mode (object to target)
CAM_GROUNDOBSERVER ground observer mode

oapiCockpitMode
Returns the current cockpit display mode.

Synopsis:
i nt oapi Cockpit Mbde ()

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 153

Return value:
COCKPIT_GENERIC (generic cockpit mode: left+right MFD and HUD)
COCKPIT_PANELS (2D panel mode)
COCKPIT_VIRTUAL (virtual cockpit mode)

Notes:
e This function also works if the camera is not currently in cockpit mode.

oapiCameraTarget
Returns a handle to the current camera target.

Synopsis:
OBJHANDLE oapi CaneraTarget (void)

Return value:
Handle to the current camera target (i.e. the object the camera is pointing at in
external mode, or the handle of the vessel in cockpit mode)

Notes:
* The camera target is not necessarily a vessel, and if it is a vessel, it is not
necessarily the focus object (the vessel receiving user input).

oapiCameraGlobalPos
Returns current camera position in global coordinates.

Synopsis:

voi d oapi Caner ad obal Pos (VECTOR3 *gpos)
Parameters:

gpos pointer to vector to receive global camera coordinates
Notes:

* The global coordinate system is the heliocentric ecliptic frame at epoch
J2000.0.

oapiCameraGlobalDir
Returns current camera direction in global coordinates.

Synopsis:

voi d oapi Canerad obal Dir (VECTOR3 *gdir)
Parameters:

gdir pointer to vector to receive global camera direction

oapiCameraTargetDist
Returns the distance between the camera and its target [m].

Synopsis:
doubl e oapi Caner aTarget Di st (voi d)

Return value:
Distance between camera and camera target [m].

oapiCameraAzimuth
Returns the current camera azimuth angle with respect to the target.

Synopsis:
doubl e oapi Canmer aAzi muth ()

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 154

Return value:
Camera azimuth angle [rad]. Value 0 indicates that the camera is behind the
target.

Notes:
e This function is useful only in external camera mode. In internal mode, it will
always return 0.

oapiCameraPolar
Returns the current camera polar angle with respect to the target.

Synopsis:
doubl e oapi CaneraPol ar ()

Return value:
Camera polar angle [rad]. Value 0 indicates that the camera is at the same
elevation as the target.

Notes:
e This function is useful only in external camera mode. In internal mode, it will
always return 0.

oapiCameraAperture
Returns the current camera aperture (the field of view) in rad.

Synopsis:
doubl e oapi Caner aAperture (void)

Return value:
camera aperture [rad]

Notes:
« Orbiter defines the the aperture as ¥ of the vertical field of view, between
the viewport centre and the top edge of the viewport.

oapiCameraSetAperture
Change the camera aperture (field of view).

Synopsis:
voi d oapi CaneraSet Aperture (double aperture)

Parameters:
aperture new aperture [rad]

Notes:

« Orbiter restricts the aperture to the range from RAD*5 to RAD*80 (i. e. field
of view between 10° and 160°. Very wide angles (> 90°) should only be used
to implement specific optical devices, e.g. wide-angle cameras, not for
standard observer views.

e The Orbiter user interface does not accept fields of view > 90°. As soon as
the user manipulates the aperture manually, it will be clamped back to the
range from 10° to 90°.

oapiCameraScaleDist
Moves the camera closer to the target or further away.

Synopsis:
voi d oapi CaneraScal eDi st (doubl e dscal e)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 155

Parameters:
dscale distance scaling factor

Notes:
* Setting dscale < 1 will move the camera closer to its target. dscale > 1 will
move it further away.
e This function is ignored if the camera is in internal mode.

oapiCameraRotAzimuth
Rotate the camera around the target (azimuth angle).

Synopsis:
voi d oapi CaneraRot Azi nut h (doubl e dazi nut h)

Parameters:
dazimuth change in azimuth angle [rad]

Notes:
e This function is ignored if the camera is in internal mode.

oapiCameraRotPolar
Rotate the camera around the target (polar angle).

Synopsis:

voi d oapi Caner aRot Pol ar (doubl e dpol ar)
Parameters:

dpolar change in polar angle [rad]
Notes:

e This function is ignored if the camera is in internal mode.

oapiCameraSetCockpitDir
Set the camera direction in cockpit mode.

Synopsis:
voi d oapi Caner aSet CockpitDir (

doubl e pol ar,
doubl e azi mut h,
bool transition = fal se)

Parameters:
polar polar angle [rad]
azimuth azimuth angle [rad]
transition transition flag (see notes)

Notes:

e This function is ignored if the camera is not currently in cockpit mode.

e The polar and azimuth angles are relative to the default view direction (see
VESSEL::SetCameraDefaultDirection)

e The requested direction should be within the current rotation ranges (see
VESSEL::SetCameraRotationRange), otherwise the result is undefined.

« If transition==false, the new direction is set instantaneously; otherwise the
camera swings from the current to the new direction (not yet implemented).

oapiCameraAttach

Attach the camera to a new target, or switch between internal and external camera
mode.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 156

voi d oapi CaneraAttach (OBJHANDLE hQbj, int node)

Parameters:

hObj handle of the new camera target

mode camera mode (O=internal, 1=external, 2=don’t change)
Notes:

« If the new target is not a vessel, the camera mode is always set to external,
regardless of the value of mode.

17.14 Keyboard input

oapiAcceptDelayedKey
EIEEIET. This function is should no longer be used. See ovcConsumeBufferedKey for
handling buffered key events. May be removed in a future version.

17.15 Mesh management

oapiLoadMesh
Loads a mesh from file and returns a handle to it.

Synopsis:

MESHHANDLE oapi LoadMesh (const char *fnane)
Parameters:

fname mesh file name

Return value:
Handle to the loaded mesh. (NULL indicates load error)

Notes:
e The file name should not contain a path or file extension. Orbiter appends
extension .msh and searches in the default mesh directory.
* Meshes should be deallocated with oapiDeleteMesh when no longer
needed.
See also:

oapiDeleteMesh, VESSEL::AddMesh

oapiLoadMeshGlobal
Retrieves a mesh handle from the global mesh manager. When called for the first time
for any given file name, the mesh is loaded from file and stored as a system resource.
Every further request of the same mesh directly returns a handle to the stored mesh
without further file I/O.

Synopsis:

const MESHHANDLE oapi LoadMeshd obal (const char *fnane)
Parameters:

fname mesh file name

Return value:
mesh handle

Notes:

¢ Once a mesh is globally loaded it remains in memory until the user closes
the simulation window.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 157

e This function can be used to pre-load meshes to avoid load delays during
the simulation. For example, parent objects may pre-load meshes for any
child objects they may create later.

« Do NOT delete any meshes obtained by this function with oapiDeleteMesh!
Orbiter takes care of deleting globally managed meshes.

oapiDeleteMesh
Removes a mesh from memory.

Synopsis:

voi d oapi Del et eMesh (MESHHANDLE hMesh)
Parameters:

hMesh mesh handle

oapiMeshGroupCount
Returns the number of mesh groups defined in a mesh.

Synopsis:

DWORD oapi MeshGr oupCount (MESHHANDLE hMesh)
Parameters:

hMesh mesh handle

Return value:
number of mesh groups defined in the mesh

Notes:
e Each mesh is subdivided into mesh groups, defining a part of the 3-D object
represented by the mesh.
* A group consists of a list of vertex coordinates and vertex indices,
representing its geometry, and optionally a material and a texture reference.
* See 3DModel document for details of the mesh format.

oapiMeshGroup
Returns a pointer to the group specification of a mesh group.

Synopsis:

MESHGROUP * oapi MeshGr oup (MESHHANDLE hMesh, DWORD i dx)
Parameters:

hMesh mesh handle

idx group index (= 0)

Return value:
pointer to mesh group specification (or NULL if idx out of range)

Notes:
e MESHGROUP is a structure defined as follows:

typedef struct { /I mesh group definition
NTVERTEX *Wt X; /I vertex list
WORD *1 dx; I index list
DWORD nVt x; I vertex count
DWORD nl dx; /[index count
DWORD Ml | dx; /I material index (>= 1, O=none)
DWORD Tex| dx; /I texture index (>= 1, 0=none)
DWORD Usr Fl ag; I user-defined flag
WORD zBi as; /I z bias
WORD Fl ags; Il internal flags

} MESHGROUP;

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 158

where NVERTEX defines a vertex with normals and texture coordinates:

typedef struct { /I vertex definition including normals and texture coordinates
float x, y, z; /I position
float nx, ny, nz; //normal
float tu, tv; /I texture coordinates

} NTVERTEX;

« This method can be used to edit the a mesh group directly (for geometry
animation, texture animation, etc.)

oapiGetTextureHandle
Retrieve a surface handle for a mesh texture.

Synopsis:
QAPI FUNC SURFHANDLE oapi Get Text ureHandl e (

MESHHANDLE hMesh,
DWORD t exi dx)

Parameters:
hMesh mesh handle
texidx texture index (= 1)

Return value:
surface handle

Notes:

* This function can be used for dynamically updating textures during the
simulation.

» the texture index is given by the order in which the textures appear in the
texture list at the end of the mesh file.

* Important: Any textures which are to be dynamically modified should be
listed with the ‘D’ flag (“dynamic”) in the mesh file. This causes Orbiter to
decompress the texture when it is loaded. Blitting operations to compressed
surfaces is very inefficient on most graphics hardware.

17.16 Particle stream management

oapiParticleSetLevelRef
Reset the reference pointer used by the particle stream to calculate the intensity
(opacity) of the generated patrticles.

Synopsis:
voi d oapi Particl eSet Level Ref (

PSTREAM HANDLE ph,
doubl e *1vl)

Parameters:

ph particle stream handle

vl pointer to variable defining particle intensity
Notes:

* The variable pointed to by Ivl should be set to values between 0 (lowest
intensity) and 1 (highest intensity).

» By default, exhaust streams are linked to the thrust level setting of the
thruster they are associated with. Reentry streams are set to a fixed level of
1 by default.

e This function allows to customise the appearance of the particle streams
directly by the module.

« Other parameters besides the intensity level, such as atmospheric density
can also have an effect on the particle intensity.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 159

17.17 HUD, panel, virtual cockpit and MFD management

oapiSetHUDMode
Set HUD (head up display) mode.

