
ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 1

ORBITER
API Reference Manual
Copyright (c) 2000-2005 Martin Schweiger 16 January 2005
Orbiter home: www.medphys.ucl.ac.uk/~martins/orbit/orbit.html or www.orbitersim.com

Contents
1 INTRODUCTION ... 3

2 REQUIREMENTS.. 3

3 PREPARATION... 3

4 SDK FILES .. 3

5 COMPATIBILITY ISSUES... 4

6 CONCEPT ... 4

7 SAMPLE MODULES... 5

8 DATA TYPES .. 5

9 CONSTANTS... 10

10 VESSEL MODULES.. 11

11 CLASS VESSEL.. 22
11.1 Construction/creation...22
11.2 Vessel parameters and capabilities ...23
11.3 Current vessel status ...30
11.4 State vectors ..37
11.5 Fuel management ..38
11.6 Thruster management ...43
11.7 Docking port management...61
11.8 Attachment management...64
11.9 Orbital elements...68
11.10 Surface-relative parameters ..70
11.11 Transformations...72
11.12 Atmospheric parameters..74
11.13 Aerodynamics ..75
11.14 Surface contact parameters...82
11.15 Communications/radio interface ..83
11.16 Visual manipulation..85
11.17 Particle systems...92

12 VESSEL CLASS EXTENSIONS ... 94
12.1 Class VESSEL2...94

13 CLASS MFD.. 107
13.1 Construction/creation...107
13.2 Display repaint ...107

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 2

13.3 Input ...109
13.4 Load/save state..110

14 CLASS GRAPHMFD... 111
14.1 Construction/creation...112
14.2 Graph/plot management ..112

15 PLUGIN CALLBACK FUNCTION REFERENCE ... 114

16 PLANET MODULES ... 117
16.1 Initialisation functions...117
16.2 The CELBODY class ...119
16.3 Orbital parameters ...121
16.4 Physical parameters ..123

17 API FUNCTION REFERENCE.. 124
17.1 General functions...124
17.2 Obtaining object handles ...124
17.3 Generic object parameters ..130
17.4 Vessel fuel management ...130
17.5 Object state vectors ...132
17.6 Surface-relative parameters ..134
17.7 Aerodynamics ..137
17.8 Engine status ...141
17.9 Functions for planetary bodies...144
17.10 Surface base functions ..148
17.11 Navigation radio transmitter functions ...150
17.12 Simulation time ..151
17.13 Camera functions...153
17.14 Keyboard input...157
17.15 Mesh management ..157
17.16 Particle stream management...159
17.17 HUD, panel, virtual cockpit and MFD management ..160
17.18 Custom MFD modes..173
17.19 File management ...174
17.20 User input...176
17.21 Debugging..179

18 CUSTOM DIALOG CONTROLS... 179
18.1 Gauge control ..180

19 STANDARD ORBITER MODULES .. 182
19.1 Vsop87...182
19.2 Moon ..183

20 INDEX .. 183

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 3

1 Introduction
This reference document contains the specification for the Orbiter Programming Interface. It is
not required for running Orbiter.
The programming interface allows the development of third party modules to enhance the
functionality of the Orbiter core. Examples for modules are:

• Additional instruments, simulation monitoring devices, and spacecraft controls
• Custom flight models
• Custom instrument panels
• Multiplayer modules
• Custom calculation of planetary positions

2 Requirements
The following components are required to build an addon module:

• The latest Orbiter package
• The Orbiter SDK libraries and include files (contained in the Orbiter SDK package)
• A C++ compiler running under Windows (the SDK was developed with VC++, the use of

other compilers may be possible, if they conform to the MS stack calling convention.)

3 Preparation
• Install the Orbiter package, if you haven’t already done so.
• Install the Orbiter SDK package. This will generate the OrbiterSDK subdirectory

containing the header files and libraries required for building plugins.
• Create a project for your plugin DLL (the method depends on the compiler used). Make

sure you use thread-safe system libraries (“Multithread DLL”). Add OrbiterSDK\include to
the include search path, and add OrbiterSDK\lib\Orbiter.lib and
OrbiterSDK\lib\Orbitersdk.lib to the link stage.

• Write the code for your plugin, compile and link it, and move the resulting DLL to the
Orbiter\Modules\Plugin folder.

• Run Orbiter, go to the Modules tab in the launchpad dialog, and activate your new plugin.

4 SDK files
The following files are contained in the Orbiter development kit:

Orbitersdk\doc* SDK documentation

Orbitersdk\include
Orbitersdk.h The interface header file
OrbiterAPI.h General interface functions
VesselAPI.h Vessel interface

Orbitersdk\lib
Orbitersdk.lib The DLL auxiliary library
Orbiter.lib The Orbiter API library

Orbitersdk\tools* Tools for model and texture generation

Orbitersdk\samples* Sample source code

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 4

5 Compatibility issues

Orbiter will change its addon compatibility strategy beginning with the next release. In the
future, each Orbiter release will run only addons which have been compiled with the SDK of
that release. To migrate an addon to a new Orbiter release will therefore require a
recompilation with the new SDK. This should help to keep addons up to date and reduce
compatibilty problems. At the same time, this will allow me to purge obsolete API functions.

Latest release

• The latest release introduces a new more realistic atmospheric flight model. As a result,
some aerodynamics-related vessel functions have become obsolete and are retained for
backward compatibility only.

SetWingAspect
GetWingAspect
SetWingEffectiveness
GetWingEffectiveness
SetLiftCoeffFunc

The old atmospheric flight model will be dropped in a future version, so developers should
migrate to the new model if they want to compile vessel addons against future API
versions.

6 Concept
Definition of terms used in this document:

Module
A module is a dynamic link library (DLL) which extends or replaces functionality of the
core Orbiter program. Modules interact with Orbiter via callback functions conforming to
the public interface defined below.

Plugin
Plugins are generic modules not linked to any particular object. They may include
popup windows for displaying or manipulating general simulation information,
multiplayer interfaces, etc. Plugins can be activated or deactivated by the user via the
Modules tab in the Orbiter Launchpad dialog.

Planet module
Planet modules are linked to planets or moons and are used specifically for updating
planetary position and velocity data. Planet modules are referenced via the
planet/moon’s configuration file.

Vessel module
Vessel modules are linked to specific spacecraft, to allow customisation of the vessel’s
behaviour. Vessel modules are referenced via the vessel class configuration file.

In all active modules, Orbiter executes callback functions corresponding to certain simulation
conditions. For example, whenever the simulation window is opened after the user presses
the Orbiter button in the launchpad dialog, Orbiter calls the opcOpenRenderViewport callback
function in all plugins to allow initialisation routines to be performed. A plugin doesn’t need to
implement all callback functions defined in the interface. However, the programmer is
responsible for implementing callback functions in a consistent way. For example, if the plugin
allocates memory for data in opcOpenRenderViewport, then this memory should be
deallocated in opcCloseRenderViewport. The SDK allows access to core parts of the Orbiter
simulator, and bugs in active plugins may cause the program to crash.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 5

All callback functions use a C stack frame, so they need to be defined as extern “C” for
compilation with a C++ compiler. For convenience the DLLCLBK macro is provided in
Orbitersdk.h to use as modifier for callback function definitions.

The code for the callback functions may contain calls to the Orbiter API functions, to obtain
and set simulation parameters such as object positions and speed, simulation time, etc. API
functions use an oapi (“orbiter API”) prefix. API functions use a C++ stack frame.

7 Sample modules
The Orbitersdk\samples folder contains a few projects which can be used as a starting point
for creating your own plugins. To compile a sample using VC++:
• Load the project file (*.dsw) into VC++.
• Build the project.
• Copy the DLL from the Debug or Release subdirectory into the Orbiter\Modules\Plugin

directory (plugins) or into the Orbiter\Modules directory (planet and vessel modules).
• To activate new plugins, run Orbiter, activate the plugin under the Modules tab, and

launch the simulation.
• New planet or vessel modules are used automatically if they are referenced by the

relevant definition files.

DialogTemplate
A trivial example demonstrating the use of Windows-style dialog boxes and custom functions
in Orbiter.

Rcontrol
A more sophisticated dialog example. This plugin opens a dialog which allows to switch
between spacecraft and remotely control the engines.

FlightData
Opens a dialog which allows to monitor vessel flight data.

CustomMFD
An example for an MFD plugin. This implements the Ascent profile MFD.

Deltaglider
Orbiter’s standard implementation of the vessel module for the Delta-glider.

Atlantis
The complete code for Orbiter’s reference implementation of the Atlantis (Space Shuttle)
module, including modules for post-separation SRBs (solid rocket boosters) and main tank.

8 Data types
OBJHANDLE

A handle for a logical object. Objects can be vessels, spaceports, planets, moons or
suns.

VISHANDLE
A handle for a visual object. These are representations for logical objects for the
purpose of rendering. Visuals exist only if the object is within visual range of the
camera, and are created and deleted as needed.

MESHHANDLE
A handle for object meshes.

SURFHANDLE
A handle for a bitmap surface. Surfaces are currently used for drawing instrument
panel areas.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 6

THRUSTER_HANDLE
Handle for (logical) thruster definitions.

THGROUP_HANDLE
Handle for thruster groups.

PROPELLANT_HANDLE
Handle for propellant resources.

NAVHANDLE
Handle for a navigation radio transmitter (VOR, ILS, IDS, XPDR)

VECTOR3
Double precision vector 3R∈

Synopsis:
typedef union {

double data[3];
struct { double x, y, z; };

} VECTOR3;

MATRIX3
Double precision matrix 33xR∈

Synopsis:
typedef union {
 double data[9];
 struct { double m11, m12, m13,
 m21, m22, m23,
 m31, m32, m33; };
} MATRIX3;

ELEMENTS
Keplerian orbital elements.

Synopsis:
typedef struct {
 double a; semi-major axis [m]
 double e; eccentricity
 double i; inclination [rad]
 double theta; longitude of ascending node [rad]
 double omegab; longitude of periapsis [rad]
 double L; mean longitude at epoch
} ELEMENTS;

ATMPARAM
Atmospheric parameters.

Synopsis:
typedef struct {
 double T; temperature [K]
 double p; pressure [Pa]
 double rho; density [kg/m^3]
} ATMPARAM;

ENGINESTATUS
Defines the thruster status for a spacecraft

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 7

Synopsis:
struct {
 double main; main/retro thruster level [-1,+1]
 double hover; hover thruster level [0,+1]
 int attmode; attitude thruster mode [0=rot, 1=lin]
} ENGINESTATUS;

ENGINETYPE
Enumerates thruster types

Synopsis:
typedef enum {
 ENGINE_MAIN,
 ENGINE_RETRO,
 ENGINE_HOVER,
 ENGINE_ATTITUDE
} ENGINETYPE;

EXHAUSTTYPE
Enumerates engine groups for exhaust rendering.

Synopsis:
typedef enum {
 EXHAUST_MAIN,
 EXHAUST_RETRO,
 EXHAUST_HOVER,
 EXHAUST_CUSTOM
} EXHAUSTTYPE;

PARTICLESTREAMSPEC
Defines the parameters of a particle stream.

Synopsis:
typedef struct {
 DWORD flags;
 double srcsize;
 double srcrate;
 double v0;
 double srcspread;
 double lifetime;
 double growthrate;
 double atmslowdown;
 enum LTYPE { EMISSIVE, DIFFUSE } ltype;
 enum LEVELMAP { LVL_FLAT, LVL_LIN, LVL_SQRT,
 LVL_PLIN, LVL_PSQRT } levelmap;
 double lmin, lmax;
 enum ATMSMAP { ATM_FLAT, ATM_PLIN } atmsmap;
 double amin, amax;
 SURFHANDLE tex;
} PARTICLESTREAMSPEC;

flags currently not used
srcsize particle size at creation [m]
srcrate average particle generation rate [Hz]
v0 average particle emission velocity [m/s]
srcspread emission velocity distribution randomisation
lifetime average particle lifetime [s]
growthrate particle growth rate [m/s]
atmslowdown deceleration rate β in atmosphere, defined as v = v0 e

-βdt

ltype lighting type (EMISSIVE or DIFFUSE)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 8

levelmap mapping between level parameter and particle opacity.
lmin, lmax minimum and maximum levels for alpha mapping.
atmsmap mapping between atmospheric parameters and particle opacity.
amin, amax minimum and maximum atmospheric values for alpha mapping.

See the Programmer’s Guide for more details on these parameters.

VESSELSTATUS
Defines vessel status parameters at a given time. This is version 1 of the vessel status
interface. It is retained for backward compatibility, but new modules should use
VESSELSTATUS2 instead to exploit the latest vessel capabilities such as individual
thruster and propellant resource settings.

Synopsis:
typedef struct {

VECTOR3 rpos;
VECTOR3 rvel;
VECTOR3 vrot;
VECTOR3 arot;
double fuel;
double eng_main;
double eng_hovr;
OBJHANDLE rbody;
OBJHANDLE base;
int port;
int status;
VECTOR3 vdata[10];
double fdata[10];
DWORD flag[10]

} VESSELSTATUS;

rpos position relative to reference body in ecliptic frame
rvel velocity relative to reference body in ecliptic frame
vrot rotation velocity about principal axes in ecliptic frame
arot vessel orientation against ecliptic frame (see notes)
fuel fuel level [0...1]
eng_main main engine setting [-1...1]
eng_hovr hover engine setting [0...1]
rbody handle of reference body
base handle of docking or landing target
port designated docking or landing port
status 0=freeflight, 1=landed, 2=taxiing, 3=docked, 99=undefined
vdata vector buffer for future extensions. Currently used:

vdata[0] contains landing parameters if status==1:
vdata[0].x = longitude [rad], vdata[0].y = latitude [rad] of landing site,
vdata[0].z = orientation of vessel [rad].

fdata Not currently used.
flag[0]&1 0: ignore eng_main and eng_hovr entries, do not change thruster

settings
1: set THGROUP_MAIN and THGROUP_RETRO thruster groups from
eng_main, and THGROUP_HOVER from eng_hovr.

flag[0]&2 0: ignore fuel entry, do not change fuel levels
1: set fuel level of first propellant resource from fuel.

flag[1]-flag[9]
Not currently used.

VESSELSTATUS2
Version 2 of the vessel status interface. This interface has been introduced in post-
020419 versions.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 9

Synopsis:
typedef struct {
 DWORD version;
 DWORD flag;
 OBJHANDLE rbody;
 OBJHANDLE base;
 int port;
 int status;
 VECTOR3 rpos;
 VECTOR3 rvel;
 VECTOR3 vrot;
 VECTOR3 arot;
 double surf_lng;
 double surf_lat;
 double surf_hdg;
 DWORD nfuel;
 struct FUELSPEC {
 DWORD idx;
 double level;
 } *fuel;
 DWORD nthruster;
 struct THRUSTSPEC {
 DWORD idx;
 double level;
 } *thruster;
 DWORD ndockinfo;
 struct DOCKINFOSPEC {
 DWORD idx;
 DWORD ridx;
 OBJHANDLE rvessel;
 } *dockinfo;
 DWORD xpdr;
} VESSELSTATUS2;

Parameters:
version interface version (2)
flag bitflags (see below)
rbody handle of reference body
base handle of docking or landing target
port designated docking or landing port
status 0=active, 1=landed (inactive)
rpos position relative to reference body (rbody) in ecliptic frame
rvel velocity relative to reference body in ecliptic frame
vrot rotation velocity about principal axes in ecliptic frame
arot vessel orientation against ecliptic frame
surf_lng longitude: vessel position in equatorial coordinates of rbody [rad]
surf_lat latitude: vessel position in equatorial coordinates of rbody [rad]
surf_hdg heading: vessel orientation on the ground
nfuel number of entries in the fuel list
fuel propellant resource list

fuel[i].idx propellant resource index (0 ≤ i < nfuel)
fuel[i].level propellant resource level [0..1]

nthruster number of entries in the thruster list
thruster thruster definition list

thruster[i].idx thruster index (0 ≤ i < nfuel)
thruster[i].level thruster level [0..1]

ndockinfo number of entries in the dockinfo list
dockinfo[i].idx dock index (0 ≤ i < ndockinfo)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 10

dockinfo[i].ridx dock index of docked vessel
dockinfo[i].rvessel handle of docked vessel

xpdr transponder setting (in steps of 0.05kHz from 108.00kHz)

flag
The meaning of the bitflags in flag depends on whether the VESSELSTATUS2
structure is used to get (GetStatus) or set (SetStatus) a vessel status. The
following flags are currently defined:

• VS_FUELRESET
Get – not used
Set – reset all fuel levels to zero, independent of the fuel list.