Synopsis:

bool oapi Set HUDMbde (i nt node)
Parameters:

mode new HUD mode

Return value:
true if mode has changed, false otherwise.

Notes:
e Mode HUD_NONE will turn off the HUD display.
e See constants HUD_xxx (section 9) for currently supported HUD modes.

oapiGetHUDMode
Query current HUD (head up display) mode.

Synopsis:
i nt oapi Get HUDMbde (voi d)

Return value:
Current HUD mode

oapiToggleHUDColour
Switch the HUD display to a different colour.

Synopsis:
voi d oapi Toggl eHUDCol our (voi d)

Notes:
« Orbiter currently defines 3 HUD colours: green, red, white. Calls to
oapiToggleHUDColour will cycle through these.

oapilncHUDIntensity
Increase the brightness of the HUD display.

Synopsis:
voi d oapi I ncHUDI ntensity (void)

Notes:
« Calling this function will increase the intensity (in virtual cockpit modes) or
brightness (in other modes) of the HUD display up to a maximum value.
e This function should be called repeatedly (e.g. while the user presses a key).

oapiDecHUDIntensity
Decrease the brightness of the HUD display.

Synopsis:
voi d oapi DecHUDI ntensity (void)

Notes:

« Calling this function will decrease the intensity (in virtual cockpit modes) or
brightness (in other modes) of the HUD display down to a minimum value.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 160

e This function should be called repeatedly (e.g. while the user presses a key).

oapiOpenMFD
Set an MFD (multifunctional display) to a specific mode.

Synopsis:

voi d oapi OQpenMFD (int node, int id)
Parameters:

mode MFD mode (see Section 9)

id MFD identifier (see Section 9)
Notes:

* mode MFD_NONE will turn off the MFD.
* For the on-screen instruments, only MFD_LEFT and MFD_RIGHT are
supported. Custom panels may support (up to 3) additional MFDs.

oapiGetMFDMode
Get the current mode of the specified MFD.

Synopsis:

i nt oapi Get MFDivbde (int id)
Parameters:

id MFD identifier (see Section 9)

Return value:
MFD mode (see Section 9)

oapiSendMFDKey
Sends a keystroke to an MFD.

Synopsis:
i nt oapi SendM-DKey (int id, DWORD key)
Parameters:
id MFD identifier (see Section 9)
key key code (see OAPI_KEY_xxx constants in orbitersdk.h)

Return value:
nonzero if the MFD understood and processed the key.

Notes:

e This function can be used to interact with the MFD as if the user had pressed
Shift-key, for example to select a different MFD mode, to select a target
body, etc.

oapiProcessMFDButton
Requests a default action as a result of a MFD button event.

Synopsis:
virtual bool ProcessM-DButton (
int nfd,
int bt,
int event) const
Parameters:
mfd MFD identifier (see Section 9)
bt button number (= 0)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 161

event mouse event (a combination of PANEL _MOUSE_xxx flags)

Return value:
Returns true if the button was processed, false if no action was assigned to the
button.

Notes:
e Orbiter assigns default button actions for the various MFD modes. For
example, in Orbit mode the action assigned to button 0 is Select reference.
Calling oapiProcessMFDButton (for example as a reaction to a mouse button
event) will execute this action.

oapiMFDButtonLabel
Retrieves a default label for an MFD button.

Synopsis:

const char *oapi MFDButtonLabel (int nfd, int bt)
Parameters:

mfd MFD identifier (see Section 9)

bt button number (= 0)

Return value:
pointer to static string containing the label, or NULL if the button is not assigned.

Notes:
e Labels contain 1 to 3 characters.
e This function can be used to paint the labels on the MFD buttons of a custom
panel.
e The labels correspond to the default button actions executed by
VESSEL::ProcessMFDButton.

oapiRegisterMFD
Registers an MFD position for a custom panel.

Synopsis:

voi d oapi Regi ster MFD (i nt id, const MFDSPEC &spec)
Parameters:

id MFD identifier (see Section 9)

spec MFD parameters (see below)
Notes:

¢ Should be called in the body of ovcLoadPanel for panels which define MFDs.
« Defining more than 2 or 3 MFDs per panel can degrade performance.
< MFDSPEC is a struct with the following fields:

typedef struct {
RECT pos; /I position of MFD in panel (pixel)
int nbt_left; /I number of buttons on left side of MFD display
int nbt_right; /I number of buttons on right side of MFD display
int bt_yofs; /I y-offset of top button from top display edge (pixel)
int bt_ydist; /I y-distance between buttons (pixel)

} MFDSPEC,

oapiRegisterPanelBackground
Register the background bitmap for a custom panel.

Synopsis:
voi d oapi Regi st er Panel Backgr ound (

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 162

HBI TMAP hBnp,
DWORD flag = PANEL_ATTACH_BOTTOM PANEL_MOVEOUT BOTTOM
DWORD ck = (DWORD) - 1)

Parameters:
hBmp bitmap handle
flag property bit flags (see notes)
ck transparency colour key
Notes:

e This function will normally be called in the body of ovcLoadPanel.

* Typically the bitmap will be stored as a resource in the DLL and obtained by
a call to the Windows function LoadBitmap(...).

« flag defines panel properties and can be a combination of the following
bitmasks:

PANEL_ATTACH_{LEFT/RIGHT/TOP/BOTTOM}
PANEL_MOVOUT_{LEFT/RIGHT/TOP/BOTTOM}

where PANEL_ATTACH_BOTTOM means that the bottom edge of the panel
cannot be scrolled above the bottom edge of the screen (other directions
work equivalently) and PANEL_MOVEOUT_BOTTOM means that the panel
can be scrolled downwards out of the screen (other directions work
equivalently)

e The colour key, if defined, specifies a colour which will appear transparent
when displaying the panel. The key is in (hex) OXRRGGBB format. If no key
is specified, the panel will be opaque. It is best to use black (0x000000) or
white (Oxffffff) as colour keys, since other values may cause problems in
16bit screen modes. Of course, care must be taken that the keyed colour
does not appear anywhere in the opaque part of the panel.

oapiRegisterPanelArea
Defines a rectangular area within a panel to receive mouse or redraw notifications.

Synopsis:
voi d oapi Regi st er Panel Area (
int aid,
const RECT &pos,
int draw _event = PANEL_REDRAW NEVER,
i nt nmouse_event = PANEL_ MOUSE | GNORE,
i nt bkmode = PANEL_MAP_NONE)
Parameters:
aid area identifier
pos bounding box of the marked area

draw_event defines redraw events
mouse_event defines mouse events

bkmode redraw background mode
Notes:
» Each panel area must be defined with an identifier aid which is unique within
the panel.

« draw_event can have the following values:

PANEL_REDRAW_NEVER: do not generate redraw events.
PANEL_REDRAW_ALWAYS: generate a redraw event at every time step.
PANEL_REDRAW_MOUSE: mouse events trigger redraw events.

* For possible values of mouse_event see orbitersdk.h.
PANEL_MOUSE_IGNORE prevents mouse events from being triggered.

« bkmode defines the bitmap handed to the redraw callback:
PANEL_MAP_NONE: provides an undefined bitmap. Should be used if the
whole area is repainted.

PANEL_MAP_CURRENT: provides a copy of the current area.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 163

PANEL_MAP_BACKGROUND: provides a copy of the panel background (as
defined by oapiRegisterPanelBackground).

PANEL_MAP_BGONREQUEST: like PANEL_MAP_BACKGROUND, this
stores the area background, but the user must request it explicitly with a call
to oapiBltPanelAreaBackground. This can improve performance if the area
does not need to be updated at each call of the repaint callback function.

oapiSetPanelNeighbours
Defines the neighbour panels of the current panels. These are the panels the user can
switch to via Ctrl-Arrow keys.

Synopsis:
voi d oapi Set Panel Nei ghbours (
int left,
int right,
int top,
int bottom
Parameters:
left panel id of left neighbour (or —1 if none)
right panel id of right neighbour (or -1 if none)
top panel id of top neighbour (or —1 if none)
bottom panel id of bottom neighbour (or —1 if none)
Notes:

e This function should be called during panel registration (in ovcLoadPanel) to
define the neighbours of the registered panel.

« Every panel (except panel 0) must be listed as a neighbour by at least one
other panel, otherwise it is inaccessible.

oapiTriggerPanelRedrawArea
Triggers a redraw notification for a panel area.

Synopsis:

voi d oapi Tri gger Panel RedrawArea (int panel _id, int area_id)
Parameters:

panel_id panel identifier (=0)

area_id area identifier (=0)
Notes:

e The redraw notification is ignored if the requested panel is not currently

displayed.

oapiBltPanelAreaBackground
Copies the stored background of a panel area into the provided surface. This function
should only be called from within the repaint callback function of an area registered with
the PANEL_MAP_BGONREQUEST flag.

Synopsis:
bool oapi Bl t Panel AreaBackground (
int aid,
SURFHANDLE surf)
Parameters:
aid area identifier
surf surface handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 164

Notes:
* Areas defined with the PANEL_MAP_BGONREQUEST receive a surface
with undefined contents when their repaint callback is called. They can use
oapiBltPanelAreaBackground to copy the area background into the surface.

* For areas not registered with the PANEL_MAP_BGONREQUEST, this
function will do nothing.

e Using PANEL_MAP_BGONREQUEST is more efficient than
PANEL_MAP_BACKGROUND if the area doesn’t need to be repainted at
each call of the callback function, because it delays blitting the background
until the module requests the background. This is particularly significant for
areas which are updated at each time step.

oapiSwitchPanel
Switch to a neighbour instrument panel in 2-D panel cockpit mode.

Synopsis:
i nt oapi SwitchPanel (int direction)

Parameters:
direction neighbour direction (see notes)

Return value:
Identifier of the newly selected panel (= 0) or -1 if the requested panel does not

exist.
Notes:
» direction can be one of the following:
PANEL_LEFT (switch to panel left of current)
PANEL_RI GHT (switch to panel right of current)
PANEL _UP (switch to panel up from current)
PANEL_DOVWN (switch to panel down from current)

e The neighbourhood status between panels is established by the
oapiSetPanelNeighbours function.