• VS_FUELLIST
Get – request a list of current fuel levels in fuel. The module is responsible
for deleting the list after use.
Set – set fuel levels for all resources listed in fuel.

• VS_THRUSTRESET
Get – not used
Set – reset all thruster levels to zero, independent of the thruster list

• VS_THRUSTLST
Get – request a list of current thrust levels in thruster. The module is
responsible for deleting the list after use.
Set – set thrust levels for all thrusters listed in thruster.

• VS_DOCKINFOLIST
Get – request a docking port status list in dockinfo. The module is
responsible for deleting the list after use.
Set – initialise docking status for all docking ports in dockinfo.

Notes:
• The version specification is an input parameter for all function calls

(including GetStatus) and must be set by the user to tell Orbiter which
interface to use.

• surf_lng, surf_lat and surf_hdg are currently only defined if the
vessel is landed (status=1)

• arot=(α,β,γ) contains angles of rotation [rad] around x,y,z axes in ecliptic
frame to produce this rotation matrix R for mapping from the vessel’s local
frame of reference to the global frame of reference:

�
�
�

�

�

�
�
�

�

�

−
�
�
�

�

�

�
�
�

�

� −

�
�
�

�

�

�
�
�

�

�

−
=

100

0cossin

0sincos

cos0sin

010

sin0cos

cossin0

sincos0

001

γγ
γγ

ββ

ββ

αα
ααR

such that
prRr += localglobal

where p is the vessel’s global position.

9 Constants
Navmode constants

NAVMODE_KILLROT engage attitude thrusters to kill rotation
NAVMODE_HLEVEL engage attitude thrusters to keep level with horizon
NAVMODE_PROGRADE engage attitude thrusters to turn prograde
NAVMODE_RETROGRADE engage attitude thrusters to turn retrograde
NAVMODE_NORMAL engage attitude thrusters to turn orbit-normal
NAVMODE_ANTINORMAL engage attitude thrusters to turn orbit-antinormal
NAVMODE_HOLDALT engage hover thrusters to maintain altitude

HUD mode constants

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 11

HUD_NONE
HUD_ORBIT
HUD_SURFACE
HUD_DOCKING

MFD mode constants
MFD_NONE
MFD_ORBIT
MFD_SURFACE
MFD_MAP
MFD_HSI
MFD_LANDING
MFD_DOCKING
MFD_OPLANEALIGN
MFD_OSYNC
MFD_TRANSFER
MFD_USERTYPE

MFD identifier constants
MFD_LEFT
MFD_RIGHT
MFD_USER1
MFD_USER2
MFD_USER3

10 Vessel modules
Vessel modules are dynamic link libraries (DLL) which contain the code to manage a vessel
class. Orbiter loads a vessel library if the class configuration file of a vessel loaded during the
simulation contains a MODULE entry. Only one instance of the library is loaded for each ves-
sel class, even if multiple vessels of that class are present in the simulation. However, the li-
brary callback functions are called for each vessel. This means that global and static variables
should not be used for vessel-specific parameters, to avoid conflicts between vessels. In-
stead, all vessel-specific data should be stored in the derived VESSEL instance (see below).

In general, a vessel module will create an instance of a vessel class derived from the base
VESSEL class (see Section 11) during the vessel instance initialisation (ovcInit). All further
interaction will then be performed through this class instance, either by Orbiter invoking
callback functions to notify the vessel of various events, or by the module setting and query-
ing vessel parameters.

In previous versions of the API, Orbiter communicated with the vessel module via nonmember
callback functions (ovcXXX). In the current version, these have been replaced by virtual
VESSEL2 member functions (VESSEL2::clbkXXX) which can be overloaded by the derived
class to invoke non-default actions. The only nonmember callback functions that should still
be used are the instance entry and exit points (ovcInit and ovcExit), to create and delete the
VESSEL class instance.

Vessel modules should link the Orbiter API libraries (orbiter.lib and orbitersdk.lib). The main
source file should contain the

#define ORBITER_MODULE
directive.

The following list contains the callback functions used by Orbiter to communicate with the
module. Many of these have become obsolete with the latest API interface and may not be
supported in future versions. Developers should migrate to VESSEL2 member callback func-
tions to ensure future compatibility.

For a sample vessel module implementation, see for example
Orbitersdk\samples\DeltaGlider.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 12

Vessel module nonmember callback functions

InitModule
This is the module entry point. It is called once when the module is loaded, even if
multiple vessels of this class are present. It can be used for global (vessel instance-
independent) initialisations such as GDI resource allocation.

Synopsis:
DLLCLBK void InitModule (HINSTANCE hModule)

Parameters:
hModule DLL instance handle

Notes:
• This function will only be called if the ORBITER_MODULE preprocessor

directive has been defined in the source code, and orbitersdk.lib has been
linked.

ExitModule
Module exit point. This is called once before the module is removed from memory
(usually at the end of a simulation run). It can be used to free resources allocated
during InitModule.

Synopsis:
DLLCLBK void ExitModule (HINSTANCE hModule)

Parameters:
hModule DLL instance handle

Notes:
• This function will only be called if the ORBITER_MODULE preprocessor

directive has been defined in the source code, and orbitersdk.lib has been
linked.

ovcInit
Called during vessel creation. A vessel module must define this function in order to
create an instance of the VESSEL interface or a derived class.

Synopsis:
DLLCLBK VESSEL *ovcInit (

OBJHANDLE hVessel,
int flightmodel)

Parameters:
hVessel handle identfying the newly created vessel.
flightmodel level of flight model realism (0=simple, 1=complex)

Return value:
Module-generated instance of VESSEL or a derived class.

Notes:
• The flightmodel value depends on user selection in the launchpad dialog.

The module can use this parameter to define two different sets of vessel
parameters – a simplified one for novice users, and a realistic one for
advanced users.

• A typical implementation will look like this:
class MyVessel: public VESSEL

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 13

{
...

}

DLLCLBK VESSEL *ovcInit (OBJHANDLE hVessel, int flightmodel)
{

return new MyVessel(hVessel, flightmodel);
}

ovcExit
Called before killing the vessel. Should be used for cleanup operations (memory
deallocation etc.) and for deallocating the VESSEL interface.

Synopsis:
DLLCLBK void ovcExit (VESSEL *vessel)

Parameters:
vessel vessel interface

ovcSetClassCaps
Obsolete. Use VESSEL2::clbkSetClassCaps instead.
Called during vessel initialisation. This allows the module to define vessel class
capabilities, such as mass, size, aerodynamic specs, thruster ratings, etc.

Synopsis:
DLLCLBK void ovcSetClassCaps (

VESSEL *vessel,
FILEHANDLE cfg)

Parameters:
vessel vessel interface
cfg handle for the vessel class configuration file.

Notes:
• This function should only set general parameters (like maximum fuel mass),

not the current state parameters for a specific ship (like current fuel mass).
• Generic parameters directly defined in the vessel class cfg file (e.g.

MaxFuel) override values set in ovcSetClassCaps. This allows to manipulate
values without need to recompile the module.

• The cfg file handle allows to read nonstandard parameters from the class
file.

ovcSetState
Obsolete. Use VESSEL2::clbkSetStateEx instead.
Called at vessel creation to allow initialisation of the initial state.

Synopsis:
DLLCLBK void ovcSetState (

VESSEL *vessel,
const VESSELSTATUS *status)

Parameters:
vessel vessel interface
status vessel state parameters

Notes:
• This function is called after ovcSetClassCaps.
• If this function is not defined, Orbiter will perform default state initialisations.
• To perform Orbiter’s default initialisation from within ovcSetState, call

vessel->DefSetState (status)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 14

ovcSetStateEx
Obsolete. Use VESSEL2::clbkSetStateEx instead.
This callback function is invoked by Orbiter when a vessel is created during the
simulation with a call to oapiCreateVesselEx. It allows the vessel to initialise its state
according to the provided VESSELSTATUSx interface (version x ≥ 2). To allow default
initialisation, the status can be passed to VESSEL::DefSetStateEx.

Synopsis:
DLLCLBK void ovcSetStateEx (

VESSEL *vessel,
const void *status)

Parameters:
vessel vessel interface
status pointer to a VESSELSTATUSx structure

Notes:
• This callback function receives the VESSELSTATUSx structure passed to

oapiCreateVesselEx. It must therefore be able to process the interface
version used by those functions.

• This function remains valid even if future versions of Orbiter introduce new
VESSELSTATUSx interfaces.

• A typical implementation may look like this:
DLLCLBK void ovcSetStateEx (VESSEL *vessel, const void *status)
{
 // specialised vessel initialisations
 // ...

 // default initialisation:
 vessel->DefSetStateEx (status);
}

ovcLoadState
Obsolete. Use VESSEL2::clbkLoadStateEx instead.
Called when the vessel must read its initial status from a scenario file. New modules
should use ovcLoadStateEx instead.

Synopsis:
DLLCLBK void ovcLoadState (

VESSEL *vessel,
FILEHANDLE scn,
VESSELSTATUS *def_vs)

Parameters:
vessel vessel interface
scn scenario file handle
def_vs set of generic vessel parameters

Notes:
• This callback function is provided to allow the module to read non-standard

parameters from the scenario file.
• The function should define a loop which parses lines from the scenario file

via oapiReadScenario_nextline.
• Any lines which the module parser does not recognise should be forwarded

to Orbiter’s default scenario parser via VESSEL::ParseScenarioLine, to allow
the processing of generic options.

• Alternatively, the module parser may intercept generic parameters and
directly write values into the generic set def_vs (dangerous!)

See also:
ovcLoadStateEx

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 15

ovcLoadStateEx
Obsolete. Use VESSEL2::clbkLoadStateEx instead.
Called when the vessel must read its initial status from a scenario file.

Synopsis:
DLLCLBK voi d ovcLoadSt at eEx (

VESSEL * vessel ,
FI LEHANDLE scn,
voi d * vs)

Parameters:
vessel vessel interface
scn scenario file handle
vs pointer to a VESSELSTATUSx struct (x ≥ 2)

Notes:
• This callback function allows to read module-specific status parameters from

a scenario file.
• The function should define a loop which parses lines from the scenario file

via oapiReadScenario_nextline.
• Any lines which the module parser does not recognise should be forwarded

to Orbiter’s default scenario parser via VESSEL::ParseScenarioLineEx, to
allow the processing of generic options.

• Orbiter will always pass the latest supported VESSELSTATUSx version to
ovcLoadStateEx. This is currently VESSELSTATUS2, but may change in
future versions. To maintain compatibility, vs should therefore not be used
other than to pass it on to ParseScenarioLineEx.

• A typical parser implementation may look like this:
DLLCLBK voi d ovcLoadSt at eEx (VESSEL * vessel , FI LEHANDLE scn,
 voi d * vs)
{
 char * l i ne;
 i nt my_val ue;

 whi l e (oapi ReadScenar i o_next l i ne (scn, l i ne)) {
 i f (! st r ni cmp (l i ne, “ my_opt i on” , 9)) {
 sscanf (l i ne+9, “ %d” , &my_val ue) ;
 } el se i f (. . .) { / / mor e i t ems
 . . .
 } el se { / / anyt hi ng not r ecogni sed i s passed on t o Or bi t er
 vessel - >Par seScenar i oLi neEx (l i ne, vs) ;
 }
 }
}

See also:
VESSEL::ParseScenarioLineEx

ovcSaveState
Obsolete. Use VESSEL2::clbkSaveState instead.
Called when a vessel needs to save its current status to a scenario file.

Synopsis:
DLLCLBK voi d ovcSaveSt at e (

VESSEL * vessel ,
FI LEHANDLE scn)

Parameters:
vessel vessel interface
scn scenario file handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 16

Notes:
• This function only needs to be implemented if the vessel must save non-

standard parameters. Otherwise Orbiter invokes a default parameter save.
• To allow Orbiter to save its default vessel parameters, use

VESSEL::SaveDefaultState.
• To write custom parameters to the scenario file, use the oapiWriteLine

method.

ovcPostCreation
Obsolete. Use VESSEL2::clbkPostCreation instead.
Called after a vessel has been created and its state has been set.

Synopsis:
DLLCLBK void ovcPostCreation (VESSEL *vessel)

Parameters:
vessel vessel interface

Notes:
• This function can be used to perform the final setup steps for the vessel,

such as animation states and instrument panel states. When this function is
called, the vessel state (e.g. position, thruster levels, etc.) have been
defined.

ovcFocusChanged
Obsolete. Use VESSEL2::clbkFocusChanged instead.
Called after a vessel gained or lost input focus.

Synopsis:
DLLCLBK void ovcFocusChanged (

VESSEL *vessel,
bool getfocus,
OBJHANDLE hNewVessel,
OBJHANDLE hOldVessel)

Parameters:
vessel vessel interface
getfocus true if vessel gained focus, false if it lost focus
hNewVesselhandle of vessel gaining focus
hOldVessel handle of vessel losing focus

Notes:
• If getfocus is true, then vessel is the interface to hNewVessel, otherwise it is

the interface to hOldVessel.
• This is also called at the beginning of the simulation to the initial focus

object. In this case hOldVessel is NULL.

ovcVisualCreated
Obsolete. Use VESSEL2::clbkVisualCreated instead.
Called after a visual representation of a vessel has been created.

Synopsis:
DLLCLBK void ovcVisualCreated (

VESSEL *vessel,
VISHANDLE vis,
int refcount)

Parameters:
vessel vessel interface
vis handle for the newly created visual

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 17

refcount visual reference count

Notes:
• The logical interface to a vessel exists as long as the vessel is present in the

simulation. However, the visual interface exists only when the vessel is
within visual range of the camera. Orbiter creates and destroys visuals as
required. This enhances simulation performance in the presence of a large
number of objects in the simulation.

• Whenever Orbiter creates a vessel’s visual it reverts to its initial configuration
(e.g. as defined in the mesh file). The module can use this function to update
the visual to the current state, wherever dynamic changes are required.

• More than one visual representation of an object may exist. The refcount
parameter defines how many visual interfaces to the object exist.

ovcVisualDestroyed
Obsolete. Use VESSEL2::clbkVisualDestroyed instead.
Called before the visual representation of a vessel is destroyed.

Synopsis:
DLLCLBK void ovcVisualDestroyed (

VESSEL *vessel,
VISHANDLE vis,
int refcount)

Parameters:
vessel vessel interface
vis handle for the visual to be destroyed
refcount visual reference count

Notes:
• Orbiter calls this function before it destroys the vessel’s visual

representation, e.g. when it moves out of the visual range of the current
camera.

• The (logical) vessel may still exist, but it is no longer rendered.

ovcTimestep
Obsolete. Use VESSEL2::clbkPreStep or VESSEL2::clbkPostStep instead.
Called at each simulation time step after the vessel has updated its position and
velocity for the current simulation time.

Synopsis:
DLLCLBK void ovcTimestep (VESSEL *vessel, double simt)

Parameters:
vessel vessel interface
simt simulation up time (seconds since simulation start)

Notes:
• This function, if implemented, is called at each frame for each instance of

this vessel class, and is therefore time-critical. Avoid any unnecessary
calculations here which may degrade performance.

ovcRCSmode
Obsolete. Use VESSEL2::clbkRCSMode instead.
Called when the RCS (reaction control system) mode changes.

Synopsis:
DLLCLBK void ovcRCSmode (VESSEL *vessel, int mode)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 18

Parameters:
vessel vessel interface
mode new RCS mode: 0=disabled, 1=rotational, 2=linear

Notes:
• This callback function is invoked when the user switches RCS mode via the

keyboard (“/” or “Ctrl-/” on numerical keypad) or after a call to
VESSEL::SetAttitudeMode or VESSEL::ToggleAttitudeMode.

ovcADCtrlmode
Obsolete. Use VESSEL2::clbkADCtrlMode instead.
Called when user input mode for aerodynamic control surfaces (elevator, rudder,
aileron) changes.

Synopsis:
DLLCLBK void ovcADCtrlmode (VESSEL *vessel, DWORD mode)

Parameters:
vessel vessel interface
mode control mode

Notes:
• The returned control mode contains bit flags as follows:

bit 0: elevator enabled/disabled
bit 1: rudder enabled/disabled
bit 2: ailerons enabled/disabled
Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates
fully enabled.

ovcNavmode
Obsolete. Use VESSEL2::clbkNavMode instead.
Called at activation/deactivation of a navmode (see also VESSEL::ActivateNavmode)

Synopsis:
DLLCLBK void ovcNavmode (

VESSEL *vessel,
int mode,
bool active)

Parameters:
vessel vessel interface
mode navmode constant (see section 9)
active true for activation, false for deactivation.

ovcHUDmode
Obsolete. Use VESSEL2::clbkHUDMode instead.
Called after a change of the vessel’s HUD (head up display) mode.

Synopsis:
DLLCLBK void ovcHUDmode (VESSEL *vessel, int mode)

Parameters:
vessel vessel interface
mode new HUD mode

Notes:
• For currently supported HUD modes see HUD_xxx constants in section 9.
• mode HUD_NONE indicates that the HUD has been turned off.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 19

ovcMFDmode
Obsolete. Use VESSEL2::clbkMFDMode instead.
Called after the display mode of one of the MFDs (multifunctional displays) has
changed.

Synopsis:
DLLCLBK void ovcMFDmode (VESSEL *vessel, int mfd, int mode)

Parameters:
vessel vessel interface
mfd MFD identifier (see Section 9).
mode new MFD mode (see Section 9).

ovcDockEvent
Obsolete. Use VESSEL2::clbkDockEvent instead.
Called after a docking or undocking event at one of the vessel’s docking ports.

Synopsis:
void ovcDockEvent (

VESSEL *vessel,
int dock,
OBJHANDLE connected)

Parameters:
vessel vessel interface
dock docking port index
connected handle to docked vessel, or NULL for undocking event

ovcAnimate
Obsolete. Use VESSEL2::clbkAnimate instead.
Called at each simulation time step if the module has registered an animation request
and if the vessel’s visual exists.

Synopsis:
DLLCLBK void ovcAnimate (VESSEL *vessel, double simt)

Parameters:
vessel vessel interface
simt simulation up time (seconds since simulation start)

Notes:
• This callback allows the module to animate the vessel’s visual representation

(moving undercarriage, cargo bay doors, etc.)
• It is only called as long as the vessel has registered an animation (between

matching VESSEL::RegisterAnimation and VESSEL::UnregisterAnimation
calls) and if the vessel’s visual exists.

• The UnregisterAnimation call should not be placed within the body of
ovcAnimate, since it would be lost if the vessel’s visual doesn’t exist. This
should rather be placed in ovcTimestep.

ovcConsumeKey
Obsolete. Use VESSEL2::clbkConsumeDirectKey instead.
Keyboard handler. Called at each simulation time step. This callback function allows
the installation of a custom keyboard interface for the vessel.

Synopsis:
DLLCLBK int ovcConsumeKey (

VESSEL *vessel,
char *keystate)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 20

Parameters:
vessel vessel interface
keystate keyboard state

Return value:
A nonzero return value will completely disable default processing of the key state
for the current time step. To disable the default processing of selected keys only,
use the RESETKEY macro (see orbitersdk.h) and return 0.

Notes:
• The keystate contains the current keyboard state. Use the KEYDOWN

macro in combination with the key identifiers as defined in orbitersdk.h
(OAPI_KEY_xxx) to check for particular keys being pressed. Example:
if (KEYDOWN (keystate, OAPI_KEY_F10)) {
 // perform action
 RESETKEY (keystate, OAPI_KEY_F10);
 // optional: prevent default processing of the key
}

• This function should be used where a key state, rather than a key event is
required, for example when engaging thrusters or similar. To test for key
events (key pressed, key released) use ovcConsumeBufferedKey instead.

ovcConsumeBufferedKey
Obsolete. Use VESSEL2::clbkConsumeBufferedKey instead.
This callback function notifies the module of a buffered key event (key pressed or key
released).

Synopsis:
DLLCLBK int ovcConsumeBufferedKey (

VESSEL *vessel,
DWORD key,
bool down,
char *kstate)

Parameters:
vessel vessel interface
key key scan code (see OAPI_KEY_xxx constants in orbitersdk.h)
down true if key was pressed, false if key was released
kstate current keyboard state

Return value:
The function should return 1 if Orbiter’s default processing of the key should be
skipped, 0 otherwise.

Notes:
• The key state (kstate) can be used to test for key modifiers (Shift, Ctrl, etc.).

The KEYMOD_xxx macros defined in orbitersdk.h are useful for this
purpose.

• This function may be called repeatedly during a single frame, if multiple key
events have occurred in the last time step.

ovcLoadPanel
Obsolete. Use VESSEL2::clbkLoadPanel instead.
Called when Orbiter needs to load a custom instrument panel from the module.

Synopsis:
DLLCLBK bool ovcLoadPanel (VESSEL *vessel, int id)

Parameters:
vessel vessel interface
id panel identifier

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 21

Return value:
false indicates failure.

Notes:
• In the body of this function the module should define the panel background

bitmap, and panel capabilities, e.g. the position of MFDs and other
instruments, active areas (mouse hotspots) etc.

• A vessel which implements panels must at least support panel id 0 (the main
panel. If any panels register neighbour panels (see
oapiSetPanelNeighbours), all the neighbours must be supported, too.

See also:
oapiRegisterPanelBackground, oapiRegisterPanelArea, oapiRegisterMFD.

ovcPanelMouseEvent
Obsolete. Use VESSEL2::clbkPanelMouseEvent instead.
Called when a previously registered panel area receives a mouse button event.

Synopsis:
DLLCLBK bool ovcPanelMouseEvent (

VESSEL *vessel,
int id,
int event,
int mx,
int my)

Parameters:
vessel vessel interface
id panel area identifier
event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)
mx, my relative mouse position in area at event

Return value:
The function should return true if it processes the event, false otherwise.

Notes:
• Mouse events are only sent for areas which requested notification during

definition (see oapiRegisterPanelArea).

ovcPanelRedrawEvent
Obsolete. Use VESSEL2::clbkPanelRedrawEvent instead.
Called when a panel area receives a redraw event.

Synopsis:
DLLCLBK bool ovcPanelRedrawEvent (

VESSEL *vessel,
int id,
int event,
SURFHANDLE surf)

Parameters:
vessel vessel interface
id panel area identifier
event redraw event (see PANEL_REDRAW_xxx constants in orbitersdk.h)
surf area surface handle.

Return value:
The function should return true if it processes the event, false otherwise.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 22

Notes:
• This callback function is only called for areas which were not registered with

the PANEL_REDRAW_NEVER flag.
• All redrawable panel areas receive a PANEL_REDRAW_INIT redraw

notification when the panel is created, in addition to any registered redraw
notification events.

• The surface handle surf contains either the current area state, or the area
background, depending on the flags passed during area registration.

• The surface handle may be used for blitting operations, or to receive a
Windows device context (DC) for Windows-style redrawing operations.

See also:
oapiGetDC, oapiReleaseDC, oapiTriggerPanelRedrawArea

11 Class VESSEL
This class constitutes the interface with Orbiter’s internal vessel implementation, and provides
access to the various status parameters and methods of individual spacecraft. Typically, an
instance of VESSEL or a derived class will be constructed in each vessel module. Examples
for various applications of the VESSEL class can be found in the sample vessel module im-
plementations in the Orbitersdk\samples folder.

Public member functions

11.1 Construction/creation

VESSEL
Constructor. Creates a vessel interface instance from a vessel handle.

Synopsis:
VESSEL (OBJHANDLE hVessel, int flightmodel)

Parameters:
hVessel vessel handle
flightmodel level of realism requested. (0=simple, 1=realistic)

Notes:
• This function creates an interface to an existing vessel. It does not create a

new vessel. New vessels are created with the oapiCreateVessel and
oapiCreateVesselEx functions.

• The VESSEL constructor (or the constructor of a derived specialised vessel
class) will normally be invoked in the ovcInit callback function of a vessel
module:
class MyVessel: public VESSEL
{
 // MyVessel interface definition
};

DLLCLBK VESSEL *ovcInit (OBJHANDLE hvessel, int flightmodel)
{
 return new MyVessel (hvessel, flightmodel);
}

DLLCLBK void ovcExit (VESSEL *vessel)
{
 delete (MyVessel*)vessel;
}

• The VESSEL interface instance created in ovcInit should be deleted in
ovcExit.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 23

See also:
oapiCreateVessel, oapiCreateVesselEx, ovcInit

Create
Obsolete. This function has been replaced by oapiCreateVessel and
oapiCreateVesselEx.

GetHandle
Returns a handle to the vessel object.

Synopsis:
const OBJHANDLE GetHandle (void) const

Return value:
vessel handle, as passed to the VESSEL constructor.

Notes:
• The handle is useful for various API function calls.

11.2 Vessel parameters and capabilities

GetName
Returns the vessel’s name.

Synopsis:
char *GetName (void) const

Return value:
Pointer to vessel’s name.

GetClassName
Returns the vessel’s class name.

Synopsis:
char *GetClassName (void) const

Return value:
Pointer to vessel’s class name.

GetFlightModel
Returns the requested realism level for the flight model.

Synopsis:
int GetFlightModel (void) const

Return value:
Realism level. These values are currently supported:
0 = simple
1 = realistic

GetEnableFocus
Returns true if the vessel can receive the input focus, false otherwise.

Synopsis:
bool GetEnableFocus (void) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 24

Return value:
Focus enabled status.

GetSize
Returns the vessel’s mean radius.

Synopsis:
double GetSize (void) const

Return value:
Vessel mean radius [m].

GetEmptyMass
Returns vessel’s empty mass excluding fuel. Equivalent to the oapiGetEmptyMass API
function.

Synopsis:
double GetEmptyMass (void) const

Return value:
Vessel empty mass [kg].

GetCOG_elev
Returns the altitude of the vessel’s centre of gravity over ground level when landed [m].

Synopsis:
double GetCOG_elev (void) const

Return value:
elevation of vessel’s centre of mass [m].

GetCrossSections
Returns the vessel’s cross sections projected in the direction of the vessel’s principal
axes [m2]

Synopsis:
void GetCrossSections (VECTOR3 &cs) const

Parameters:
cs vector receiving the cross sections of the vessel’s projection into the

y-z, x-z, and x-y planes, respectively [m2]

GetPMI
Returns principal moments of inertia, mass-normalised [m2]

Synopsis:
void GetPMI (VECTOR3 &pmi) const

Parameters:
pmi Diagonal elements of the inertia tensor

Notes:
For the meaning of the pmi vector, see SetPMI.

GetCameraOffset
Returns the camera position for internal (cockpit) view.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 25

Synopsis:
void GetCameraOffset (VECTOR3 &ofs) const

Parameters:
ofs camera offset in the vessel’s local frame of reference [m,m,m]

GetCameraDefaultDirection
Returns the default camera direction for internal (cockpit) view.

Synopsis:
void GetCameraDefaultDirection (VECTOR3 &dir0) const

Parameters:
dir0 default camera direction in vessel coordinates

Notes:
• The default camera direction may change when the user selects a different

instrument panel or virtual cockpit position.
• The returned direction vector is normalised to length 1.

SetEnableFocus
Set the vessel’s ability to receive the input focus.

Synopsis:
void SetEnableFocus (bool enable) const

Parameters:
enable focus enabled status

Notes:
• The default focus status before the first call to SetEnableFocus is true,

unless overridden by the config file.

SetSize
Sets the vessel’s mean radius [m].

Synopsis:
void SetSize (double size) const

Parameters:
size vessel mean radius [m]

Notes:
• This value is used for visibility calculations, but normally has no influence on

the actual visual representation of the object (which is defined by the mesh)
unless the module performs mesh scaling operations.

SetEmptyMass
Sets the vessel’s empty mass excluding fuel. Equivalent to the oapiSetEmptyMass API
function.

Synopsis:
void SetEmptyMass (double m) const

Parameters:
m vessel empty mass [kg]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 26

SetCOG_elev
Obsolete. Sets the altitude of the vessel’s centre of gravity over ground level when
landed [m].

Synopsis:
void SetCOG_elev (double h) const

Parameters:
h elevation of the vessel’s centre of gravity above the surface plane

when landed [m].

Notes:
• This function is obsolete and has been replaced by SetTouchdownPoints.

SetTouchdownPoints
This defines 3 surface contact points for ground contact calculations (e.g. the points
where the landing gear touches the ground).

Synopsis:
void SetTouchdownPoints (

const VECTOR3 &pt1,
const VECTOR3 &pt2,
const VECTOR3 &pt4) const

Parameters:
pt1 touchdown point of nose wheel (or equivalent)
pt2 touchdown point of left wheel (or equivalent)
pt3 touchdown point of right wheel (or equivalent)

Notes:
• The points are the positions at which the vessel’s undercarriage (or

equivalent) touches the surface, specified in local vessel coordinates.
• The points should be specified such that the cross product pt3-pt1 x pt2-pt1

defines the horizon UP direction for the landed vessel (given a left-handed
coordinate system).

SetSurfaceFrictionCoeff
Sets the coefficients of surface friction which define the deceleration forces during
taxiing. mu_lng is the coefficient acting in longitudinal (forward) direction, mu_lat the
coefficient acting in lateral (sideways) direction. The friction forces are proportional to
the coefficient and the weight of the vessel:

GF friction µ=

Synopsis:
void SetSurfaceFrictionCoeff (

double mu_lng,
double mu_lat) const

Parameters:
mu_lng friction coefficient in longitudinal direction
mu_lat friction coefficient in lateral direction

Notes:
• The higher the coefficient, the faster the vessel will come to a halt.
• Typical parameters for a spacecraft equipped with landing wheels would be

mu_lng = 0.1 and mu_lat = 0.5. If the vessel hasn’t got wheels, mu_lng =
0.5.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 27

• The coefficients should be adjusted for belly landings when the landing gear
is retracted.

• The longitudinal and lateral directions are defined by the touchdown points:

12210ln),(
2

1
ppsppps latg

�������
−=+−=

See also:
SetTouchdownPoints

SetCrossSections
Sets the vessel’s cross sections projected in the direction of the vessel’s principal axes
[m2].

Synopsis:
void SetCrossSections (const VECTOR3 &cs) const

Parameters:
cs vector of cross sections of the vessel’s projection into the y-z, x-z, and x-

y planes, respectively [m2]

SetPitchMomentScale
Sets the magnitude of the moment acting on the vessel’s pitch angle which rotates the
vessel’s longitudinal direction towards the airspeed vector.

Synopsis:
void SetPitchMomentScale (double scale) const

Parameters:
scale scale factor for pitch moment

SetBankMomentScale
Sets the magnitude of the moment acting on the vessel’s bank angle which rotates the
vessel’s longitudinal direction towards the airspeed vector.