* This function has no effect if the current view is not in 2-D panel cockpit
mode.

oapiSetPanel
Switch to a different instrument panel in 2-D panel cockpit mode.

i nt oapi Set Panel (int panel _id)

Parameters:
panel_id panel identifier (= 0)

Return value:
panel_id if the panel was set successfully, or -1 if failed (camera not in 2-D panel
cockpit mode, or requested panel does not exist for the current vessel)

Notes:

e This function has no effect if the current view is not in 2-D panel cockpit
mode.

oapiVCRegisterHUD
Define a render target for the head-up display (HUD) in a virtual cockpit.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 165

Synopsis:
voi d oapi VCRegi st er HUD (const VCHUDSPEC *spec)

Parameters:
spec hud specification (see notes)

Notes:
* This function should be placed in the body of the ovcLoadVC vessel module
callback function.
 VCHUDSPEC is a structure defined as

struct VCHUDSPEC {
DWORD nnesh; /I mesh index
DWORD ngr oup; /I group index
VECTOR3 hudcnt ; /I HUD centre in vessel frame
doubl e si ze; /I physical size of the HUD [m]
}

e The mesh group specified by nmesh and ngroup should be a square panel in
front of the camera position in the virtual cockpit. This group is rendered
separately from the rest of the mesh and should therefore have FLAG 2 set
in the mesh file. The group material and texture can be set to O.

* The HUD centre position and size are required to allow Orbiter to correctly
scale the display.

e Orbiter renders the HUD with completely transparent background. Rendering
the glass pane, brackets, etc. is up to the vessel designer.

oapiVCRegisterMFD
Define a render target for rendering an MFD display in a virtual cockpit.

Synopsis:

voi d oapi VCRegi ster MD (int nfd, const VCMFDSPEC *spec)
Parameters:

mfd MFD identifier

spec render target specification (see notes)
Notes:

* The render target specification is defined as a structure:
struct VCMFDSPEC { DWORD nnesh, ngroup };
where nmesh is the mesh index (= 0), and ngroup is the group index (= 0)
defining the render target.

e This function should be placed in the body of the ovcLoadVC vessel module
callback function.

e The addressed mesh group should define a simple square (4 vertices, 2
triangles). The group materials and textures can be set to 0.

oapiVCRegisterArea (1)
Define an active area in a virtual cockpit. Active areas can be repainted. This function is
similar to oapiRegisterPanelArea.

Synopsis:
voi d oapi VCRegi sterArea (
int aid,
const RECT &tgtrect,
int draw event,
i nt nouse_event,
i nt bknode,
SURFHANDLE t gt)
Parameters:
aid area identifier

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 166

tgtrect bounding box of the active area in the target texture (pixels)
draw_event redraw condition (see oapiRegisterPanelArea)
mouse_event mouse event (see oapiRegisterPanelArea)

bkmode background mode (see oapiRegisterPanelArea)

tgt target texture to be updated

Notes:

* The target texture can be retrieved from a mesh by using the
oapiGetTextureHandle method. Dynamic textures must be marked with flag
‘D’ in the mesh file.

* Redraw events can be used not only to update mesh textures dynamically,
but also to animate mesh groups, or edit mesh vertices or texture
coordinates.

* If no dynamic texture repaints are required during redraw events, use the
alternative version of oapiVCRegisterArea instead.

* To define a mouse-sensitive volume in the virtual cockpit, use one of the
oapiVCSetAreaClickmode XXX functions.

oapiVCRegisterArea (2)
Define an active area in a virtual cockpit. This version is used when no dynamic texture
update is required during redraw events.

Synopsis:
voi d oapi VCRegi sterArea (
int aid,
int draw event,
i nt nouse_event)
Parameters:
aid area identifier

draw_event redraw condition (see oapiRegisterPanelArea)
mouse_event mouse event (see oapiRegisterPanelArea)

Notes:

e This function is equivalent to
oapi VCRegi sterArea (aid, R(0,0,0,0), draw event,
nouse_event, PANEL_MAP_NONE, NULL)

oapiVCTriggerRedrawArea
Triggers a redraw notification for a virtual cockpit area.

Synopsis:

voi d oapi VCTri gger RedrawArea (int vc_id, int area_id)
Parameters:

vc_id virtual cockpit identifier

area_id area identifier (as specified during area registration)
Notes:

e This function triggers a call to the ovcVCRedrawEvent callback function in
the vessel module.

e Therequest is ignored if the specified virtual cockpit is not currently active.
oapiVCSetAreaClickmode_Spherical

Associate a spherical region in the virtual cockpit with a registered area to receive
mouse events.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 167

Synopsis:
voi d oapi VCSet AreaC i cknode_Spheri cal (

int id,
const VECTOR3 &cnt,
doubl e rad)
Parameters:
id area identifier (as specified during area registration)
cnt centre of active area in the local vessel frame
rad radius of active area [m]
Notes:

e The area identifier must refer to an area which has previously been
registered with a call to oapiVCRegisterArea, with the required mouse event
modes.

* This function can be called repeatedly, to change the mouse-sensitive area.

oapiVCSetAreaClickmode_Quadrilateral

Associate a quadrilateral region in the virtual cockpit with a registered area to receive
mouse events.

Synopsis:
voi d oapi VCSet Aread i cknode_Quadril ateral (
int id,
const VECTOR3 &pl,
const VECTOR3 &p2,
const VECTOR3 &p3,
const VECTOR3 &p4)
Parameters:
id area identifier (as specified during area registration)
pl top left corner of region
p2 top right corner
p3 bottom left corner
p4 bottom right corner
Notes:

« This function will trigger mouse events when the user clicks within the
projection of the quadrilateral region on the render window. The mouse
event handler will receive the relative position within the area at which the
mouse event occurred, where the top left corner has coordinates (0,0), and
the bottom right corner has coordinates (1,1). See also
VESSEL2::clbkVCMouseEvent.

* The area can define any flat quadrilateral in space. It is not limited to
rectangles, but all 4 points should be in the same plane.

oapiTriggerRedrawArea
Triggers a redraw notification to either a 2D panel or a virtual cockpit.

Synopsis:
voi d oapi Tri gger Redr awAr ea (

i nt panel _id,
int vc_id,
int area_id)

Parameters:
panel_id identifier for the panel to receive the redraw message
vc_id identifier for the virtual cockpit to receive the redraw message
area_id area identifier

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 168

Notes:
* This function can be used to combine the functionality of the
oapiTriggerPanelRedrawArea and oapiVCTriggerRedrawArea methods.

Depending on the current cockpit mode, Orbiter sends the redraw request to

either ovcPanelRedrawEvent or ovcVCRedrawEvent.

* This method can only be used if the panel and virtual cockpit areas share a

common area identifier.

oapiGetDC
Obtain a Windows device context handle (HDC) for a surface.
Synopsis:
HDC oapi Get DC (SURFHANDLE surf)
Parameters:
surf surface handle

Return value:
device context handle for the surface

Notes:
* The device context can be used to perform standard Windows drawing
operations (such as LineTo, Rectangle, TextOut, etc.) on the surface.

« When the context is no longer needed it must be released with a call to
oapiReleaseDC.

oapiReleaseDC
Release a previously acquired device context for a surface.

Synopsis:

voi d oapi Rel easeDC (SURFHANDLE surf, HDC hDC)
Parameters:

surf surface handle

hDC device context to be released
Notes:

* Use this function to release a device context previously acquired with
oapiGetDC.

e Standard Windows device context rules apply. For example, any custom
device objects loaded via SelectObject must be unloaded before calling
oapiReleaseDC.

oapiGetColour

Returns a colour value adapted to the current screen colour depth for given red, green

and blue components.

Synopsis:

DWORD oapiGetColour (DWORD red, DWORD green, DWORD blue)
Parameters:

red red component (0-255)

green green component (0-255)

blue blue component (0-255)

Return value
colour value

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

Notes:

e Colour values are required for some surface functions like oapiClearSurface
or oapiSetSurfaceColourKey. The colour key for a given RGB triplet depends
on the screen colour depth. This function returns the colour value for the
closest colour match which can be displayed in the current screen mode.

* In 24 and 32 bit modes the requested colour can always be matched. The
colour value in that case is (red << 16) + (green << 8) + blue.

* For 16 bit displays the colour value is calculated as
((red*31)/255) << 11 + ((green*63)/255 << 5 + (blue*31)/255
assuming a “565” colour mode (5 bits for red, 6, for green, 5 for blue). This
means that a requested colour may not be perfectly matched.

e These colour values should not be used for Windows (GDI) drawing
functions where a COLORREF value is expected.

oapiCreateSurface (1)
Create a surface of the specified dimensions.

Synopsis:

SURFHANDLE oapi CreateSurface (int width, int height)
Parameters:

width width of surface bitmap (pixels)

height height of surface bitmap (pixels)

Return value
Handle to the new surface.

Notes:
* The bitmap contents are undefined after creation, so the surface must be
repainted fully before mapping it to the screen.
« If you want to use the surface as a texture, use oapiCreateTextureSurface
instead.
e Surfaces should be destroyed by calling oapiDestroySurface when they are
no longer needed.
See also:

oapiDestroySurface()

oapiCreateSurface (2)
Create a surface from a bitmap. Bitmap surfaces are typically used for blitting
operations during instrument panel redraws.

Synopsis:
SURFHANDLE oapi Creat eSurface (
HBI TMAP hBnp,
bool rel ease bnp = true)
Parameters:
hBmp bitmap handle

release_bmp flag for bitmap release

Return value:
Handle to the new surface.

Notes:

* The easiest way to access bitmaps is by storing them as resources in the
module, and loading them via a call to LoadBitmap.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 170

« Do not use this function with a bitmap generated by CreateBitmap. To create
a surface of specified dimensions, use oapiCreateSurface (width, height)
instead.

* If release_bmp == true, then oapiCreateSurface will destroy the bitmap after
creating a surface from it (i.e. the hBmp handle will be invalid after the
function returns), otherwise the module is responsible for destroying the
bitmap by a call to DestroyObject when it is no longer needed.

« Surfaces should be destroyed by calling oapiDestroySurface when they are
no longer needed.

oapiCreateTextureSurface
Create a surface that can be used as a texture for a 3-D object.

Synopsis:
SURFHANDLE oapi Creat eText ureSurface (
int wdth,
i nt hei ght)
Parameters:
width width of surface bitmap (pixels)
height height of surface bitmap (pixels)

Return value:
handle of new texture surface

Notes:

* Use this function instead of oapiCreateSurface if you want the surface to be
used as a surface texture for a 3-D object, for example via a call to
oapiSetTexture.

* For maximum compatibility, the surface should be square, and dimensions
powers of 2, for example 64x64, 128x128, 256x256, etc. Note that older
video cards may not support textures larger than 256x256.

e Surfaces should be destroyed by calling oapiDestroySurface when they are
no longer needed.

oapiDestroySurface
Destroy a surface previously created with oapiCreateSurface.

Synopsis:

voi d oapi DestroySurface (SURFHANDLE surf)
Parameters:

surf surface handle

oapiSetSurfaceColourKey
Define a colour key for a surface to allow transparent blitting.

Synopsis:

voi d oapi Set Sur f aceCol our Key (SURFHANDLE surf, DWORD ck)
Parameters:

surf surface handle

ck colour key (OXRRGGBB)
Notes:

« Defining a colour key and subsequently calling oapiBIt with the
SURF_PREDEF_CK flag is slightly more efficient than passing the colour
key explicitly to oapiBIt each time, if the same colour key is used repeatedly.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 171

See also:
oapiClearSurfaceColourKey(), oapiBlt()

oapiClearSurfaceColourKey
Clear a previously defined colour key.

Synopsis:
voi d oapi O ear Sur f aceCol our Key (SURFHANDLE surf)

Parameters:
surf surface handle

See also:
oapiSetSurfaceColourKey(), oapiBIt()

oapiBlt
Copy a surface into another surface.

Synopsis:
void oapi Bl t (
SURFHANDLE t gt, SURFHANDLE src,
int tgtx, int tgty,
int srcx, int srcy,
int w, int h,
DWORD ck = SURF_NO_CK)

Parameters:
tgt target surface
src source surface

tgtx, tgty coordinates of upper left corner of copied area in target bitmap.
srcx, srcy coordinates of upper left corner of copied area in source bitmap.

w, h width, height of copied rectangle (pixel)

ck colour key (see notes)
Notes:

e Typically, this function is used to update panel instruments during processing
of ovcPanelRedrawEvent.

e This function must not be used while a device context is acquired for the
target surface (i.e. between oapiGetDC and oapiReleaseDC calls).

< If a blitting operation is hecessary between oapiGetDC and oapiReleaseDC,
you may use the standard Windows BitBIt function. However this does not
use hardware acceleration and should therefore be avoided.

« Transparent blitting can be performed by specifying a colour key in ck. The
transparent colour can either be passed explicitly in ck, or ck can be set to
SURF_PREDEF_CK to use the key previously defined with
oapiSetSurfaceColourKey().

See also:

oapiSetSurfaceColourKey()

oapiColourFill
Fill an area of the target surface with a uniform colour.

Synopsis:
voi d oapi ColourFill (

SURFHANDLE t gt ,

DWORD fillcol or,

int tgtx =0, int tgty = 0,
int w=0, int h =0)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 172

Parameters:

tgt target surface
tgtx, tgty coordinates of upper left corner of area to fill.
w, h width, height, of area to fill.

Notes:

« The fill colour should be acquired with oapiGetColour(), to ensure
compatibility with 16-bit colour modes.

e This function must not be used while a device context is acquired for the
target surface (i.e. between oapiGetDC and oapiReleaseDC calls).

« Ifwand h are zero (the default) the whole surface is filled. The tgtx and tgty
values are ignored in that case and can be omitted.

17.18 Custom MFD modes

oapiRegisterMFDMode
Register a custom MFD mode.

Synopsis:

i nt oapi Regi st er MvDMbde (MFDMODESPEC &spec)
Parameters:

spec MFD specs (see notes below)

Return value:
MFD mode identifier

Notes:

e This function registers a custom MFD mode with Orbiter. There are two
types of custom MFDs: generic and vessel class-specific. Generic MFD
modes are available to all vessel types, while specific modes are only
available for a single vessel class. Generic modes should be registered in
the opcDLLI ni t callback function of a plugin module. Vessel class specific
modes are not implemented yet.

« MFDMODESPEC is a struct defining the parameters of the new mode:

typedef struct {

char *nane; /I points to the name of the new mode
int (*msgproc) (Ul NT, U NT, WPARAM LPARAM ;
/I address of MFD message parser

} MFDMODESPEC;

* See orbitersdk\samples\CustomMFD for a sample MFD mode
implementation.

oapiUnregisterMFDMode
Unregister a previously registered custom MFD mode.

Synopsis:
bool oapi Unregi st er M-DWbde (i nt node)
Parameters:
mode mode identifier, as returned by RegisterMFDMode

Return value:
true on success (mode could be unregistered).

oapiDisableMFDMode
Disable an MFD mode.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 173

Synopsis:
voi d oapi Di sabl eM~DVbde (i nt node)

Parameters:
mode MFD mode to be disabled.

Notes:

* Thelist of disabled MFDs is cleared whenever the focus switches to a new
vessel. To disable MFD modes permanently for a particular vessel type,
oapiDisableMFDMode should be called from within the ovcFocusChanged
callback function.

e For builtin MFD modes, mode can be any of the MFD_xxx constants. For
MFD modes defined in plugin modules, the mode id must be obtained by a
call to oapiGetMFDModeSpec.

oapiGetMFDModeSpec
Returns the mode identifier and spec for an MFD mode defined by its name.

Synopsis:
i nt oapi Get M-D\bdeSpec (

char *nane,
MFDMODESPEC **spec = NULL)

Parameters:
name MFD name (as defined in MFDMODESPEC::name during
oapiRegisterMFDMode)
spec If defined, this will return a pointer to the MFDMODESPEC structure

for the mode.

Return value:
MFD mode identifier.

Notes:
e This function returns the same value as oapiRegisterMFDMode for the given
mode.
* The mode identifiers for custom MFD modes can not be assumed to persist
across simulation runs, since they will change if the user loads or unloads

MFD plugins.

* This function can also be used for built-in MFD modes, which are defined as
follows:
Name Mode identifier
Orbit MFD_ORBIT
Surface MFD_SURFACE
Map MFD_MAP
HSI MFD_HSI
VOR/NVTOL MFD_LANDING
Docking MFD_DOCKING
Align Planes MFD_OPLANEALIGN
Sync Orbit MFD_OSYNC
Transfer MFD_TRANSFER

COM/NAV MFD_COMMS

17.19 File management

oapiWriteLine
Writes a line to a file.

Synopsis:
voi d oapi WitelLine (FILEHANDLE file, char *line)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 174

Parameters:
file file handle
line line to be written (zero-terminated)

oapiWriteScenario_string
Writes a string-valued item to a scenario file.

Synopsis:

voi d oapi WiteScenario_string (
FI LEHANDLE scn,

char *item

char *string)

Parameters:
scn file handle

item itemid
string string to be written (zero-terminated)

oapiWriteScenario_int
Writes an integer-valued item to a scenario file.

Synopsis:

voi d oapi WiteScenario_int (
FI LEHANDLE scn,
char *item
int i)

Parameters:
scn file handle

item itemid
i integer value to be written

oapiWriteScenario_float
Writes a floating point-valued item to a scenario file.

Synopsis:
voi d oapi WiteScenario_float (

FI LEHANDLE scn,
char *item
doubl e d)

Parameters:
scn file handle

item itemid
d floating point value to be written

oapiWriteScenario_vec
Writes a vector-valued item to a scenario file.

Synopsis:

voi d oapi WiteScenario_vec (
FI LEHANDLE scn,

char *item
const VECTOR3 &vec)

Parameters:
scn file handle

item item id
vec vector to be written

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

175

oapiReadScenario_nextline
Reads an item from a scenario file.

Synopsis:
bool oapi ReadScenari o_nextline (

FI LEHANDLE scn,
char *&ine)

Parameters:
scn file handle
line pointer to the scanned line

Notes:
e The function returns true as long as an item for the current block could be
read. It returns false at EOF, or when an “END” token is read.
* Leading and trailing whitespace, and trailing comments (from “;” to EOL) are
automatically removed.
* “line” points to an internal static character buffer.

17.20 User input

oapiOpenDialog
Open a dialog box defined as a Windows resource.

Synopsis:
HWND oapi OpenDi al og (
HI NSTANCE hDLLI nst
i nt resourceld,
DLGPROC msgPr oc,
voi d *context = 0)

Parameters:
hDLLInst module instance handle (as obtained from opcDLLInit)
resourceld dialog resource identifier
msgProc pointer to Windows message handler
context optional user-defined pointer

Return value:
handle of the new dialog box, or NULL if the dialog was open already.

Notes:

* Use oapiOpenDialog instead of standard Windows methods such as
CreateWindow or DialogBox, to make sure the dialog works in fullscreen
mode.

* Only one instance of a dialog box can be open at a time. A second call to
oapiOpenDialog with the same dialog id will fail and return NULL.

e The interface of the message handler is as follows:

BOOL CALLBACK MsgProc (

HWAD hDl g, U NT uMsg,

WPARAM wPar am LPARAM | Par am
See standard Windows documentation for usage of the dialog message
handler.

* The context pointer can be set to user-defined data which can be retrieved
via the oapiGetDialogContext function. This allows to pass data into the
message handler.

* Note that oapiGetDialogContext can not be used when processing the
WM_INITDIALOG message. In this case, the context pointer can be acessed
via IParam instead.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 176

oapiFindDialog
Returns the window handle of an open dialog box, or NULL if the specified dialog box is

not open.

Synopsis:
HWAD oapi Fi ndDi al og (H NSTANCE hDLLI nst, int resourceld)

Parameters:
hDLLInst module instance handle (as obtained from opcDLLInit)

resourceld dialog resource identifier

Return value:
Window handle of dialog box, or NULL if the dialog was not found.

oapiCloseDialog
Close a dialog box.