Synopsis:
void SetBankMomentScale (double scale) const

Parameters:
scale scale factor for bank moment

SetPMI
Sets principal moments of inertia, mass-normalised [m2].

Synopsis:
void SetPMI (const VECTOR3 &pmi) const

Parameters:
pmi Principal moments of inertia

Notes:
• The principal moments are the diagonal elements of the inertia tensor in a

frame of reference where the off-diagonal elements are zero.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 28

• The elements of pmi should be calculated as follows:

�

�

�

+=

+=

+=

drrrr
M

pmi

drrrr
M

pmi

drrrr
M

pmi

yx

zx

zy

))((
1

))((
1

))((
1

22
3

22
2

22
1

ρ

ρ

ρ

where M is the total vessel mass, ρ is the density, and the integration is
performed over the vessel volume. The reference frame is chosen so that
the off-diagonal elements of the tensor vanish.

• The shipedit utility allows to calculate the inertia tensor from a mesh,
assuming a homogeneous mass distribution.

void SetTrimScale (double) const
Sets the max. magnitude of the pitch trim control.

Synopsis:
void SetTrimScale (double scale) const

Parameters:
scale pitch trim scaling factor

Notes:
• If scale is set to zero (default) the vessel does not have a pitch trim control.

SetCameraOffset
Sets the camera position for internal (cockpit) view.

Synopsis:
void SetCameraOffset (const VECTOR3 &ofs) const

Parameters:
ofs camera offset in the vessel’s local frame of reference [m,m,m]

Notes:
• Currently the camera direction in cockpit view is always the vessel’s local +z

axis (forward).

SetCameraDefaultDirection
Sets the default camera direction for internal (cockpit) view.

Synopsis:
void SetCameraDefaultDirection (const VECTOR3 &cd) const

Parameters:
cd new camera direction in vessel coordinates

Notes:
• By default, the default direction is (0,0,1), i.e. forward.
• The supplied direction vector must be normalised to length 1.
• Calling this function automatically sets the current actual view direction to the

default direction.
• This function can either be called during ovcSetClassCaps, to define the

default camera direction globally for the vessel, or during ovcGenericCockpit,
ovcLoadPanel and clbkLoadVC, to define different default directions for
different instrument panels or virtual cockpit positions.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 29

• In Orbiter, the user can return to the default direction by pressing the “Home”
key on the cursor key pad.

SetCameraRotationRange
Sets the range over which the cockpit camera can be rotated from its default direction.

Synopsis:
void SetCameraRotationRange (

double left,
double right,
double up,
double down) const

Parameters:
left rotation range to the left [rad]
right rotation range to the right [rad]
up rotation range up [rad]
down rotation range down [rad]

Notes:
• All ranges must be ≥ 0. The left and right ranges should be < π. The up and

down ranges should be < π/2.
• The default values are 0.8π for left and right ranges, and 0.4π for up and

down ranges.

SetCameraShiftRange
Set the linear movement range for the cockpit camera. Defining a linear movement
allows the user to move the head forward or sideways, e.g. to get a better look out of a
window.

Synopsis:
void SetCameraShiftRange (

const VECTOR3 &forward,
const VECTOR3 &left,
const VECTOR3 &right) const

Parameters:
forward offset vector when leaning forward
left offset vector when leaning left
right offset vector when leaning right

Notes:
• If a linear movement range is defined with this function, the user can 'lean'

forward or sideways using the 'cockpit slew' keys. Supported keys are:

Name default action
CockpitCamDontLean Ctrl+Alt+Down return to default position
CockpitCamLeanForward Ctrl+Alt+Up lean forward
CockpitCamLeanLeft Ctrl+Alt+Left lean left
CockpitCamLeanRight Ctrl+Alt+Right lean right

• The movement vectors are taken relative to the default cockpit position
defined via SetCameraOffset.

• This function should be called when initialising a cockpit mode (e.g. in
clbkLoadPanel or clbkLoadVC). By default, Orbiter resets the linear
movement range to zero whenever the cockpit mode changes.

ParseScenarioLine
Process an input line from a scenario file by updating a VESSELSTATUS status struct.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 30

Synopsis:
void ParseScenarioLine (

char *line,
VESSELSTATUS *status) const

Parameters:
line line to be interpreted
status status parameter set

Notes:
• Normally, this function will be called from within the body of ovcLoadState to

allow Orbiter to process any generic status parameters which are not
processed by the module.

• This function is retained for backward compatibility. New modules should
use the ovcLoadStateEx and ParseScenarioLineEx functions.

ParseScenarioLineEx
Process an input line from a scenario file by updating a VESSELSTATUSx status struct
(x ≥ 2).

Synopsis:
void ParseScenarioLineEx (char *line, void *status) const

Parameters:
line line to be interpreted
status status parameters (points to a VESSELSTATUSx variable).

Notes:
• This function should be used within the body of ovcLoadStateEx.
• The parser in ovcLoadStateEx should forward all lines not recognised by the

module to Orbiter via ParseScenarioLineEx to allow processing of standard
vessel settings.

• ovcLoadStateEx currently provides a VESSELSTATUS2 status definition.
This may change in future versions, so status should not be used within
ovcLoadStateEx other than passing it to ParseScenarioLineEx.

See also:
ovcLoadStateEx

11.3 Current vessel status

GetStatus
Returns vessel’s current status parameters.

Synopsis:
void GetStatus (VESSELSTATUS &status) const

Parameters:
status struct receiving current vessel status

Notes:
• For a definition of VESSELSTATUS see Section 8.

GetStatusEx
Returns vessel’s current status parameters in a VESSELSTATUSx structure (version x
≥ 2).

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 31

Synopsis:
void GetStatusEx (void *status) const

Parameters:
status pointer to a VESSELSTATUSx structure

Notes:
• This method can be used with any VESSELSTATUSx interface version

supported by Orbiter. Currently only VESSELSTATUS2 is supported.
• The version field of the VESSELSTATUSx structure must be set by the

caller prior to calling the method, to tell Orbiter which interface version is
required.

• In addition, the caller must set the VS_FUELLIST, VS_THRUSTLIST and
VS_DOCKINFOLIST bits in the flag field, if the corresponding lists are
required. Otherwise Orbiter will not produce these lists.

• If VS_FUELLIST is specified and the fuel field is NULL, Orbiter will allocate
memory for the list. The caller is responsible for deleting the list after use. If
the fuel field is not NULL, Orbiter assumes that a list of sufficient length to
store all propellant resources has been allocated by the caller.

• The same applies to the thruster and dockinfo lists.

See also:
SetStateEx, VESSELSTATUS2

DefSetState
Calls the default Orbiter vessel state initialisation with the specified status.

Synopsis:
void DefSetState (const VESSELSTATUS *status) const

Parameters:
status vessel status parameters.

Notes:
• This function is most commonly used in ovcSetState to enable default state

initialisation.

DefSetStateEx
Calls the default Orbiter vessel state initialisation with the provided VESSELSTATUSx
interface (version x ≥ 2).

Synopsis:
void DefSetStateEx (const void *status) const

Parameters:
status pointer to a VESSELSTATUSx structure

Notes:
• status must point to a VESSELSTATUSx structure. Currently only

VESSELSTATUS2 is supported, but future Orbiter versions may introduce
new interfaces.

• Typically, this function will be called in the body of ovcSetStateEx to enable
default state initialisation.

SaveDefaultState
Obsolete. Use a call to the base class VESSEL::clbkSaveState from within the
overloaded callback function instead.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 32

Causes Orbiter to write default vessel parameters to a scenario file.

Synopsis:
void SaveDefaultState (FILEHANDLE scn) const

Parameters:
scn scenario file handle

Notes:
• This method should normally only be invoked from within ovcSaveState, to

allow Orbiter to save its default vessel status parameters.
• If ovcSaveState is implemented but does not call SaveDefaultState, no

default parameters are written to the scenario.

GroundContact
Flag indicating contact with a planetary surface.

Synopsis:
bool GroundContact (void) const

Return value:
true indicates ground contact (at least one of the vessel’s touchdown reference
points is in contact with a planet surface).

OrbitStabilised
Flag indicating whether orbit stabilisation is used for the vessel at the current time step.

Synopsis:
bool OrbitStabilised (void) const

Return value:
true indicates that the vessels uses its osculating orbital elements to update its
state vectors, assuming an unperturbed Keplerian 2-body calculation to account
for the gravitational effect of the primary gravity source.

Notes:
• A vessel reverts to orbit stabilisation only if

• the user has enabled it in the launchpad dialog, and
• the user-defined perturbation and time step limits are satisfied, and
• no non-gravitational forces (thrusters, aerodynamics, etc) are active

NonsphericalGravityEnabled
Flag indicating whether the vessel uses perturbations in gravity fields due to
nonspherical planet shapes to update its state vectors for the current time step.

Synopsis:
bool NonsphericalGravityEnabled (void) const

Return value:
true indicates that gravity perturbations are taken into account.

Notes:
• Nonspherical gravity is applied if

• the user has enabled it in the launchpad dialog
• the vessel’s orbit is not stabilised at the current time step.

GetMass
Returns current (total) vessel mass. Equivalent to the oapiGetMass API function.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 33

Synopsis:
double GetMass (void) const

Return value:
Current vessel mass [kg].

GetAttitudeMode
Returns the current RCS (reaction control system) thruster mode.

Synopsis:
int GetAttitudeMode (void) const

Return value:
Current RCS mode: RCS_NONE, RCS_ROT, or RCS_LIN.

Notes:
• The reaction control system consists of a set of small thrusters arranged

around the vessel. They can be fired in pre-defined configurations to provide
either a change in angular velocity (in RCS_ROT mode) or in linear velocity
(in RCS_LIN mode).

• RCS_NONE indicates that the RCS is disabled or not available.
• Currently Orbiter doesn’t allow simultaneous linear and rotational RCS

control via keyboard or joystick. The user has to switch between the two.
However, simultaneous operation is possible via the “RControl” plugin
module.

• Not all vessel classes may define a complete RCS.

SetAttitudeMode
Set the vessel’s attitude thruster mode.

Synopsis:
bool SetAttitudeMode (int mode) const

Parameters:
mode attitude mode (RCS_NONE, RCS_ROT, or RCS_LIN).

Return value:
Error flag; false indicates error (requested mode not available)

GetADCtrlMode
Returns current input mode for aerodynamic control surfaces (elevator, rudder,
ailerons).

Synopsis:
DWORD GetADCtrlMode (void) const

Return value:
Current control mode

Notes:
• The returned control mode contains bit flags as follows:

bit 0: elevator enabled/disabled
bit 1: rudder enabled/disabled
bit 2: ailerons enabled/disabled
Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates
fully enabled.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 34

SetADCtrlMode
Set input mode for aerodynamic control surfaces.

Synopsis:
void SetADCtrlMode (DWORD mode) const

Parameters:
mode control mode

Notes:
• See GetADCtrlMode() for the meaning of the bit-flags in mode,.

GetAttitudeRotLevel
Returns the current thrust level for attitude thruster groups in rotational mode.

Synopsis:
void VESSEL::GetAttitudeRotLevel (VECTOR3 &th) const

Parameters:
th vector containing thrust levels (-1 to 1)

Notes:
• The components of th are:

th.x – attitude thrusters rotating around lateral axis
th.y – attitude thrusters rotating around vertical axis
th.z – attitude thrusters rotating around longitudinal axis

• To obtain the actual thrust force magnitudes [N], the absolute values must
be multiplied with the max. attitude thrust (see GetMaxThrust())

See also:
VESSEL::GetMaxThrust(), VESSEL::GetAttitudeLinLevel(),
VESSEL::GetAttitudeMode()

SetAttitudeRotLevel (1)
Set attitude thruster levels for rotation in all 3 axes.

Synopsis:
void SetAttitudeRotLevel (const VECTOR3 &th) const

Parameters:
th attitude thruster levels for rotation around x,y,z axes

Notes:
• Thruster levels must be in the range [-1...1]
• This function works even if manual attitude mode is set to linear.

SetAttitudeRotLevel (2)
Set attitude thruster level for rotation around a single axis.

Synopsis:
void SetAttitudeRotLevel (int axis, double th) const

Parameters:
axis rotation axis (0=x, 1=y, 2=z)
th attitude thruster level

Notes:
• Thruster levels must be in the range [-1..1]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 35

• This function works even if manual attitude mode is set to linear.

SetAttitudeLinLevel (1)
Set attitude thruster levels for linear translation in all 3 axes.

Synopsis:
void SetAttitudeLinLevel (const VECTOR3 &th) const

Parameters:
th attitude thruster levels for translation along x,y,z

Notes:
• Thruster levels must be in the range [-1..1]
• This function works even if manual attitude mode is set to rotational.

SetAttitudeLinLevel (2)
Set attitude thruster level for linear translation along a single axis.

Synopsis:
void SetAttitudeLinLevel (int axis, double th) const

Parameters:
axis translation axis (0=x, 1=y, 2=z)
th attitude thruster level

Notes:
• Thruster levels must be in the range [-1..1]
• This function works even if manual attitude mode is set to rotational.

GetAttitudeLinLevel
Returns the current thrust level for attitude thrusters groups in linear mode.

Synopsis:
void VESSEL::GetAttitudeLinLevel (VECTOR3 &th) const

Parameters:
th vector containing thrust levels (-1 to 1)

Notes:
• The components of th are:

th.x – attitude thrusters for lateral (sideways) translation
th.y – attitude thrusters for vertical (up/down) translation
th.z – attitude thrusters for longitudinal (forward/backward) translation

• To obtain the actual thrust force magnitudes [N], the absolute values must
be multiplied with the max. attitude thrust (see GetMaxThrust())

See also:
VESSEL::GetMaxThrust(), VESSEL::GetAttitudeRotLevel(),
VESSEL::GetAttitudeMode()

ActivateNavmode
Activates a navmode.

Synopsis:
bool ActivateNavmode (int mode)

Parameters:
mode navmode id to be activated.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 36

Return value:
True if the specified navmode could be activated, false if not available or active
already.

Notes:
• Navmodes are high-level navigation modes which involve e.g. the

simultaneous and timed engagement of multiple attitude thrusters to get the
vessel into a defined state. Some navmodes terminate automatically once
the target state is reached (e.g. killrot), or they remain active until explicitly
terminated (hlevel). Navmodes may also terminate if a second conflicting
navmode is activated.

• For navmodes currently defined in Orbiter see the NAVMODE_xxx
constants.

DeactivateNavmode
Deactivates a navmode.

Synopsis:
bool DeactivateNavmode (int mode)

Parameters:
mode navmode id to be deactivated.

Return value:
True if the specified navmode could be deactivated, false if not available or if
deactivated already.

ToggleNavmode
Toggles a navmode on/off.

Synopsis:
bool ToggleNavmode (int mode)

Parameters:
mode navmode to be toggled.

Return value:
True if the navmode could be changed, false if it remains unchanged.

GetNavmodeState
Returns current state (on/off) of a navmode.

Synopsis:
bool GetNavmodeState (int mode)

Parameters:
mode navmode id to be checked.

Return value:
True if navmode is active, false otherwise.

AddForce
Add a custom body force.

Synopsis:
void AddForce (const VECTOR3 &F, const VECTOR3 &r) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 37

Parameters:
F force vector (N)
r radius vector (m)

Notes:
• This function can be used to implement custom forces (braking chutes,

tethers, etc.) It should not be used for standard forces such as thrusters
which are handled internally.

• The force is applied only for the next time step. AddForce() will therefore
usually be used inside the VESSEL2::clbkPreStep() callback function.

11.4 State vectors

GetGlobalPos
Returns vessel’s current position in the global reference frame.