Synopsis:

voi d oapi Cl oseDi al og (HWND hDl g)
Parameters:

hDIg dialog window handle (as obtained by oapiOpenDialog)
Notes:

e This function should be called in response to an IDCANCEL message in the
dialog message handler to close a dialog which was opened by
oapiOpenDialog.

oapiGetDialogContext
Retrieves the context pointer of a dialog box which has been defined during the call to

oapiOpenDialog.
Synopsis:
voi d *oapi Get Di al ogCont ext (HAWD hDl g)
Parameters:
hDlg dialog window handle
Notes:
e This function returns NULL if no context pointer was specified in
oapiOpenDialog.

oapiDefDialogProc
Default Orbiter dialog message handler. This function should be called from the

message handler of all dialogs created with oapiOpenDialog to perform default actions
for any messages not processed in the handler.

Synopsis:
BOOL oapi Def Di al ogProc (

HW\D hDl g,
U NT uMsg,
WPARAM wPar am
LPARAM | Par am

Parameters:
The parameters passed to the message handler.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 177

Return value:
The value returned by oapiDefDialogProc should be returned by the message
handler.

Notes:
e Typical usage:

BOOL CALLBACK MsgProc (HWND hDl g, U NT uMsg,
WPARAM wPar am LPARAM | Par an)

switch (uMsg) {
case VW _COMVAND:
switch (LOAORD (wParam) {
case | DCANCEL: // dialog cl osed by user
O oseDl g (hDig);
return TRUE;
}
br eak;
/! add nore nessages to be processed here
}
return oapi Def Di al ogProc (hDl g, uMsg, wParam | Paran;

}

e oapiDefDialogProc currently only processes the WM _SETCURSOR message,
and always returns FALSE.

oapiRegisterCustomCmd
Register a custom function. Custom functions can be accessed in Orbiter by pressing
Ctrl-F4. A common use for custom functions is opening plugin dialog boxes.

Synopsis:
DWORD oapi Regi st er Cust onCnd (

char *1| abel,
char *desc,

Cust onfunc func,
voi d *cont ext)

Parameters:
label label to appear in the custom function list.
desc a short description of the function
func pointer to the function to be executed

context pointer to custom data which will be passed to func

Return value:
function identifier

Notes:

* The interface of the custom function is defined as follows:
typedef void (*Custonfunc)(void *context)

where context is the pointer passed to oapi Regi st er Cust onCnd.

oapiUnregisterCustomCmd
Unregister a previously defined custom function.

Synopsis:
bool oapi Unregi sterCustonCnd (i nt cndld)
Parameters:
cmdlid custom function identifier (as returned by oapiRegisterCustomCmd)

Return value:
false indicates failure (cmdld not recognised)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 178

oapiOpeninputBox
Opens a modal input box requesting a string from the user.

Synopsis:
voi d oapi Openl nput Box (
char *title,
bool (*d bk)(voi d*, char*, voi d*),
char *buf = 0,
int vislen = 20,
void *usrdata = 0)

Parameters:
title input box title
Clbk callback function receiving the result of the user input (see notes)
buf initial state of the input string
vislen number of characters visible in input box
usrdata user-defined data passed to the callback function
Notes:

e Format for callback function:
bool InputCallback (void *id, char *str, void *usrdata)
where id identifies the input box, str contains the user-supplied string, and
usrdata contains the data specified in the call to oapiOpeninputBox.
The callback function should return true if it accepts the string, false
otherwise (the box will not be closed if the callback function returns false).

e The box can be closed by the user by pressing Enter (“OK") or Esc
(“Cancel”). The callback function is only called in the first case.

e The input box is modal, i.e. all keyboard input is redirected into the dialog
box. Normal key functions resume after the box is closed.

17.21 Debugging

oapiDebugString
Returns a pointer to a string which will be displayed in the lower left corner of the
viewport.

Synopsis:
char *oapi DebugString ()

Return value:
Pointer to debugging string.

Notes:

e This function should only be used for debugging purposes. Do not use it in
published modules!

* The returned pointer refers to a global char[256] in the Orbiter core. It is the
responsibility of the module to ensure that no overflow occurs.

< If the string is written to more than once per time step (either within a single
module or by multiple modules) the last state before rendering will be
displayed.

« Atypical use would be:

| sprintf (oapi DebugString(), "my value is %", myval ue);

18 Custom dialog controls

Orbiter defines custom dialog control classes which may come useful when defining dialog
box interfaces. To make use of the controls, you must include the Orbitersdk\include\DIgCtrl.h
header in your plugin code, and link with Orbitersdk\lib\DIgCtrl.lib.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 179

In order to use Orbiter custom dialog controls, your code must call the
oapiRegisterCustomControls function, usually inside the opcDLLInit callback function. During
cleanup (e.g. in opcDLLEXit) you must call oapiUnregisterCustomControls.

oapiRegisterCustomControls
This allows to use Orbiter’s custom controls in dialog boxes. See section 18.

Synopsis:
#include “DigCrl.h”

voi d oapi Regi st er Cust onControl s (H NSTANCE hl nst)

Parameters:
hinst module instance handle

Notes:
The module should call oapiUnregisterCustomControls before exiting.

oapiUnregisterCustomControls
Unregister Orbiter custom dialog controls.

Synopsis:

voi d oapi Unr egi st er Cust omControl s (H NSTANCE hl nst)
Parameters:

hinst module instance handle

18.1 Gauge control

This is similar to a standard scrollbar control. It consists of a horizontal or vertical bar with a
level indicator and arrow buttons on either end. The user can manipulate the control by either
pressing the arrow buttons, or by clicking and dragging the level indicator.

Unlike standard Windows scroll bars, the gauge control does not block the simulation while a
mouse button is pressed over the control. You should always use the gauge control in
preference to scroll bars to avoid jumps in the simulation.

The Rcontrol code in the SDK sample directory demonstrates the use of gauge controls.
Defining a gauge control in the dialog template

Place a custom control in the dialog window and sets its class to OrbiterCtrl_Gauge. The
control can be horizontal or vertical.

Addressing gauge controls from the module code

oapiSetGaugeParams
Initialises a gauge control once the dialog box has been opened (e.g. with

oapiOpenDialog).
Synopsis:
voi d oapi Set GaugePar ans (
HAND hCtrl,

GAUGEPARAM * gp,
bool redraw = true)

Parameters:
hCitrl window handle of the control
ap parameter list (see notes)
redraw if true, the gauge is redrawn to reflect the parameter changes

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 180

Notes:
« The GAUGEPARAM struct has the following entries:
i nt rangenin, rangenax
min. and max. gauge values
enum GAUGEBASE { LEFT, RICHT, TOP, BOITOM } base

gauge orientation: LEFT: left to right, RIGHT: right to left, etc.

enum GAUGECOLCR { BLACK, RED } col or
gauge indicator colour

oapiSetGaugeRange
Set minimum and maximum gauge values.

Synopsis:
voi d oapi Set GaugeRange (
HWD hCrl,
int rmn, int rmax,
bool redraw)
Parameters:
hCtrl window handle of the control
rmin minimum gauge value
rmax maximum gauge value
redraw if true, the gauge is redrawn to reflect the range change

oapiSetGaugePos
Set the current gauge value.

Synopsis:
i nt oapi Set GaugePos (
HWD hCtrl,
i nt pos,
bool redraw = true)
Parameters:
hCtrl window handle of control
pos new gauge value
redraw if true, the gauge is redrawn to reflect the value change

Return value:
The new gauge value, clamped to the gauge range.

oapilncGaugePos
Increment/decrement the current gauge value.

Synopsis:
i nt oapi |l ncGaugePos (
HWD hCrl,
i nt dpos,
bool redraw = true)
Parameters:
hCtrl window handle of control
dpos value change
redraw if true, the gauge is redrawn to reflect the value change

Return value:
The new gauge value, clamped to the gauge range.

oapiGetGaugePos
Returns the current gauge value.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger

181

Synopsis:
i nt oapi Get GaugePos (HWND hCtrl)

Parameters:
hCtrl window handle of control

Return value:
Current gauge value.

Control messages
Gauge controls send the following messages to the message queue of the owning dialog box:

WM_HSCROLL
Scrolling notification. This is sent while the user left-clicks and drags the gauge
indicator, or continuously (at a rate of 100Hz) while the left mouse button is held down
on one of the arrow buttons. Both horizontal and vertical gauges send the
WM_HSCROLL message to simplify message handling.

Message parameters:
LOWORD(wParam) event type
HIWORD(wParam) gauge value
(HWND)IParam window handle of control

Notes:
The event type can be one of the following:

SB_LINELEFT: The user has pressed an arrow button to decrement
the gauge value.

SB_LINERIGHT: The user has pressed an arrow button to increment the
gauge value.

SB_THUMBTRACK:
The user is dragging the gauge indicator with the
mouse.

19 Standard ORBITER modules

Vsop87.dll is a full implementation of the VSOP87 planetary solutions for Mercury to Nep-
tune.’ Orbiter uses the VSOP87 “B” series which computes the heliocentric positions for the
ecliptic and equinox of J2000. Positions and velocities are calculated by a perturbation
method which uses a series of trigonometric perturbation terms. The number of included
terms defines the precision of the result. Therefore the computation time will depend on the
selected precision. Vsop87.dll supports precision settings between 1e-3 and le-8.

Vsop87.dll supports the following planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Ura-
nus and Neptune.

According to the VSOP documentation, at full precision (1e-8), the relative error is within 1”
for

* Mercury, Venus, Earth and Mars over 4000 years before and after 32000

» Jupiter and Saturn over 2000 years before and after J2000.

» Uranus and Neptune over 6000 years before and after J2000.

If you want to replace Vsop87 with your own code:
» Check section 16 for the callback interface.

» The code for different planets doesn’t need to be implemented in a single DLL. You can
replace the calculations for a single planet by writing a module for it, and referencing this

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 182

module from the planet’s cfg file, while keeping the standard Vsop87 module for the other

planets.

19.2 Moon

Moon.dll is Orbiter's driver module for controlling Earth’s moon. It contains a partial
implementation of the Lunar Solution ELP 2000-82B algorithm by M. Chapront-Touze and J.
Chaprontz. This is a semi-analytical calculation of lunar ephemerides consisting of
trigonometric and Poisson series, with constants fitted to JPL's ephemerides DE200/LE200.
The original version calculates cartesian geocentric lunar coordinates in the mean dynamical
ecliptic and inertial equinox of J2000. The code has been adapted to Orbiter by additionally
calculating and returning the time derivatives of the coordinates. Moon.dll requires data file
ELP82.dat containing a table of perturbation terms to be present in the Config\Moon\Data

directory.

The number of terms used by Orbiter can be controlled by setting the ErrorLimit parameter in
Moon.cfg. Valid range is le-2 to 1e-8 (default 1e-5). The current error limit and number of
terms can be found in Orbiter.log under entry ELP82.

The current version does not include tidal, relativistic or solar eccentricity perturbation terms,
to avoid inconsistencies with Orbiter's dynamic model.

20 Index

<

<Planet> AtMPrM.......ccccoovvvevieneere e 123

<Planet>_Ephemeris........c.ccocevrveriennnenn 122

<Planet>_FastEphemeris.........ccovevenencns 123

<Planet>_SetPreCiSion..........ccccoeveeeveneeeens 121

A

Airfoil COEffFUNC......veeeevece e 78

AlaNtiS ..o 5

C

CELBODY ...ttt 119
DEPhemeris.......cccooviiiiiiineeeieeee 119
clbkAtmParam..........cccocvveveneniniienenn, 121
CIDKEPhemeris. ..., 119
clbkFastEphemeris........ccocovvrerceeieenennnn. 120
CIBKINIT. ..o, 119

D

Deltaglidercooovvireeniere s 5

E

ELEMENTS ..ot 6

ENGINESTATUS. ..ot 6

ENGINETYPE ... 7

EXHAUSTTYPE ... 7

ExitModule..........cocovinciiiinns 12, 115, 118

G

Gauge
CUStOM CONLIOl ..., 180
WM_HSCROLL.....ccectrireinireerienins 182

GraphMFD
AddGraph.......cccoevireiinirceee 112
AdAPIOL......c.ooieiiice e 112
CONSLIUCLONveeeeeeeeee e 112

FindRaNge........cccooevininineneneeeeee 113
PlOt .. e 114
SetAUtORANGE ..o 113
SEAULOTICKS ..o 114
SEtAXISTItIE v 113
SEtRANGE......e e 112
H
HUD
MOde CONSLANES.......ccvvvieeeiree et 10
|
INItINSLANCE. ...t 118
InitModulecoeevvveeieecieecreeee, 12, 114, 117
M
MATRIXS....oiece et 6
MESHGROUP_TRANSFORM.................... 87
MFD
ButtonLabelocveveeerieieccee e 109
BULTONMENUceeeeeeeeiiieeeeee e 109
CONSETUCEON ...t 107
ConsSUMEBULLON.........c.veeeeeveeeeeeeee e, 110
ConsumeKeyBuffered..........ccocceeveieeneennn. 109
ConsumeKeylmmediate...........ccceeeenenen. 110
identifier constants.........cccceeeveeeviveecreenee. 11
InvalidateDisplayc.cooervererinienienens 107
MOdE CONSLANES.......ccvevereecree et 11
REBASIAIUScocveeeveeetee e 111
ReCallStAtUScveeiveecee e 111
SelectDefaultFontcccoevveeeeeeieecceeene 108
SelectDefaultPen.........ccocevveeeeeeveeceeeens 108
SEOrESEALUS ...t 111
B LT 108
UpPdate.......ccovveeririercnieeesee e 107
WITESLALUS. ...t 110
MOON.....ccieee e 183

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 183

N 08PIGELEQUPOS........corveereeieeie e 137

Navmode oap? GetFocusA? FSPEEd.....ooviieiiirieirieeins 138
constants 10 oapi GetFocusAi r_speedVector 138
"""""""""""""""""""""""""" oapiGetFocusAltitude...........cccceeeeeiienen.... 135
@] 0api GetFocusAtmPressureDensity 139
A .. 57 CaFomRBak e 1o
0ADIBIL ... : ;
CEPIBIPaEATGEBZOUNC. ... 18 CaraneEapus o e
03I CAMENBAPENTUIE....ovs oo 155 0api GetFocusGlobal Pos...........ccoeeverieeene, 132
08I CAMENBALBCN ..o 156 08I GEFOCUSGIODANVEl ..o 133
oap! CameraAzi muth_ """""""""""""""""" 154 oapiGetFocusHeading..........cccoeveererieenne, 136
oap! CameraGloDaDIY ..o 154 oapiGetFocusinterface.........cccoovervirieene, 128
oap! CameraGlobaAPOS.....oooesvesvere 154 08Pi GEtFOCUSODJ ECL.......coviveerecieeec e 127
oap! CAMELAMETNE eevoressnrsssnrsssnessnriss 153 038PI GEtFOCUSPICN ... 135
oapi CameraMode.........ccoeveveenencineneiens 153 080 GEtFOCUSREIEVEPOS ... 134
oapi CameraPolar T 155 080i GEtFOCUSREIEHVEVE! ... 134
oapi CameraRotAZiMUthccccceereeienen, 156 0api GetFocusShipAirspeedVector 139
oapiCameraRotPolarcccceoerveeiennnnne 156 0api GetFrameRate 153
03I CaMEIASCACDISL v 155 0BDIGELFUEIMSS ... 131
0B0I CAMENASELADENMUE .ooeooooeoeenroe 155 08Pi GEtGAUGEPOS.........cvevereeeerierieeee s 181
oap! CameraSet COCkpIDIN e.vreverereoeo 156 0api GetGbodyByINdexcocovvererieenne, 126
oapi CameraTarget RTINS 154 0801 GEtGhOdYBYNAME. ..o 126
oap! CaMENaT AGEDISL...or oo 154 0api GetGbodyCountcocevvererererieenes 126
oapiClearSurfaceColourKey...........ccceueueene. 172 0api GetGlobal Pos 132
(o7 o TOiTo'S< DIF- ToTe F N 177 0api GetGlobalVel R
0apiCockpitMode...........ccoveveirireiice 153 0api GetHeading 136
0aPiCOlOUIFill ..o 172 0apiGetHUDM od.é. """""""""""""""""""" 160
0api CreateSurface (1)c.covvereeeeeereeeeeeenne 170 oapi Getl nducedDra.g.:;. """""""""""""""""" 140
0api CreateSurface (2)covvveererrereresrenenns 170 e 130
03I CrEAET EXIUMESUTACE ..o 1 0aDI GEtMAXFUEIMSS..........oo 131
OB CrERAEV O oo 123 0BDIGEMFDMOGE. ..o 161
oapi CreateVe;m EX i 129 08D GEtM FDMOUESDEC ... oo 174
08PiDEBUGSEIING......coveeeeerierieiene e 179 0801 GEtNAVCNENNE oo 150
oapiDecHUDINteNSItYccccvevveeeeeeiereeiene 160 0api GetNavFreq 150
OBPIDEADIAOGRIOC v L7 0ADIGENGVPOS......c.oooooroe 150
oapi DeleteMesh........ccooovvvivenninencee 158 0801 GENAVRANGE ..o 150
oapi Del eteVees?I .. 129 080 GEtOD] ECtBYINGEX .o 124
OFPADESIIOYSUMECE ..vovvvvvrsnnsssssssnsssess 171 08pi GEtODjECtBYNEME. ... 124
08pIDISEDleMPDMOdR .o 173 080 GELOD] ECHCOUNt . ..er oo 125
oapi Fi ndl?lalog ... 177 080 GEtODECtNAME. ... 127
oap! GetA! RO e 137 oapi GetOrbiterInstance...........ccocveeeeveeiienenne 124
oap! GetAl rsp CEAVEGIO wevvrorerrrernre 133 08PIGELPITCN......oeeeeice e 135
oapi GetAltitude................ s 134 0api GetPlanetAtmCONSaNtS......ooo....... 146
oap! GetAtr_nPressureDens B o 139 oapiGetPlanetAtmParams...........cccceeeveene. 146
oapi GetAttitudeMode........coccoevereinennnens 142 0api GetPlanetCurrentRotation.............. 145
oapi GetBankcovireiiinene e 136 0801 GEtPIANELICOER oo 147
oapi GetBaryCentre........ccoovveveeeeieeneneennes 134 080 GetPlanetJCoeff Count......ovo..... 147
oap!GetBaseByl NAEX ... 127 0801 GEtPIANEL OB QUItY ..o 144
o gagﬁy'\'m‘e --------------------------------- 126 0api GetPlanetObli qUityMatfiX.................. 145
apiGet OUNL. v 127 oapiGetPlanetPeriodccocooeveeeiicicninns 144
0801 GEABASREGUPOS . ovvn oo 148 08Di GEtPIANELTNEAL ..o 145
oapi GetBasePadCount...........ccceeeeeveeieneenne. 148 0api GetPropellantHandle..........ooooo....... 130
oap! GEABASEPAIEQUPOS ocevereverrreee 148 oapiGetPropellantMass.........cccveeeeieciienenne 131
oap!GetBasePadNav 149 0api GetPropel | antMaxMass..........o......... 131
oap! GEABESEPAISALIS v v 149 0apiGetRel ativePos..........coevereciee 133
oapi GELCOIOUN ... 169 080i GEtREIAVEVEl oo 133
oapi GetDC .. 169 08pi Get ShipAirspeedV ector 138
0apiGetDial ogContext..........ccevvereeeerereeeens 177 0api GEtSImMJD 152
0api GEtEMPtyMaSS.......ccccvvveeeeeeeeeereeees 130 0D GESIMSLED 1o 151
08I GEtENGINESLALUScoveveeeriereeiesiereins 7