Synopsis:
void GetGlobalPos (VECTOR3 &pos) const

Parameters:
pos: vector receiving position

Notes:
• The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.0.
• Units are meters.
• Equivalent to oapiGetGlobalPos(GetHandle(), &pos)

GetGlobalVel
Returns vessel’s current velocity in the global reference frame.

Synopsis:
void GetGlobalVel (VECTOR3 &vel) const

Parameters:
vel vector receiving velocity

Notes:
• The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.0.
• Units are meters/second.
• Equivalent to oapiGetGlobalVel (GetHandle(), &vel)

GetRelativePos
Returns vessel’s current position with respect to another object.

Synopsis:
void GetRelativePos (OBJHANDLE hRef, VECTOR3 &pos) const

Parameters:
hRef reference object handle
pos vector receiving position

Notes:
• Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.
• Equivalent to oapiGetRelativePos (GetHandle(), hRef, &pos)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 38

GetRelativeVel
Returns vessel’s current velocity relative to another object.

Synopsis:
void GetRelativeVel (OBJHANDLE hRef, VECTOR3 &pos) const

Parameters:
hRef reference object handle
vel vector receiving relative velocity

Notes:
• Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.
• Equivalent to oapiGetRelativeVel (GetHandle(), hRef, &vel)

GetAngularVel
Returns vessel’s current angular velocity components around its three principal axes.

Synopsis:
void GetAngularVel (VECTOR3 &avel) const

Parameters:
avel vector receiving angular velocity components [rad/s]

Notes:
• The velocity components ω are calculated from angular moments M by

Euler’s equations for rigid body motion:

zyxyxzz MJJJ =−− ωωω)(�
where J are the principal moments of inertia (J=PMI*mass). Note that the
differential equations are coupled which leads to a transfer of rotational
energy between the rotation axes.

GetEquPos
Returns vessel’s current equatorial position (longitude, latitude and radius) with respect
to the closest planet or moon.

Synopsis:
OBJHANDLE GetEquPos (

double &longitude,
double &latitude,
double &radius) const

Parameters:
longitude variable receiving longitude value [rad]
latitude variable receiving latitude value [rad]
radius variable receiving radius value [m]

Return value:
Handle to reference body to which the parameters refer. NULL indicates failure
(no reference body available).

11.5 Fuel management
CreatePropellantResource

Creates a new propellant resource (“tank”) to be used for powering thrusters.
Synopsis:

PROPELLANT_HANDLE CreatePropellantResource (
double maxmass,

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 39

double mass=-1.0,
double efficiency=1.0) const

Parameters:
maxmass maximum propellant capacity of the resource [kg]
mass current propellant mass of the resource [kg]
efficiency fuel efficiency factor (> 0)

Return value:
propellant resource identifier

Notes:
• Orbiter doesn’t distinguish between propellant and oxidant. A “propellant

resource” is assumed to be a combination of fuel and oxidant resources.
• The interpretation of a propellant resource (liquid or solid propulsion system,

ion drive, etc.) is up to the vessel developer.
• The rate of fuel consumption depends on the thrust level and Isp of the

thrusters attached to the resource.
• The fuel efficiency rating, together with a thruster’s Isp rating, determines

how much fuel is consumed per second to obtain a given thrust:

Ispe

F
R

⋅
=

R: fuel rate [kg/s], F: thrust [N], e: efficiency, Isp: fuel-specific impulse [m/s]
• If mass < 0 then mass=maxmass is assumed.

DelPropellantResource
Remove a propellant resource and disable all thrusters which were linked to this
resource.

Synopsis:
void DelPropellantResource (PROPELLANT_HANDLE &ph) const

Parameters:
ph propellant resource identifier (NULL on return)

ClearPropellantResources
Remove all propellant resources and unlink all thrusters from their resources.

Synopsis:
void ClearPropellantResources (void) const

Notes:
• After a call to this function, all the vessel’s thrusters will be disabled until they

are linked to new resources.

GetPropellantHandleByIndex
Returns the handle of a propellant resource for a given index.

Synopsis:
PROPELLANT_HANDLE GetPropellantHandleByIndex (

DWORD idx) const

Parameters:
idx propellant resource index

Return value:
propellant resource handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 40

Notes:
• The index must be in the range between 0 and npropellant-1, where

npropellant is the number of propellant resources defined for the vessel (use
GetPropellantCount to obtain this value). If the index is out of range, the
returned handle is NULL.

• The index of a given propellant resource may change if any resources are
deleted. The handle remains valid until the corresponding resource is
deleted.

GetPropellantCount
Returns the number of propellant resources currently defined for the vessel.

Synopsis:
DWORD GetPropellantCount (void) const

Return value:
Number of propellant resources currently defined for the vessel.

SetDefaultPropellantResource
Define a “default” propellant resource. This is used for the various legacy fuel-related
API functions, and for the “Fuel” indicator in the generic panel-less HUD display.

Synopsis:
void SetDefaultPropellantResource (

PROPELLANT_HANDLE ph) const

Parameters:
ph propellant resource identifier

Notes:
• If this function is not used, the first propellant resource is used as default.

See also:
GetFuelMass(), GetFuelRate(), SetFuelMass(), SetMaxFuelMass(),
GetMaxFuelMass()

SetPropellantMaxMass
Reset the maximum capacity [kg] of a fuel resource.

Synopsis:
void SetPropellantMaxMass (

PROPELLANT_HANDLE ph,
double maxmass) const

Parameters:
ph propellant resource identifier
maxmass max. fuel capacity (≥ 0) [kg]

SetPropellantEfficiency
Reset the efficiency factor of a fuel resource.

Synopsis:
void SetPropellantEfficiency (

PROPELLANT_HANDLE ph,
double efficiency) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 41

Parameters:
ph propellant resource identifier
efficiency fuel efficiency factor (> 0)

Notes:
• See CreatePropellantResource() for an explanation of the fuel

efficiency factor.

SetPropellantMass
Set current mass of a propellant resource.

Synopsis:
void SetPropellantMass (

PROPELLANT_HANDLE ph,
double mass) const

Parameters:
ph propellant resource identifier
mass propellant mass [kg]

Notes:
• 0 ≤ mass ≤ maxmass is required.
• This method should be used to simulate refuelling, fuel leaks, cross-feeding

between tanks, etc. but not for normal fuel consumption by thrusters (which
is handled internally by the Orbiter core).

GetPropellantMass
Returns the current mass of a propellant resource.

Synopsis:
double GetPropellantMass (PROPELLANT_HANDLE ph) const

Parameters:
ph propellant resource identifier

Return value:
current propellant mass [kg]

GetPropellantMaxMass
Returns the maximum capacity [kg] of a fuel resource.

Synopsis:
double GetPropellantMaxMass (PROPELLANT_HANDLE ph) const

Parameters:
ph propellant resource identifier

Return value:
max. fuel capacity [kg]

GetPropellantEfficiency
Returns the efficiency factor of a fuel resource.

Synopsis:
double GetPropellantEfficiency (PROPELLANT_HANDLE ph) const

Parameters:
ph propellant resource identifier

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 42

Return value:
fuel efficiency factor

GetPropellantFlowrate
Returns the mass flow rate of a fuel resource.

Synopsis:
double GetPropellantFlowrate (PROPELLANT_HANDLE ph) const

Parameters:
ph propellant resource identifier

Return value:
Propellant mass flow rate [kg/s].

GetTotalPropellantMass
Returns the vessel’s current total propellant mass.

Synopsis:
double GetTotalPropellantMass (void) const

Return value:
Current total propellant mass [kg]

GetTotalPropellantFlowrate
Returns the current total mass flow rate, summed over all propellant resources.

Synopsis:
double GetTotalPropellantFlowrate (void) const

Return value:
Total propellant mass flow rate [kg/s]

See also:
GetPropellantFlowrate(), GetFuelRate()

GetFuelMass
Returns the current mass of the vessel’s default propellant resource.

Synopsis:
double GetFuelMass (void) const

Return value:
Current fuel mass of default propellant resource [kg]

See also:
GetPropellantMass(), SetDefaultPropellantResource()

GetFuelRate
Returns the vessel’s current propellant mass flow rate for the default propellant
resource.

Synopsis:
double GetFuelRate (void) const

Return value:
Propellant mass flow rate for default propellant resource [kg/s]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 43

See also:
GetPropellantFlowrate()

SetFuelMass
Sets the current fuel mass of the vessel’s default propellant resource [kg].

Synopsis:
void SetFuelMass (double m) const

Parameters:
m Current fuel mass [kg].

Notes:
• If the vessel has not defined any propellant resources then this function has

no effect.

See also:
SetPropellantMass(), SetDefaultPropellantResource()

SetMaxFuelMass
Sets the maximum fuel capacity of the vessel’s default propellant resource, or creates a
new resource if none exists.

Synopsis:
void SetMaxFuelMass (double m) const

Parameters:
m Maximum fuel mass [kg].

Notes:
• If the vessel already contains propellant resources, this function resets the

maximum capacity of the vessel’s default resource, otherwise it creates a
new resource with this capacity, and makes it the default resource.

See also:
SetPropellantMaxMass(), SetDefaultPropellantResource()

GetMaxFuelMass
Returns the maximum fuel capacity of the vessel’s default propellant resource.

Synopsis:
double GetMaxFuelMass (void) const

Return value:
Maximum fuel mass of default propellant resource [kg].

Notes:
• The function returns 0 if no fuel resources are defined.

See also:
GetPropellantMaxMass(), SetDefaultPropellantResource()

11.6 Thruster management
CreateThruster

Add a logical thruster definition for the vessel.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 44

Synopsis:
THRUSTER_HANDLE CreateThruster (

const VECTOR3 &pos,
const VECTOR3 &dir,
double maxth0,
PROPELLANT_HANDLE hp=NULL,
double isp0=0.0,
double isp_ref=0.0,
double p_ref=101.4e3) const;

Parameters:
pos thrust force attack point (vessel coordinates)
dir thrust force direction (vessel coordinates)
maxth0 max. vacuum thrust rating [N]
hp propellant resource for the thruster
isp0 vacuum Isp (fuel-specific impulse) rating [m/s]
isp_ref Isp rating at ambient pressure p_ref [m/s]
p_ref reference pressure for Isp rating [Pa]

Return value:
thruster identifier

Notes:
• The fuel-specific impulse defines how much thrust is produced by burning

1kg of fuel per second. If the Isp level is not specified or is ≤ 0, a default
value is used (see SetISP()).

• To define the thrust and Isp ratings to be pressure-dependent, specify an
isp_ref value > 0, and set p_ref to the corresponding atmospheric
pressure. Thrust and Isp at pressure p will then be calculated as

)1()(),1()(00 ηη pThpThpIsppIsp −=−= , where
0Ispp ref

=η
• If isp_ref ≤ 0 then no pressure-dependence is assumed (η = 0)
• If no propellant resource is specified, the thruster is disabled until it is linked

to a resource by SetThrusterResource().
• Thrusters can now create simultaneous linear and angular moments,

depending on the attack point and direction.
• Use CreateThrusterGroup() to assemble thrusters into logical groups.

See also:
DelThruster(), CreateThrusterGroup(), AddExhaust(), SetISP(),
SetThrusterISP(), SetThrusterResource()

DelThruster
Delete a logical thruster definition.

Synopsis:
bool DelThruster (THRUSTER_HANDLE &th) const

Parameters:
th thruster identifier (NULL on return)

Return value:
true on success. The function will fail if the handle is invalid.

Notes:
• Deleted thrusters will be automatically removed from all groups they have

been assigned to.
• All exhaust render definitions which refer to the deleted thruster will be

removed.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 45

See also:
CreateThruster(), AddExhaust(), CreateThrusterGroup()

ClearThrusterDefinitions
Removes all thruster and thruster group definitions.

Synopsis:
void ClearThrusterDefinitions () const

Notes:
• This also removes all previously defined exhaust render definitions.

GetThrusterHandleByIndex
Returns the handle of a thruster specified by its index.

Synopsis:
THRUSTER_HANDLE GetThrusterHandleByIndex (DWORD idx) const

Parameters:
idx thruster index

Return value:
Thruster handle

Notes:
• The index must be between 0 and nthruster-1, where nthruster is the thruster

count returned by VESSEL::GetThrusterCount. If the index is out of range,
the returned handle is NULL.

• Note that the thruster indices change if vessel thrusters are deleted. A
thruster handle remains valid until the corresponding thruster is deleted.

GetThrusterCount
Returns the number of thrusters currently defined for the vessel.

Synopsis:
DWORD GetThrusterCount (void) const

Return value:
Number of thrusters defined for the vessel.

SetThrusterResource
Connects the thruster to a fuel resource (tank).

Synopsis:
void SetThrusterResource (

THRUSTER_HANDLE th,
PROPELLANT_HANDLE ph) const

Parameters:
th thruster identifier
ph fuel resource identifier

Notes:
• To disconnect the thruster from its current tank, use ph=NULL.

SetThrusterRef
Reset the thrust force attack point of a thruster.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 46

Synopsis:
void SetThrusterRef (

THRUSTER_HANDLE th,
const VECTOR3 &pos) const

Parameters:
th thruster identifier
pos new attack point

Notes:
• This function should be used whenever a thruster has been physically

moved in the vessel’s local frame of reference.

GetThrusterRef
Returns the thrust force attack point of a thruster.

Synopsis:
void GetThrusterRef (

THRUSTER_HANDLE th,
VECTOR3 &pos) const

Parameters:
th thruster identifier
pos attack point

SetThrusterDir
Reset the force direction of a thruster.

Synopsis:
void SetThrusterDir (

THRUSTER_HANDLE th,
const VECTOR3 &dir) const

Parameters:
th thruster identifier
dir new thrust direction

Notes:
• This function should be used to reflect a tilt of the thruster (e.g. for an

implementation of thrust vectoring)

GetThrusterDir
Returns the force direction of a thruster.

Synopsis:
void GetThrusterDir (

THRUSTER_HANDLE th,
VECTOR3 &dir) const

Parameters:
th thruster identifier
dir thrust direction

SetThrusterMax0
Reset the maximum vacuum thrust rating of a thruster.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 47

Synopsis:
void SetThrusterMax0 (THRUSTER_HANDLE th, double maxth0)
const

Parameters:
th thruster identifier
maxth0 new maximum vacuum thrust rating [N]

Notes:
• The max. thrust rating in the presence of atmospheric ambient pressure may

be lower if a pressure-dependent Isp value has been defined.

See also:
CreateThruster, SetThrusterIsp

GetThrusterMax0
Returns the maximum vacuum thrust rating of a thruster.

Synopsis:
double GetThrusterMax0 (THRUSTER_HANDLE th) const

Parameters:
th thruster identifier

Return value:
Maximum vacuum thrust rating [N]

Notes:
• To retrieve the actual current maximum thrust rating (which may be lower in

the presence of ambient atmospheric pressure) use GetThrusterMax.

GetThrusterMax (1)
Returns the current maximum thrust rating of a thruster.

Synopsis:
double GetThrusterMax (THRUSTER_HANDLE th) const

Parameters:
th thruster identifier

Return value:
maximum thrust rating at the current atmospheric pressure [N]

Notes:
• This function will return the vacuum max thrust rating, unless a pressure-

dependent Isp value has been defined for the thruster.

See also:
CreateThruster, SetThrusterIsp

GetThrusterMax (2)
Returns maximum thrust rating of a thruster for a specific ambient pressure.

Synopsis:
double GetThrusterMax (

THRUSTER_HANDLE th,
double p_ref) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 48

Parameters:
th thruster identifier
p_ref reference pressure [Pa]

Return value:
maximum thrust rating [N] at atmospheric pressure p_ref.

SetThrusterIsp (1)
Reset the fuel-specific impulse rating of a thruster, assuming no pressure-dependence.

Synopsis:
void SetThrusterIsp (THRUSTER_HANDLE th, double isp) const

Parameters:
th thruster identifier
isp new Isp rating [m/s]

Notes:
• The specified Isp value is assumed to be independent of ambient

atmospheric pressure. To define a pressure-dependent Isp value, use
SetThrusterIsp (2).