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 184

08PIGELSIMTIME ... 151

08PIGELSIZEocveeeeerieeere e 130
oapi GetStationByIndexcccceeeeeeneennnnee 126
oapiGetStationByName..........cccceceeeereennnne 125
0api GetStationCouNtcceeeereeeeneeeene 126
08I GELSYSSEEDovveeereeriereereeriee e 152
08I GELSYSTIME ..o 151
oapiGetTextureHandlecccceceeeeeennne 159
oapiGetTimeAcceleration..........ccoceeevereeeens 152
0apiGetVessel ByIndeXc.ccceveveenenieeens 125
oapiGetVesselByName.........ccccooeveeevenieeens 125
0apiGetVessal Countcooeveerereeniereeeens 125
oapiGetVessalInterface........ccovvvvevnenenens 128
0aPIGEtWaVEDIEgc.ccevveeeieriereeiesiereeiens 140
0api INCGaUgEPOS........coereereeeeeeee e 181
0api INCHUDINENSILYocevveveerireeieeee 160
0apiLoadMesh ..o 157
oapiLoadMeshGlobalccccocerveeieinnnnne 157
0aPIMESHGIOUP ..o 158
0apiMeshGroupCountcceereeeeeneenene 158
oapiMFDButtonLabel...........cccovvveiiinenne 162
0aPINaVINRANGE........ovveeririeerereieseias 151
0apIiOPENDIAlOg.....c.cvvereeeerieieereree e 176
0apiOPENI NPUEBOXc.ccevvereeeriereiesiereins 179
08PIOPENMPFD ... 161
oapiParticleSetLevelRef ... 159
oapiPlanetHasAtmosphereccccceeuee. 146
0apiProcessMFDBULLONcceceeeeniennnne 161
oapiReadScenario_nextline..........c.cccce...... 176
oapiRegisterCustomCmd...........cccceeeereennnne 178
oapiRegisterCustomControls..............cc...... 180
oapiRegisterExhaustTexture..........cc.cooueeene 143
0aPIREGISLErMEFD ..o 162
oapiRegisterMFDMode.........cccoovveeviiniens 173
oapiRegisterPanel Area.........ccccoovveenenenens 163
oapiRegisterPanelBackground.................... 162
oapiRegisterReentryTexture...........ccoceveeeene 144
0apiReleaseDC........ccooeverinereeeee e 169
0api SENAM FDKEYoovrvceiirieinieeeieee 161
oapi SetAttitudeMode..........ccoceeerieeieninnne 142
0api SEtEMPLYMaSS.......cooerererereeieeeiee 132
oapiSetEngineLevel..........ccoeeerieeienieienn 141
oapi SetFocusAttitudeMode...........cceveeneee. 143
08Pi SEtFOCUSODJECE.......coevviieeiiiereciisiceins 128
08Pi SetGaugeParams.........coeeevereeeseneeens 180
08Pi SEtGAUGEPOS. ..o 181
08Pi SetGaugeRANJEc.coerveeerereeeriereeiens 181
0apiSEtHUDMOdE.........ccoviiiniineenieiens 160
0api SEtPangl ..o 165
oapi SetPanelNeighbours...........cccceceerenene 164
oapi SetSurfaceColourKeycccceeevennene 171
oapiSetTimeAccelerationcccecveveennene 153
oapi SwitchPanelccoovinennieiere 165
08PITIME2ZMUID ..ot 152
oapiToggleAttitudeMode..........ccccevvereennene. 142
oapi ToggleFocusAttitudeMode.................. 143
0apiToggleHUDCOoIOUrcccovreeeerienienns 160
oapiTriggerPanel RedrawArea............c....... 164
oapiTriggerRedrawArea.........ccoovevrereencns 168
oapiUnregisterCustomCmd..........cccccevueneene. 178

oapiUnregisterCustomContrals................... 180
oapiUnregisterMFDMode..........cccvvruenene. 173
0apiVCReQIStErArea (1) ...cooeverererreriienens 166
0apiVCREQISLErAIea (2) ...cooereerereeeeierens 167
0apiVCRegisterHUDcccooveriiiicicee 165
0apiVCReQISEerMFD ... 166
oapiVCSetAreaClickmode_Quadrilateral ... 168
oapiV CSetAreaClickmode_Spherical......... 167
0apiVCTriggerRedrawArea.........ccocevveeene. 167
08PIWTIILELINE ..o 174
oapiWriteScenario_floatcoceevverienenne, 175
oapiWriteScenario_int.........cccveeereenieenne, 175
oapiWriteScenario_string.........ccoeeevvereeenne. 175
0apiWTriteScenario VEC........cccvvveererieennes 175
OBJHANDLE........cciiiiinieeeeeee e 5
opcCloseRenderViewportc.cccceeveieeene 115
OPCDLLEXIT .. 115
OPCDLLINIT .ot 115
opcFocusChanged..........oovevererereeieciienens 117
opcOpenRenderViewportcccceeeeeneene 115
OPCPOSESLED.....e e 116
OPCPIESIED ..o 116
opcTimeAccChanged........c.cccveveererinenne, 117
OPCTIMESLED.....eeveeeereireeirierie e 116
OVCADCHIIMOdE......ccovevereerceeeeeeeee e 18
OVCANIMALE......ceeiiiiereeie e 19
ovcConsumeBufferedKey.........ccccevveveeennenee 20
OVCCONSUMEKEY ...ccuvveiiveeieeesiee e sieeesiee e 19
OVCDOCKEVENL........cceeieiiriirieneneeee e 19
OVCEXIt...oviiiiiieieiee e 13
ovcFocusChanged.........ccccevveveeveesieccie e 16
OVCHUDMOE.......ccvereeiecece e 18
(011 | o S 12
ovcLoadPanelcccovvvevenvneneeeeeee e 20
OVCLOBASEALEoeveeeeeeieceeie e 14
OVCLOBASLAEEXccvveeevesieeiese e 15
OVCMFDMOdE.......ccveveeecece e 19
OVENAVMOAE.......oeeieeiierieriee e 18
ovcPanelMouSeEVENt..........ccooeveeerecieeene, 21
ovcPanelRedrawEventc.ccoceeeerieeieeneennn. 21
OVCPOSICreation........c.cooevererenenereeieseee 16
OVCRCSMOME ..o 17
OVCSAVESIALE.......cveeieeeieeeie st 15
OVCSECIaSSCaAPS.cverveneeierieieerie e 13
OVCSELSIAE. ... 13
OVCSELSIAEEX ..o 14
OVCTIMESED ..o 17
ovcVisualCreated........coovvvvvvereeeeieerienennens 16
ovcVisuaDestroyed........cccoceveeveevieenieenene 17
P

PARTICLESTREAMSPEC..........ccocviiinne 7
PROPELLANT_HANDLE........cccccocererinne 6
R

RCONLION ...t 5
S

SURFHANDLEcvivieveeececeeeeeee e 5

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 185

T GetADCHIMOAE ... 33

THGROUP_HANDLE.....oosoooooooeoeeeeeeeeeeeeee 6 ggﬁ:[ﬁfﬁd """""""""""""""""""""""" ;8
THRUSTER _HANDLE.......ccccoooiiiiiiieecienn 6 GetAnguIar(/.él """""""""""""""""""""" 38
V GEAOA ... 71
GELAPDISE ..o 69
ngSLR?’ """"""""""""""""""""""""""" ég GEATGPEN oo 69
EL o, GELALMDENSIY oo 75
ActivateNavmode...........ccoeeeveiviveeeeiveenne 35 GetAtmPressure 75
AddAnimationComponent.............cccou..... 89 GetAtmRef ... 74
AddANIMCOMP ...coviiriniriereereeees 91 GetAtMTEMPEAUI oo 75
AddAttExhaustMode........ccoccevveveeeiineennn. 61 GetAttachmentHandle 67
AddAEXNaUSLRESooveeeeeiveeee e 60 GetAttachmentld. ... 66
ﬁgggxﬂwi (;) --- gg GEtALAChMENt! NAEX ... 67
Ad dEXhau stF(Qez‘ """"""""""""""""""""" 60 GetAttachmentParams...........cceceeeevveeeinnes 66
g dE)’zha“ e g o GEtAAChMENtSLALUS «...vvoooeveeeeeeeeeereennn. 66
BUSISTEAM (1) wvvvvssvvsesssnnsessnn GetAMttUAELINLEVEl oo 35
AJJEXRRUSLSITEAM (2) ovvvvssnnsess s 93 GetAtUIEMOTE ..o 33
AdAFOrCe......eeeeieeeeeeee e 36 GetAttitudeRotLevel .. 34
R 85 GEBAIK oo 71
AdAMESN (2)...ceeeeeiieeieeceeee e 85 GetCameraDefaultDirection ... o5
AddReentryStream..........cccocceveeeveeneeinnnns 93 GetCameraOffset o
AtaChChild ... 67 GetClassName. ... 23
AttachmentCount..........coeeeeveevreveee e 67 GetCcOG dev...... 24
ClearAirfoil Definitions.........coceeveeveeerneen. 79 GetControl SurfaceLe\/eI """"""""""""""" 80
ClearAttExhaustRefs..........coovevvvecveeernen, 61 GetCrossSections........._ 24
ClearDockDefinitions.........ccocveevveeeeeeenen. 62 Getcw 76
g:earhEﬂxgugRefs ------------------------------------- gg GetDOCKHANAIE ..o 63
CAVIESNES ..o GEtDOCKPAIAMS . ..o 63
ClearPropellantResources...........ccccueeenee. 39 GetDockStatus 64
ClearThrusterDefinitions..........cccoeveveenne. 45 GetDynPressur é """"""""""""""""""""" 75
ClearVariableDragElements..................... 81 GetElements..........._ 68
CONSLTUCTOT ...t 22 GetEmptyM ass """""""""""""""""""""" 24
gﬁg&:' f) '.'I """""""""""""""""""""""" 53 GetEnableFOCUS..........coeeeeeeeevee e 23
r ITTO o GetEngineLevelcocovovvvvvveececeeree 59
Creat Ao 2.. .o 78 GetEquPos 38
Crest@AN MAION...coooovrvsssnsessssmsrnsssonee 88 GEtFliGNtMOTE oo 23
CreateAttaChmentccveevvveveeeeeeeee s 65 GetFuel M ass 4
CreateControl Surfaceooovveevveeeeeenn. 79 GetFueRae ... 42
CrEAEDOCK covvss v sssssssnn 61 Gt GIODAPOS ..o 37
CreatePropellantResource............cccceeeee. 38 GetGlobalVel 37
Create€TNIUSIEN ... 43 GetGravityR ef """""""""""""""""""""" 68
CreateThrusterGroup.........ccceeevvveerervenenns 51 GetHandle.......... 23
Creat(_aVarl ableDragElement...........cc..... 80 GetHorizonAirspeedVectorccccevveneee. 70
DeactivateNavmode..........ccocveeveveveeireneeenn. 36 Get|SP 59
ggzgg; """"""""""""""""""""""" gi GetMachNUMbDET........cooeeevee e 75
Da Airfoil Xorvwmssmmsstnsssn e 78 GetMainThrustModPLr...........oceveeveviveeeine 60
IO o, GetManualControlLevel ...~ 55
Del AnimationComponent.............c.cceveueee. 90 GetMass 32
ggll [E);r(]:kst .. g% GetMaxFudMass. ... 43
AUSL . GEMAXTRIUSE ..o 57
DelEXhaustREfcoovvveeeeiieeee e 60 GetMesh 85
Dol ExhausiSreanm 93 GetNamé ... %
DelPropellantResource........covvveeevvvevennnns 39 GetNavm c')' d eSt at é‘ """"""""""""""""""" 36
[BIS I [(V (< 44 GEtNAVRAIOFTE oo 84
DelThrusterGroup (1)ccoeveveerereneenennns 52 GetNavRecy 84
DelThrusterGroup (2)coceeevereerennenenn 52 o mmmmmmmmmmmmmmm————————""
. GEPEDIS ... 69
DetachChild........ccoveiveeeeeeeee e 68 .
GELPITCN .. 71
DOCKCOUNL......ceeieeeeeirreee e 62
DockingStatuss o1 (7= 1= | 24
EabIETrANSPONGEr oo 84 GetPrope 1antCount..........cooeerereereneenens 40