See also:
SetISP, SetThrusterIsp (2)

SetThrusterIsp (2)
Reset pressure-dependent fuel-specific impulse rating of a thruster.

Synopsis:
void SetThrusterIsp (

THRUSTER_HANDLE th,
double isp0,
double isp_ref,
double p_ref=101.4e3) const

Parameters:
th thruster identifier
isp0 new vacuum Isp rating [m/s]
isp_ref Isp rating at ambient pressure p_ref [m/s]
p_ref reference pressure for Isp rating [Pa]

Notes:
• See CreateThruster for equations of pressure-dependent thrust and Isp.

See also:
CreateThruster, SetISP, SetThrusterIsp (1)

GetThrusterIsp (1)
Returns current fuel-specific impulse (Isp) rating of a thruster.

Synopsis:
double GetThrusterIsp (THRUSTER_HANDLE th) const

Parameters:
th thruster identifier

Return value:
Current fuel-specific impulse [m/s]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 49

Notes:
• The return value will depend on the current ambient atmospheric pressure if

a pressure-dependent Isp rating has been defined for this thruster.

See also:
SetThrusterIsp, GetThrusterIsp (2)

GetThrusterIsp (2)
Returns Isp rating for a thruster at a specific ambient pressure.

Synopsis:
double GetThrusterIsp (

THRUSTER_HANDLE th,
double p_ref) const

Parameters:
th thruster identifier
p_ref reference pressure [Pa]

Return value:
Fuel-specific impulse [m/s] at ambient pressure p_ref.

Notes:
• Unless a pressure-dependent Isp rating has been defined for this thruster, it

will always return the vacuum rating, independent of the specified pressure.
• To obtain vacuum Isp rating, set p_ref to 0.
• To obtain the Isp rating at (Earth) sea level, set p_ref to 101.4e3.

GetThrusterIsp0
Returns vacuum Isp rating for a thruster.

Synopsis:
double GetThrusterIsp0 (THRUSTER_HANDLE th) const

Parameters:
th thruster identifier

Return value:
Fuel-specific impulse in vacuum [m/s].

Notes:
• This function is equivalent to GetThrusterIsp (th, 0)

SetThrusterLevel
Set the current thrust level [0..1] for a thruster.

Synopsis:
void SetThrusterLevel (

THRUSTER_HANDLE th,
double level) const

Parameters:
th thruster identifier
level thrust level [0..1].

Notes:
• At level 1 the thruster generates maximum force, as defined by its maxth

parameter.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 50

• Certain thrusters are controlled directly by Orbiter via primary input controls
(e.g. joystick throttle control for main thrusters), which may override this
function.

SetThrusterLevel_SingleStep
Set thrust level for the current time step only.

Synopsis:
SetThrusterLevel_SingleStep (

THRUSTER_HANDLE th,
double level) const

Parameters:
th thruster identifier
level thrust level [0..1]

Notes:
• At level 1 the thruster generates maximum force, as defined by its maxth

parameter.
• This method is applied only to the current time step, so it should normally

only be used in the body of the VESSEL2::clbkPreStep() callback function.

IncThrusterLevel_SingleStep
Increment thrust level for the current time step only.

Synopsis:
void IncThrusterLevel_SingleStep (

THRUSTER_HANDLE th,
double dlevel) const

Parameters:
th thruster identifier
dlevel delta thrust level [0..1]

Notes:
• This method is applied only to the current time step, so it should normally

only be used in the body of the VESSEL2::clbkPreStep() callback function.
• This function may be overridden by manual user input via keyboard and

joystick, or by automatic attitude sequences.
• The resulting thrust level is clamped to range [0..1]

GetThrusterLevel
Returns the current thrust level for a thruster.

Synopsis:
double GetThrusterLevel (THRUSTER_HANDLE th) const

Parameters:
th thruster identifier

Return value:
Current thrust level [0..1]

Notes:
• To obtain the actual force [N] generated by the thruster in vacuum, multiply

the thrust level with its maximum thrust rating. However, the thrust force in
the presence of ambient atmospheric pressure may be lower if
SetThrustPressureDependency has been applied.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 51

GetThrusterMoment
Returns the linear moment (force) and angular moment (torque) currently generated by
a thruster.

Synopsis:
void GetThrusterMoment (

THRUSTER_HANDLE th,
VECTOR3 &F,
VECTOR3 &T) const

Parameters:
th thruster identifier
F force (linear moment)
T torque (angular moment)

Notes:
• The returned values include the influence of ambient pressure on the thrust

generated by the engine.

CreateThrusterGroup
Combine thrusters into a logical group.

Synopsis:
THGROUP_HANDLE CreateThrusterGroup (

THRUSTER_HANDLE *th,
int nth,
THGROUP_TYPE thgt) const

Parameters:
th array of thruster identifiers, as returned by CreateThruster()
nth number of thrusters in the array
thgt thruster group type (see notes)

Return value:
thruster group identifier

Notes:
• The following group types are defined:

THGROUP_MAIN main thrusters
THGROUP_RETRO retro thrusters
THGROUP_HOVER hover thrusters
THGROUP_ATT_PITCHUP rotation: pitch up
THGROUP_ATT_PITCHDOWN rotation: pitch down
THGROUP_ATT_YAWLEFT rotation: yaw left
THGROUP_ATT_YAWRIGHT rotation: yaw right
THGROUP_ATT_BANKLEFT rotation: bank left
THGROUP_ATT_BANKRIGHT rotation: bank right
THGROUP_ATT_RIGHT translation: move right
THGROUP_ATT_LEFT translation: move left
THGROUP_ATT_UP translation: move up
THGROUP_ATT_DOWN translation: move down
THGROUP_ATT_FORWARD translation: move forward
THGROUP_ATT_BACK translation: move back
THGROUP_USER user-defined group

• Thruster groups (except for user-defined groups) are engaged by Orbiter as
a result of user input. For example, pushing the stick backward in rotational

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 52

attitude mode will engage the thrusters in the THGROUP_ATT_PITCHUP
group.

• It is the responsibility of the vessel designer to make sure that the thruster
groups are designed so that they behave in a sensible way.

• Thrusters can be added to more than one group. For example, an attitude
thruster can be simultaneously grouped into THGROUP_ATT_PITCHUP and
THGROUP_ATT_UP.

• Rotational thrusters should be designed so that they don’t induce a
significant linear momentum. This means rotational groups require at least 2
thrusters each.

• Linear thrusters should be designed such that they don’t induce a significant
angular momentum.

• If a vessel does not define a complete set of attitude thruster groups, certain
navmode sequences (e.g. KILLROT) may fail.

See also:
CreateThruster()

DelThrusterGroup (1)
Delete a thruster group and (optionally) all associated thrusters.

Synopsis:
bool DelThrusterGroup (

THGROUP_HANDLE &thg,
THGROUP_TYPE thgt,
bool delth = false) const

Parameters:
thg thruster group identifier (NULL on return)
thgt thruster group type (see CreateThrusterGroup)
delth thruster destruction flag

Return value:
true on success.

Notes:
• If delth==true, all thrusters associated with the group will be destroyed. Note

that this can have side effects if the thrusters were associated with multiple
groups, since they are removed from all those groups as well.

DelThrusterGroup (2)
Delete a default thruster group and (optionally) all associated thrusters.

Synopsis:
bool DelThrusterGroup (

THGROUP_TYPE thgt,
bool delth = false) const

Parameters:
thgt thruster group type (excluding THGROUP_USER)
delth thruster destruction flag

Return value:
true on success

Notes:
• This version can only be used for default thruster groups (< THGROUP_USER)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 53

• If delth==true, all thrusters associated with the group will be destroyed. Note
that this can have side effects if the thrusters were associated with multiple
groups, since they are removed from all those groups as well.

GetThrusterGroupHandle
Returns the handle of one of the default thruster groups, specified by its type.

Synopsis:
THGROUP_HANDLE GetThrusterGroupHandle (

THGROUP_TYPE thgt) const

Parameters:
thgt thruster group type (for a list, see notes to

CreateThrusterGroup)

Return value:
thruster group handle (or NULL if no group is defined for the specified type).

Notes:
• The thruster group type must not be THGROUP_USER. To retrieve the

handle of a nonstandard thruster group, use
GetUserThrusterGroupHandleByIndex.

GetUserThrusterGroupHandleByIndex
Returns the handle of a user-defined (nonstandard) thruster group specified by its
index.

Synopsis:
THGROUP_HANDLE GetUserThrusterGroupHandleByIndex (

DWORD idx) const

Parameters:
idx index of user-defined thruster group

Return value:
thruster group handle

Notes:
• Use this method only to retrieve handles for nonstandard thruster groups

(created with the THGROUP_USER flag). For standard groups, use
GetThrusterGroupHandle instead.

• The index must be in the range between 0 and nuserthgroup-1, where
nuserthgroup is the number of nonstandard thruster groups. Use
GetUserThrusterGroupCount to obtain this value.

GetUserThrusterGroupCount
Returns the number of user-defined (nonstandard) thruster groups.

Synopsis:
DWORD GetUserThrusterGroupCount (void) const

Return value:
number of user-defined thruster groups.

Notes:
• The value returned by this method only includes user-defined thruster

groups (created with the THGROUP_USER flag). It does not contain any of the
standard thruster groups (such as THGROUP_MAIN, etc.)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 54

SetThrusterGroupLevel (1)
Set the thrust level for all thrusters in a group.

Synopsis:
void SetThrusterGroupLevel (

THGROUP_HANDLE thg,
double level) const

Parameters:
thg thruster group identifier
level new thruster level

SetThrusterGroupLevel (2)
Set the thrust level for all thrusters in a standard group.

Synopsis:
void SetThrusterGroupLevel (

THGROUP_TYPE thgt,
double level) const

Parameters:
thgt thruster group type
level new thruster level

Notes:
• This method can only be used for standard thruster group types (the types

listed in CreateThrusterGroup except THGROUP_USER).

IncThrusterGroupLevel (1)
Increment the thrust level for all thrusters in a group.

Synopsis:
void IncThrusterGroupLevel (

THGROUP_HANDLE thg,
double dlevel) const

Parameters:
thg thruster group identifier
dlevel thrust level increment

Notes:
• Thrust levels will automatically be truncated to the range [0..1]
• Use negative dlevel to decrement the thrust level.

IncThrusterGroupLevel (2)
Increment the thrust level for all thrusters in a standard group.

Synopsis:
void IncThrusterGroupLevel (

THGROUP_TYPE thgt,
double dlevel) const

Parameters:
thgt thruster group type
dlevel thrust level increment

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 55

Notes:
• This method can only be used for standard thruster group types (the types

listed in CreateThrusterGroup except THGROUP_USER).
• Thrust levels will automatically be truncated to the range [0..1]
• Use negative dlevel to decrement the thrust level.

GetThrusterGroupLevel (1)
Retrieve the average thrust level for a thruster group.

Synopsis:
double GetThrusterGroupLevel (THGROUP_HANDLE thg) const

Parameters:
thg thruster group identifier

Return value:
Average thrust level [0..1]

Notes:
• This function is probably only useful if all thrusters in the group have the

same maximum thrust rating, otherwise it is difficult to interpret the average
value.

GetThrusterGroupLevel (2)
Retrieve the average thrust level for a default thruster group.

Synopsis:
double GetThrusterGroupLevel (THGROUP_TYPE thgt) const

Parameters:
thgt thruster group type

Return value:
Average thrust level [0..1]

GetManualControlLevel
Returns the thrust level of an attitude thruster group requested by the user via
keyboard or joystick input.

Synopsis:
double VESSEL::GetManualControlLevel (

THGROUP_TYPE thgt,
DWORD mode = MANCTRL_ATTMODE,
DWORD device = MANCTRL_ANYDEVICE) const

Parameters:
thgt thruster group identifier
mode attitude control mode (see notes)
device input device (see notes)

Return value:
Manual level for the specified thruster group (0..1)

Notes:
• device can be one of the following:

MANCTRL_KEYBOARD: retrieve keyboard thrust input
MANCTRL_JOYSTICK: retrieve joystick thrust input
MANCTRL_ANYDEVICE: retrieve input from any device

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 56

• mode can be one of the following:
MANCTRL_ATTMODE: retrieve level for the vessel’s current attitude mode
MANCTRL_ROTMODE: retrieve level for rotational modes only
MANCTRL_LINMODE: retrive level for linear modes only
MANCTRL_ANYMODE: retrieve level for rotational and linear modes

• If mode is not MANCTRL_ANYMODE, only thruster groups which are of the
specified mode (linear or rotational) will return nonzero values.

AddExhaust (1)
Add an exhaust render definition for a thruster.

Synopsis:
UINT AddExhaust (

THRUSTER_HANDLE th,
double lscale,
double wscale,
SURFHANDLE tex = 0) const

Parameters:
th thruster identifier
lscale exhaust flame size (length) [m]
wscale exhaust flame size (width) [m]
tex texture handle for custom exhaust flames

Return value:
Exhaust identifier

Notes:
• Thrusters defined with CreateThruster do not by default render exhaust

effects, until an exhaust definition has been specified with AddExhaust.
• The size of the exhaust flame is automatically scaled by the thrust level.
• This version retrieves exhaust reference position and direction directly from

the thruster setting, and will therefore automatically reflect any changes
caused by SetThrusterRef and SetThrusterDir.

• To use a custom exhaust texture, set tex to a surface handle returned by
oapiRegisterExhaustTexture. If tex == 0, the default texture is used.

See also:
CreateThruster, SetThrusterRef, SetThrusterDir, SetThrusterLevel,
oapiRegisterExhaustTexture

AddExhaust (2)
Add an exhaust render definition for a thruster with explicit reference position and
direction.

Synopsis:
UINT AddExhaust (

THRUSTER_HANDLE th,
double lscale,
double wscale,
const VECTOR3 &pos,
const VECTOR3 &dir,
SURFHANDLE tex = 0) const

Parameters:
th thruster identifier
lscale exhaust flame size (length) [m]
wscale exhaust flame size (width) [m]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 57

pos reference position in the local vessel frame
dir exhaust direction
tex texture handle for custom exhaust flames

Return value:
Exhaust identifier

Notes:
• Unlike AddExhaust (1), this version uses the explicitly provided reference

position and direction, rather than using the thruster parameters.
• This allows multiple exhaust render definitions to refer to a single thruster

definition, e.g. where multiple thrusters have been combined into a single
“logical” thruster definition. This technique can be used to simplify the
description of thruster groups which are always addressed synchronously.

• The exhaust direction should be opposite to the thrust direction of the
thruster it refers to.

• Exhaust positions and directions are fixed in this version, so they will not
react to changes caused by SetThrusterRef and SetThrusterDir.

• To use a custom exhaust texture, set tex to a surface handle returned by
oapiRegisterExhaustTexture. If tex == 0, the default texture is used.

See also:
oapiRegisterExhaustTexture

DelExhaust
Removes an exhaust render definition.

Synopsis:
bool DelExhaust (UINT idx) const

Parameters:
idx exhaust identifier

Return value:
Error status; false if exhaust definition did not exist.

GetMaxThrust
Obsolete. Returns maximum thrust rating [N] for one of the vessel’s engine groups,
defined by eng.

Synopsis:
double GetMaxThrust (ENGINETYPE eng) const

Parameters:
eng engine group identifier

Return value:
Maximum thrust rating [N]

Notes:
• This function has been replaced by GetThrusterGroupLevel.
• For eng==ENGINE_ATTITUDE, the function returns the group thrust rating

for the THGROUP_ATT_PITCHUP group. Other attitude thrust groups may
have different parameters.

SetMaxThrust
Obsolete. Sets the maximum thrust rating for engine group eng to th [N].

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 58

This function has been superseded by CreateThruster and CreateThrusterGroup. It is
retained for backward compatibility and can still be used to define a simplified thruster
implementation (see notes).

Synopsis:
void SetMaxThrust (ENGINETYPE eng, double th) const

Parameters:
eng engine group identifier
th maximum thrust rating [N]

Notes:
• This method can still be used to implement a simple, idealised thruster

configuration, but it should not be mixed with the new thruster functions
CreateThruster and CreateThrusterGroup.

• In the context of the new thruster interface, this function now performs the
following functions:

eng action
ENGINE_MAIN thr = CreateThruster (_V(0,0,0), _V(0,0,1), th);

CreateThrusterGroup (&thr, 1, THGROUP_MAIN);

ENGINE_RETRO thr = CreateThruster (_V(0,0,0), _V(0,0,-1), th);

CreateThrusterGroup (&thr, 1, THGROUP_RETRO);

ENGINE_HOVER thr = CreateThruster (_V(0,0,0), _V(0,1,0), th);

CreateThrusterGroup (&thr, 1, THGROUP_HOVER);

ENGINE_ATTITUDE This creates a complete set of linear and rotational attitude

thrusters and attitude thruster groups (see below)

• Calling SetMaxThrust for ENGINE_ATTITUDE will create all 12
THGROUP_ATT_xxx groups (see CreateThrusterGroup) and add one
thruster to each linear group (max. rating th), and 2 thrusters to each
rotational group (max. rating ½ th each), creating 18 thrusters in total. Any
previous THGROUP_ATT_xxx definitions will be overwritten. Thrusters are
mounted in an ‘ideal’ configuration, such that linear groups do not induce
angular moments, and rotational groups do not induce linear moments. All
linear thrusters are mounted in the centre of gravity, all rotational thrusters
are mounted at a distance of Size from the centre of gravity. (This means
that the vessel’s size must have been set by a previous call to SetSize).

SetISP
Sets a default Isp value for subsequently created thrusters.

Synopsis:
void SetISP (double isp) const

Parameters:
isp fuel-specific impulse [m/s].

Notes:
• The Isp defines the amount of thrust [N] obtained by burning 1 kg of fuel per

second. (or conversely, the amount of fuel consumed to attain a given thrust
level)

• The effect of this function has changed from v.020419: previously it
redefined the global Isp value for all thrusters. Now it only takes effect for
subsequently defined thrusters which do not explicitly specify their own Isp
rating (see CreateThruster).

• Before the first call to SetISP, the default Isp value is 5⋅104 m/s.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 59

See also:
CreateThruster, SetThrusterISP

GetISP
Returns vessel’s current default fuel-specific impulse.

Synopsis:
double GetISP (void) const

Return value:
Fuel-specific impulse [m/s]. This is the amount of thrust [N] obtained by burning
1kg of fuel per second.

Notes:
• The effect of this function has changed from v.020419: previously it returned

the global Isp value for all thrusters. Now it returns the current default Isp
value which will be used for all subsequently defined thrusters which do not
define individual Isp settings.

• To obtain an actual Isp value for a thruster, use GetThrusterISP.

See also:
SetISP, GetThrusterISP

SetEngineLevel
Obsolete. Sets the thrust level for an engine group.
This function has been replaced by SetThrusterGroupLevel.

Synopsis:
void SetEngineLevel (ENGINETYPE eng, double level) const

Parameters:
eng engine group identifier
level thrust level (0..1)

Notes:
• Main engine level –x is equivalent to retro engine level +x and vice versa.

IncEngineLevel
Obsolete. Increase or decrease the thrust level for an engine group.
This function has been replaced by IncThrusterGroupLevel.

Synopsis:
void IncEngineLevel (ENGINETYPE eng, double dlevel) const

Parameters:
eng engine group identifier
dlevel thrust increment

Notes:
• Use negative dlevel to decrease the engine’s thrust level.
• Levels are clipped to valid range.

GetEngineLevel
Obsolete. Returns the thrust level for an engine group.
This function has been replaced by GetThrusterGroupLevel.

Synopsis:
double GetEngineLevel (ENGINETYPE eng) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 60

Parameters:
eng engine group identifier

Return value:
thrust level (0..1)

Notes:
• For main engines, this does not include externally defined, module-controlled

thrusters
• This function does not work for attitude thrusters.

GetMainThrustModPtr
Obsolete. This function is no longer supported.

AddExhaustRef
Obsolete. Replaced by AddExhaust.

DelExhaustRef
Obsolete. Replaced by DelExhaust.

ClearExhaustRefs
Deletes all exhaust render definitions.

Synopsis:
void ClearExhaustRefs (void)

Notes:
• This function clears the render definitions for all thrusters, but does not affect

the physical thruster behaviour. To remove thrusters physically, use
ClearThrusterDefinitions instead.

AddAttExhaustRef
Obsolete. Adds an exhaust render definition for an attitude thruster. This function is
only retained for backward compatibility and may be removed in a future version. Use
AddExhaust instead.

Synopsis:
UINT AddAttExhaustRef (

const VECTOR3 &pos,
const VECTOR3 &dir,
double wscale = 1.0,
double lscale = 1.0) const

Parameters:
pos exhaust reference position (in local vessel coordinates)
dir exhaust direction (normalised)
wscale exhaust render width scaling factor
lscale exhaust render length scaling factor

Return value:
Attitude exhaust id.

Notes:
• This function only affects the exhaust rendering, not the physical parameters

of the attitude engines.
• After creating an attitude thruster with AddAttExhaustRef, it must be

assigned to one or more attitude modes with AddAttExhaustMode.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 61

See also:
AddExhaust

AddAttExhaustMode
Obsolete. Assign an attitude thruster to an attitude mode. This function is only retained
for backward compatibility and may be removed in a future version. Use AddExhaust
instead.

Synopsis:
void AddAttExhaustMode (

UINT idx,
ATTITUDEMODE mode,
int axis,
int dir) const

Parameters:
idx attitude exhaust id, as returned by AddAttExhaustRef.
mode ATTMODE_ROT or ATTMODE_LIN
axis rotation/translation axis (0=x, 1=y, 2=z)
dir rotation/translation direction (0 or 1)

Notes:
• An attitude thruster can be assigned to more than one mode (e.g. a

rotational and a linear mode)
• Multiple attitude thrusters can be assigned to a single mode.
• The following attitude modes are available:

mode axis dir used for
ATTMODE_ROT 0 0 pitch up
ATTMODE_ROT 0 1 pitch down
ATTMODE_ROT 1 0 yaw left
ATTMODE_ROT 1 1 yaw right
ATTMODE_ROT 2 0 roll right
ATTMODE_ROT 2 1 roll left
ATTMODE_LIN 0 0 move right
ATTMODE_LIN 0 1 move left
ATTMODE_LIN 1 0 move up
ATTMODE_LIN 1 1 move down
ATTMODE_LIN 2 0 move forward
ATTMODE_LIN 2 1 move back

See also:
AddExhaust

ClearAttExhaustRefs
Obsolete. Replaced by DelExhaust, DelThruster and ClearThrusterDefinitions. This
function does no longer have any effect.

11.7 Docking port management
CreateDock

Create a new docking port.

Synopsis:
DOCKHANDLE CreateDock (

const VECTOR3 &pos,
const VECTOR3 &dir,
const VECTOR3 &rot) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 62

Parameters:
pos dock reference position in vessel coordinates
dir approach direction in vessel coordinates
rot longitudinal rotation alignment vector

Return value:
dock handle

Notes:
• The dir and rot vectors should be normalised to length 1.
• The rot vector should be perpendicular to the dir vector.
• When two vessels connect at their docking ports, the relative orientation of

the vessels is defined such that their respective approach direction vectors
(dir) are anti-parallel, and their longitudinal alignment vectors (rot) are
parallel.

DelDock
Delete a previously defined docking port.

Synopsis:
bool DelDock (DOCKHANDLE hDock) const

Parameters:
hDock dock handle

Return value:
false indicates failure (invalid dock handle)

Notes:
• Any object docked at the docking port will be undocked before the dock is

deleted.

ClearDockDefinitions
Delete all docking ports defined for the vessel.

Synopsis:
void ClearDockDefinitions (void) const

Notes:
• Any docked objects will be undocked before deleting the docking ports.

DockCount
Returns number of docking ports defined for the vessel.

Synopsis:
UINT DockCount (void) const

Return value:
Number of docking ports.

SetDockParams (1)
Set the parameters for the vessel’s primary docking port (port 0), or create a new dock
if required.

Synopsis:
void SetDockParams (

const VECTOR3 &pos,
const VECTOR3 &dir,

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 63

const VECTOR3 &rot) const

Parameters:
pos dock reference position in vessel coordinates
dir approach direction in vessel coordinates
rot longitudinal rotation alignment vector

Notes:
• This function creates a new docking port if none was previously defined.

Otherwise it overwrites the parameters for dock 0.
• See CreateDock for additional notes on the parameters.

SetDockParams (2)
Reset the parameters for for a vessel dock.

Synopsis:
void SetDockParams (

DOCKHANDLE dock,
const VECTOR3 &pos,
const VECTOR3 &dir,
const VECTOR3 &rot) const

Parameters:
dock dock identifier
pos new dock reference position
dir new approach direction
rot new longitudinal rotation alignment vector

Notes:
• This function should not be called while the dock is engaged.

GetDockParams
Returns the parameters of a docking port.

Synopsis:
void GetDockParams (

DOCKHANDLE dock,
VECTOR3 &pos,
VECTOR3 &dir,
VECTOR3 &rot) const;

Parameters:
dock dock handle
pos dock reference position
dir approach direction
rot longitudinal rotation alignment vector

GetDockHandle
Returns a handle to a docking port.

Synopsis:
DOCKHANDLE GetDockHandle (UINT n) const

Parameters:
n docking port index (≥ 0)

Return value:
dock handle, or NULL if index was out of range.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 64

GetDockStatus
Returns a handle to a docked vessel.

Synopsis:
OBJHANDLE GetDockStatus (DOCKHANDLE dock) const

Parameters:
dock dock handle

Return value:
Handle to vessel docked at the specified port, or NULL if no vessel is docked at
that port.

DockingStatus
Returns a flag indicating whether a given dock is engaged.

Synopsis:
UINT DockingStatus (UINT port) const

Parameters:
port docking port index (≥0)

Return value:
port status: 0 = free, 1 = docked

Notes:
• This function has the same functionality as

(GetDockStatus (GetDockHandle(port)) ? 1:0)

Undock
Release a docked vessel from a docking port.

Synopsis:
bool Undock (UINT n, const OBJHANDLE exclude = 0) const

Parameters:
n docking port index or ALLDOCKS
exclude optional handle of a vessel to be excluded from undocking

Return value:
true if at least one vessel was released from a port.

Notes:
• If n is set to ALLDOCKS, all docking ports are released simultaneously.
• If exclude is nonzero, this vessel will not be undocked. This is useful for

implementing remote undocking in combination with ALLDOCKS.

11.8 Attachment management
Similar to docking ports, attachment points allow to connect two or more vessel objects.
There are a few important differences:
• Docking ports establish peer connections, attachments establish parent-child hierarchies:

A parent vessel can have multiple attached children, but each child can only be attached
to a single parent.

• Attachments use a simplified physics engine: the root parent alone defines the object’s
trajectory (both for freespace and atmospheric flight). The children are assumed to have
no influence on flight behaviour.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 65

• Orbiter establishes docking connections automatically if the docking ports of two vessels
are brought close to each other. Attachment connections are only established by API
calls.

• Currently, docking connections only work in freeflight. Attachments also work for landed
vessels.

Attachment connections are useful for attaching small objects to larger vessels. For example,
Orbiter uses attachments to connect payload items to the Space Shuttle’s cargo bay or the tip
of the RMS manipulator arm (see Orbitersdk\samples\Atlantis).

Attachment points use an identifier string (up to 8 characters) which can provide a method to
establish compatibility. For example, the Atlantis RMS arm tip will only connect to attachment
points with an id string that contains “GS” in the first 2 characters (it ignores the last 6
characters).
Now let’s assume somebody creates another Shuttle (say a Buran) with its own RMS arm. He
could then allow it to
• grapple exactly the same objects as Atlantis, by checking for “GS”.
• grapple a subset of objects grapplable by Atlantis, by checking additional characters, for

example “GSX”.
• grapple all objects grapplable by Atlantis, plus additional objects, for example by checking

for “GS” or “GX”
• grapple entirely different objects, for example by checking for “GX”.

To connect a satellite into the payload bay, Atlantis uses the id “XS” (This means that the
payload bay connection can not be used for grappling. To allow a satellite to be grappled and
stored in the payload bay, it must define both a “GS” and an “XS” attachment point).

CreateAttachment
Define a new attachment point for a vessel.

Synopsis:
ATTACHMENTHANDLE CreateAttachment (

bool toparent,
const VECTOR3 &pos,
const VECTOR3 &dir,
const VECTOR3 &rot,
const char *id,
bool loose = false) const

Parameters:
toparent If true, the attachment can be used to connect to a parent (i.e.

vessel acts as child). Otherwise, attachment is used to connect to a
child (i.e. vessel acts a parent).

pos attachment point position in vessel coordinates
dir attachment direction in vessel coordinates
rot longitudinal alignment vector in vessel coordinates
id compatibility identifier
loose If true, allow loose connections (see notes)

Return value:
Handle to the new attachment point

Notes:
• A vessel can define multiple parent and child attachment points, and can

subsequently have multiple children attached, but it can only be attached to
a single parent at any one time.

• the dir and rot vectors should both be normalised to length 1, and they
should be orthogonal.

• The identifier string can contain up to 8 characters. It can be used to define
compatibility between attachment points.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 66

• If the attachment point is defined as loose, then the relative orientation
between the two attached objects is frozen to the orientation between them
at the time the connection was established. Otherwise, the two objects snap
to the orientation defined by their “dir” vectors.

SetAttachmentParams
Reset attachment position and orientation for an existing attachment point.

Synopsis:
void SetAttachmentParams (

ATTACHMENTHANDLE attachment,
const VECTOR3 &pos,
const VECTOR3 &dir,
const VECTOR3 &rot) const

Parameters:
attachment attachment handle
pos new attachment point position in vessel coordinates
dir new attachment direction in vessel coordinates
rot new longitudinal alignment vector in vessel coordinates

Notes:
• If the parameters of an attachment point are changed while a vessel is

attached to that point, the attached vessel will be shifted to the new position
automatically.

• the dir and rot vectors should both be normalised to length 1, and they
should be orthogonal.

GetAttachmentParams
Retrieve the parameters of an attachment point.

Synopsis:
void GetAttachmentParams (

ATTACHMENTHANDLE attachment,
VECTOR3 &pos,
VECTOR3 &dir,
VECTOR3 &rot) const

Parameters:
attachment attachment handle
pos attachment point position
dir attachment direction
rot longitudinal alignment vector

GetAttachmentId
Retrieve attachment identifier string.

Synopsis:
const char *GetAttachmentId (

ATTACHMENTHANDLE attachment) const

Parameters:
attachment attachment handle

Return value:
pointer to attachment string (8 characters)

GetAttachmentStatus
Return the current status of an attachment point.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 67

Synopsis:
OBJHANDLE GetAttachmentStatus (

ATTACHMENTHANDLE attachment) const

Parameters:
attachment attachment handle

Return value:
Handle of the attached vessel, or NULL if no vessel is attached to this point.

AttachmentCount
Return the number of child or parent attachment points defined for a vessel.

Synopsis:
DWORD AttachmentCount (bool toparent) const

Parameters:
toparent If true, return the number of attachment points to parents.

Otherwise, return the number of attachment points to children.

Return value:
Number of defined attachment points to connect to parents or to children.

GetAttachmentIndex
Return the list index of a vessel’s attachment point defined by its handle.