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 186

GetPropel lantEfficiencyc.ccoccovenenene 41

GetPropellantFlowrate..........c.coceerenienene 42
GetPropellantHandleBylndex................... 39
GetPropellantMasscveveeeeieeieneenen, 41
GetPropellantMaxMass..........cccceeeeeeeneenee. 41
GetRelativePos..........coeveienenireeee, 37
GetRelativeVe ... 38
GetROtati ONM AL X.....veeeevereeeresreeeeesreene 72
GEtROIDIagceoveeereriesene e 77
GetShipAirspeedVector........c.coevererenne 71
(€1 £ - 24
GetSliPANGIE. ..o 71
GEISMI ..o 69
GESIAUS ..o 30
GELSIAUSEX ..o 30
GetSuperstructureCGccceeeereerieenen. 72
GetSurfaceRef ... 70
GetThrusterCount.........cccvvveveeerrenerenneens 45
GetThrusterDircccoeveeeneeneseeeeseene 46
GetThrusterGroupHandle............cccccue... 53
GetThrusterGroupLevel (1).......ccccevrvenee 55
GetThrusterGroupLevel (2).......ccoevruenee 55
GetThrusterHandleByIndex...................... 45
GetThrusterISP (1) ..oovevveeeveeeririeeresieene 48
GetThrusterISp (2) ...ooveeeeeevererenierereseene 49
GetThrusterlSp0.......ccoovevevenenereeieeee, 49
GetThrusterLevel.........ccovevniienninneen 50
GetThrusterMax (1).....ccoevvevveeierieieennen, 47
GetThrusterMaX (2)......ccceevevveeiecieeseennen, 47
GetThrusterMax0ccccovvereeenienenenneens 47
GetThrusterMomentcoeeeererervnneenn 51
GetThrusterRef ..o, 46
GetTotal PropellantFlowrate....................... 42
GetTotalPropellantMass..........cceevecvenenen. 42
GetUserThrusterGroupCount 53
GetUserThrusterGroupHandleBylIndex.... 53
GetWheelbrakeLevelcccoveeveevevennnee. 83
GetWingaspectcccoevevenenenenieeie e 81
GetWingEffectiveness..........ccccceeevevveenen. 82
Global2LOCaAlceevviveeeiiereeeeee e 74
GlODAIROL ... 72
GroundContactccevrereeereneneneenns 32
HOFMZONROLc.cceeeeeeeee e 73
InCENngineLevel........ccooovvvcnincinineen 59
IncThrusterGroupLevel (1)......ccccvvnnenene 54
IncThrusterGroupLevel (2)........cccvvvenee 54
IncThrusterLevel_SingleStep.........cc........ 50
INItNaVRadI0S......cceeeveeeieveceeceee e, 83
Local2GIobalcoovvireeerieesee 73
LOCAIZRE ..o 74
MeshgroupTransform..........c.ccoceeeeeceenennee. 87
Nonspherical GravityEnabled.................... 32
OrbitStabilised.......ccccovveerneiirrieenreene 32
ParseScenarioLing........ccoecvvvneeenennenenns 29
ParseScenarioLineEX.......ccccvvvvvrveeenennnn, 30
RECOTAEVENLccveeeeceeeeee e 92
RegisterAnimation..........cccceeeveneecrenienenn 88
RegisterAnimSequence.........c.ccoeeevernenenn 91
SaveDefaultState........coceevverrenienenenenn 31
SetADCIHIIMOdE.......coveeeececeeeeeeereee, 34

SetANIMationccoeeeeeevee e 91
SetAttachmentParams..........c..cceevevvereeene 66
SetAttitudeLinLevel (1)cccceeveveevieennnne 35
SetAttitudeLinLevel (2)......cccccevveveeennene 35
SetAttitudeMode.........coooeveienenieeiee 33
SetAttitudeRotLevel (1)...ccccovvvevecvrnnienns 34
SetAttitudeRotLevel (2)......cccvvevevrnrienns 34
SetBankMomentScale..........ccoceveeeeeneennne 27
SetCameraDefaultDirection..........ccccueue.e. 28
SetCameraOffsat.....ccovvivvcvvvveececeree 28
SetCameraRotationRange...........cccceeveenene 29
SetCameraShiftRange.........cccvvvveevenencns 29
SEtCOG _EEV ..o 26
SetControlSurfacelLevelccoevevveveennnne. 80
SetCroSSSECLiONS.......ovveivereeeeeeeereeee e 27
SEECW ..ot 76
SetDefaultPropellantResource................... 40
SetDockParams (1)cceeeveveeveevieeieeciene 62
SetDockParams (2)ccccceveeveeveeseecnene 63
SEtEMPtYMaSS......cccoveierieree e 25
SetENableFOCUS........vccveeveeceecee e 25
SetEngineLevel ... 59
SetExhaustScales........covveveeveevieeceecee, 86
SetFUEIMaESS.......ccoccveeiece e 43
SEISP ..o 58
SetLiftCoeffFUNCoooeereceieiece 82
SetMaxFUEIMESS.......ccccvvevieirieieesie s 43
SEtMaXThIUSE......ceeeeee e 57
SetMaxWheelbrakeForce..........cccceveennene 83
SetMeshVisibilityMode.........c.ccoceevrnnienene 86
SetMeshVisiblelnternalc.ccccenee 86
SetNaVRECVoccveeeieeceece e, 84
SetPitchMomentScale..........cvveeveeereenene 27
SEPMI ..o 27
SetPropellantEfficiencyccoveeevenenns 40
SetPropel lantMass........c.coeveevereenenenens 41
SetPropellantMaxMass.........ccooeveerieneenns 40
SetReentryTexturecccvcvve e vcieescveennne 87
SEtRODIag......coovevvcieiiiee e 77
SEESIZE i 25
SetSurfaceFrictionCoeff.............c........ 26, 82
SetThrusterDir......cccoevereieceeeeeeee e 46
SetThrusterGroupLevel (1)coceeeverenene 54
SetThrusterGroupLevel (2)coceeevvrenene 54
SetThrusterlsp (1) «ooeveeeveveeneneenieees 48
SetThrusterlp (2) ..oovveeeeveveenereeseeens 48
SetThrusterLevelcooveveeveeveeciece, 49
SetThrusterLevel_SingleStep.........cccoeeee. 50
SetThrusterMaxo.........ccoceverereneeieeeie 46
SetThrusterRef ... 45
SetThrusterResource.........covveeeeeeneeine 45
SetTouchdownPoints..........ccceereeeeneeine 26
SeTrimSCale.......ooeveverereeeee e 28
SetWheelbrakeLevelcccooveeeienenne 83
SetWiIiNgaspect.......ccoovveereneeneneenie s 81
SetWingEffectiveness........cccvvvveeneneenens 81
ShiftCentreOfMasscccceeveevreeceecnnne, 72
ToggleNavmode.........ccvvveerenieerienieenne 36
UNdOCK.....cciieitieiecie e 64
UnregisterAnimation..........cccceeeveveeerienenn 88

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 187

VESSEL?2 clbkPanelRedrawEventcoeevveeveneee. 104

CIbKADCLtrIMOdE........ccoevieiriecerieene 99 clbkPlaybackEvent..........c.cccovvveininieenne, 96
clbkANIMate ..o, 103 CIbKPOSICreation..........ccoevererereniecienins 96
clbkConsumeBufferedKey 102 CIDKPOSESLED.coveceeeeeiieic e 98
clbkConsumeDirectKey..........ccocceeueennen. 101 CIDKPreStepovvveeeeeeeeeceeeee 97
CIDKDOCKEVENL ..o 102 CIDKRCSMOdE........cooeeiiiiiiieeieecies 99
clbkDrawHUD........cccocooiiniiinineeiee, 100 clbkSaveState..........cccovevinininiiineeee 95
clbkFocusChangedccccooeveneninnicinee 96 ClbkSetClassCaps.cccvererenerenieeieenens 94
CIbkHUDMOdE......ccoovevreveeieeeieeenn 100 CIDKSEtSIALEEXvcveeeeeveesie e 96
clbkLoadGenericCockpit..........cccerverenen. 103 clbkVCMouseEvent........c..ccocvvvevereeene 105
clbkLoadPandlccccoevvvvvnirceeienennnn, 103 clbkVCRedrawEventcc.cceevevereennnne 106
ClbkLoadStateEX.......cvvrvrrrrrereeeeeeens 94 clbkVisualCreated..........ccoevvvrveeeceeienenns 98
clbkLoadVCccccooverirereee 105 clbkVisualDestroyed...........ccoeveeeririeenne, 98
CIbKMFDMoOodE......cccovvvvrveeeeeeeeene 100 VESSELSTATUS. ..o 8
clbkNavMode.......c.ccooevvencciieeeece, 100 VISHANDLE.......coiiriverireeceeeee 5
clbkPanelMouseEventcccceeuenenen. 104 VSOP8BT ..ttt 182

! p. Bretagnon and G. Francou, Bureau des Longitudes, CNRS URA 707, Planetary Solution
VSOP87

M. Chapront-Touze and J. Chapront, Bureau des Longitudes, CNRS URA 707, Lunar
Solution ELP 2000-82B

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 188