Synopsis:
DWORD GetAttachmentIndex (

ATTACHMENTHANDLE attachment) const

Parameters:
attachment attachment handle

Return value:
List index (≥ 0)

Notes:
• A vessel defines separate lists for child and parent attachment points.

Therefore two different attachment points may return the same index.

GetAttachmentHandle
Return the handle of an attachment point identified by its list index.

Synopsis:
ATTACHMENTHANDLE GetAttachmentHandle (

bool toparent, DWORD i) const

Parameters:
toparent If true, return handle for attachment point to parent. Otherwise,

return handle for attachment point to child.
i attachment index

Return value:
Attachment handle

AttachChild
Attach a child vessel to an attachment point.

Synopsis:
bool AttachChild (

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 68

OBJHANDLE child,
ATTACHMENTHANDLE attachment,
ATTACHMENTHANDLE child_attachment) const

Parameters:
child handle of child vessel to be attached
attachment attachment point to which the child is to be attached
child_attachment attachment point on the child to which we want to attach

Return value:
true indicates success, false indicates failure (child refuses attachment)

Notes:
• The attachment handle must refer to an attachment “to child” (i.e. created

with toparent=false); the child_attachment handle must refer to an
attachment “to parent” on the child object (i.e. created with toparent=true). It
is not possible to connect two parent or two child attachment points.

• A child can only be connected to a single parent at any one time. If the child
is already connected to a parent, the previous parent connection is severed.

• The child may check the parent attachment’s id string and, depending on the
value, refuse to connect. In that case, the function returns false.

DetachChild
Break an existing attachment to a child.

Synopsis:
bool DetachChild (

ATTACHMENTHANDLE attachment,
double vel = 0.0) const

Parameters:
attachment attachment handle
vel separation velocity [m/s]

Return value:
true when detachment is successful, false if no child was attached, or if child
refuses to detach.

11.9 Orbital elements

Note: Calculating elements from state vectors is expensive. If possible, avoid calling the
functions in this group at each frame. On the other hand, once any function in this group has
been called, calling other functions during the same time step is not expensive.

GetGravityRef
Returns a handle to the main contributor of the gravity field at the vessel’s current
position.

Synopsis:
const OBJHANDLE GetGravityRef () const

Return value:
Handle to gravity reference object.

GetElements
Returns vessel’s primary orbital elements w.r.t. dominant gravitational source.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 69

Synopsis:
OBJHANDLE GetElements (ELEMENTS &el, double &mjd_ref) const

Parameters:
el primary orbital elements (semi-major axis a, eccentricity e,

inclination i, longitude of ascending node θ, longitude of periapsis ϖ,
mean longitude at epoch L)

mjd_ref reference epoch in MJD (Modified Julian Date) format

Return value:
Handle of reference object. NULL indicates failure (no elements available).

Notes:
• There are various ways to specify orbital elements. Note that here we use

the longitude of the ascending node (not anomaly of the ascending node),
and longitude of periapsis, and that the mean anomaly L refers to epoch
(mjd_ref), not to date (so it should not change over time unless the orbit itself
changes).

GetArgPer
Returns argument of periapsis.

Synopsis:
OBJHANDLE GetArgPer (double &arg) const

Parameters:
arg argument of periapsis for current orbit [rad]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

GetSMi
Returns semi-minor axis.

Synopsis:
OBJHANDLE GetSMi (double &smi) const

Parameters:
smi semi-minor axis for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

GetApDist
Returns apoapsis distance.

Synopsis:
OBJHANDLE GetApDist (double &apdist) const

Parameters:
apdist apoapsis distance for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

GetPeDist
Returns periapsis distance.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 70

Synopsis:
OBJHANDLE GetPeDist (double &pedist) const

Parameters:
pedist periapsis distance for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

11.10 Surface-relative parameters
GetSurfaceRef

Returns a handle to the closest planet or moon. This is the object to which all surface-
relative parameters refer.

Synopsis:
const OBJHANDLE GetSurfaceRef () const;

Return value:
Handle to surface reference object (planet or moon)

GetAltitude
Returns altitude above closest planet/moon.

Synopsis:
double GetAltitude (void) const

Return value:
altitude [m]

GetAirspeed
Returns magnitude of the freestream airflow velocity vector measured in ship-relative
coordinates.

Synopsis:
double GetAirspeed (void) const

Return value:
Magnitude of airflow velocity [m/s]

Notes:
• This function also works in the absence of an atmosphere. At low altitudes,

the returned value is a ground-speed equivalent. At high altitudes the value
diverges from ground speed, since an atmospheric drag effect is assumed.

• This function returns the length of the vector returned by
GetShipAirspeedVector.

GetHorizonAirspeedVector
Returns airspeed vector in local horizon coordinates.

Synopsis:
bool GetHorizonAirspeedVector (VECTOR3 &v) const

Parameters:
v variable receiving airspeed vector [m/s]

Return value:
false indicates error.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 71

Notes:
• This function returns the airspeed vector in the reference frame of the local

horizon. x = longitudinal component, y = vertical component, z = latitudinal
component.

GetShipAirspeedVector
Returns airspeed vector in the vessel’s local coordinates.

Synopsis:
bool GetShipAirspeedVector (VECTOR3 &v) const

Parameters:
v variable receiving airspeed vector [m/s]

Return value:
false indicates error

Notes:
• This function returns the airspeed vector in local ship coordinates. x = lateral

component, y = vertical component, z = longitudinal component.

GetAOA
Returns AOA (angle of attack). This is the pitch angle between the velocity vector and
the vessel’s longitudinal axis.

Synopsis:
double GetAOA (void) const

Return value:
angle of attack [rad]

GetSlipAngle
Returns the lateral (yaw) angle between the velocity vector and the vessel’s
longitudinal axis.

Synopsis:
double GetSlipAngle (void) const

Return value:
lateral slip angle [rad]

GetPitch
Returns pitch angle in local horizon frame.

Synopsis:
double GetPitch (void) const

Return value:
pitch angle [rad]

GetBank
Returns bank angle in local horizon frame.

Synopsis:
double GetBank (void) const

Return value:
bank angle [rad]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 72

11.11 Transformations

ShiftCentreOfMass
Register a shift in the centre of mass after a structural change (e.g. stage separation)

Synopsis:
void ShiftCentreOfMass (const VECTOR3 &shift)

Parameters:
shift CoM displacement vector.

Notes:
• This function should be called after a vessel has undergone a structural

change which shifted the centre of mass, and which resulted in a change of
the mesh component offsets of -shift. It will do two things:
1. Translate the vessel’s world reference point by +shift to compensate for

the mesh offset shift.
2. Drag the camera so that it centers at the new CoM (if in external mode

tracking the concerned vessel).

GetSuperstructureCG
Returns the centre of mass of the superstructure to which the vessel belongs, if
applicable.

Synopsis:
bool GetSuperstructureCG (VECTOR3 &cg) const

Parameters:
cg superstructure centre of mass [m,m,m]

Return value:
true if vessel is part of a superstructure, false otherwise.

Notes:
• The returned vector is the position of the superstructure centre of mass, in

coordinates of the local vessel frame.
• If the vessel is not part of a superstructure, cg returns (0,0,0).

GetRotationMatrix
Returns the vessel’s current rotation matrix for transformations from the vessel’s local
frame of reference to the global (world) frame of reference.

Synopsis:
void GetRotationMatrix (MATRIX3 &R) const

Parameters:
R rotation matrix

Notes:
• To transform a point rlocal from local vessel coordinates to a global point

rglobal, the following formula is used:
rglobal = R rlocal + pvessel,
where pvessel is the vessel’s global position.

• This transformation can be directly performed by a call to Local2Global.

GlobalRot
Performs a rotation of a direction from the local vessel frame to the global frame.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 73

Synopsis:
void GlobalRot (

const VECTOR3 &rloc,
VECTOR3 &rrot) const

Parameters:
rloc point in local vessel coordinates (input)
rrot rotated point (output)

Notes:
• This function is equivalent to multiplying rloc with the rotation matrix returned

by GetRotationMatrix.
• Should be used to transform directions. To transform points, use

Local2Global, which additionally adds the vessel’s global position to the
rotated point.

HorizonRot
Performs a rotation of a direction from the local vessel frame to the current local
horizon frame.

Synopsis:
void HorizonRot (

const VECTOR3 &rloc,
VECTOR3 &rhorizon) const

Parameters:
rloc vector in local vessel coordinates (input)
rhorizon vector in local horizon coordinates (output)

Notes:
• The local horizon frame is defined as follows:

y is “up” direction (planet centre to vessel centre)
z is “north” direction
x is “east” direction

Local2Global
Performs a transformation from local vessel to global coordinates.

Synopsis:
void Local2Global (

const VECTOR3 &local,
VECTOR3 &global) const

Parameters:
local point in local vessel coordinates (input)
global transformed point in global coordinates (output)

Notes:
• This function maps a point from the vessel’s local coordinate system

(centered at the vessel CG) into the global ecliptical system (centered at the
solar system barycentre).

• The transform has the form

vessellocvesselglob ppRp +=
where Rvessel is the vessel’s global rotation matrix (as given by
GetRotationMatrix), and pvessel is the vessel position in the global frame.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 74

Global2Local
Performs a transformation from global to local vessel coordinates.

Synopsis:
void Global2Local (

const VECTOR3 &global,
VECTOR3 &local) const

Parameters:
global point in global coordinates (input)
local transformed point in local vessel coordinates (output)

Notes:
• This is the inverse transform of Local2Global; it maps a point from global

ecliptical coordinates into the vessel’s local frame.
• The transform has the form

)(1
vesselglobvesselloc ppRp −= −

where Rvessel is the vessel’s global rotation matrix (as given by
GetRotationMatrix), and pvessel is the vessel position in the global frame.

Local2Rel
Performs a transformation from the local vessel frame to the global ecliptical frame,
relative to the vessel’s reference body.

Synopsis:
void Local2Rel (const VECTOR3 &local, VECTOR3 &rel) const

Parameters:
local point in local vessel coordinates (input)
rel transformed point in reference body-relative global coordiates

(output)

Notes:
• This function maps a point from the vessel’s local coordinate system

(centered at the vessel CG) into an ecliptical coordinate system centered at
the vessel’s reference object’s CG (e.g. the planet that is currently being
orbited).

• A handle to the reference object can be obtained via
VESSEL::GetGravityRef. The reference object may change if the vessel
enters a different object’s sphere of influence.

• The transformation has the form

refvessellocvesselrel pppRp −+=
where Rvessel is the vessel’s global rotation matrix (as given by
GetRotationMatrix), and pvessel and pref are the CG positions of the vessel and
reference body in the global frame, respectively.

11.12 Atmospheric parameters
GetAtmRef

Returns a handle to the reference body for atmospheric calculations.

Synopsis:
const OBJHANDLE GetAtmRef (void) const

Return value:
Handle to the celestial body whose atmosphere the vessel is currently moving
through, or NULL if the vessel is not inside an atmosphere.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 75

GetAtmTemperature
Returns atmospheric temperature [K] at current vessel position.

Synopsis:
double GetAtmTemperature (void) const

Return value:
atmospheric temperature [K] at curremt vessel position.

Notes:
• This function returns 0 if the vessel is outside all planetary atmospheric hulls,

as defined by the planets’ AtmAltLimit parameters.

GetAtmDensity
Returns atmospheric density [kg/m3] at current vessel position.

Synopsis:
double GetAtmDensity (void) const

Return value:
atmospheric density [kg/m3] at current vessel position.

Note:
• This function returns 0 if the vessel is outside all planetary atmospheric hulls,

as defined by the planets’ AtmAltLimit parameters.

GetAtmPressure
Returns static atmospheric pressure [Pascal] at current vessel position.

Synopsis:
double GetAtmPressure (void) const

Return value:
atmospheric pressure [Pa] at current vessel position.

Note:
• This function returns 0 if the vessel is outside all planetary atmospheric hulls,

as defined by the planets’ AtmAltLimit parameters.

11.13 Aerodynamics
GetDynPressure

Returns the current dynamic pressure for the vessel.

Synopsis:
double GetDynPressure (void) const

Return value:
Current vessel dynamic pressure [Pa].

Notes:
• The dynamic pressure is defined as q = ½ ρ V2 with density ρ and airflow

velocity V. Dynamic pressure is an important aerodynamic parameter.

GetMachNumber
Returns the vessel’s current Mach number.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 76

Synopsis:
double GetMachNumber (void) const

Return value:
Mach number – the ratio of current freestream airflow velocity over speed of
sound.

Notes:
• The speed of sound depends on several parameters, e.g. atmospheric

composition and temperature. The Mach number can therefore vary even if
the airspeed is constant.

SetCW
Sets the vessel’s wind resistance coefficients along the local reference axes
[dimensionless].

Synopsis:
void SetCW (

double cw_z_pos,
double cw_z_neg,
double cw_x,
double cw_y) const

Parameters:
cw_z_pos resistance in positive z direction (forward)
cw_z_neg resistance in negative z direction (back)
cw_x resistance in lateral direction
cw_y resistance in vertical direction

Notes:
• The first value (cw_z_pos) is the coefficient used if the vessel’s airspeed z-

component is positive (vessel moving forward). The second value is used if
the z-component is negative (vessel moving backward).

• Lateral and vertical components are assumed symmetric.
• The cw coefficients are only used if no airfoils are defined (see CreateAirfoil),

in which case the flight model reverts to legacy parasite drag calculation.

GetCW
Returns the vessel’s wind resistance coefficients in the principal directions
[dimensionless].

Synopsis:
void GetCW (

double &cw_z_pos,
double &cw_z_neg,
double &cw_x,
double &cw_y) const

Parameters:
cw_z_pos resistance in positive z direction (forward)
cw_z_neg resistance in negative z direction (back)
cw_x resistance in lateral direction
cw_y resistance in vertical direction

Notes:
• The first value (cw_z_pos) is the coefficient used if the vessel’s airspeed z-

component is positive (vessel moving forward). The second value is used if
the z-component is negative (vessel moving backward).

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 77

• Lateral and vertical components are assumed symmetric.
• The cw coefficients are only used if no airfoils are defined (see CreateAirfoil),

in which case the flight model reverts to legacy parasite drag calculation.

SetRotDrag
Sets the vessel’s resistance against rotation around axes in atmosphere.

Synopsis:
void SetRotDrag (const VECTOR3 &rd) const

Parameters:
rd drag components for rotation around the 3 vessel axes

GetRotDrag
Returns the vessel’s resistance rx,y,z against rotation around axes in atmosphere.

Synopsis:
void GetRotDrag (VECTOR3 &rd) const

Parameters:
rd rotational drag coefficient in the three coordinate axes of the

vessel’s frame of reference.

Notes:
• rd contains the components rx,y,z against rotation around axes in atmosphere,

where angular deceleration due to atmospheric friction is a(ω)
x,y,z = -ω(ω)

x,y,z q
Sy rx,y,z with angular velocity ω(ω) , dynamic pressure q, and reference surface
Sy, defined by the vessel’s cross section projected along the vertical (y) axis.

CreateAirfoil
Define the lift and drag characteristics of an airfoil.

Synopsis:
void CreateAirfoil (

AIRFOIL_ORIENTATION align,
const VECTOR3 &ref,
AirfoilCoeffFunc cf,
double c,
double S,
double A) const

Parameters:
align lift vector orientation (LIFT_VERTICAL or LIFT_HORIZONTAL)
ref lift and drag vector attack point
cf pointer to coefficient callback function (see notes)
c airfoil chord length [m]
S wing area [m2]
A wing aspect ratio

Notes:
• A vessel can define multiple airfoils (for wings, main body, tail stabilisators,

etc.). In general, it should define at least one vertical and one horizontal
component.

• Airfoil definitions for wings and horizontal stabilisers set align to
LIFT_VERTICAL. Vertical stabilisers (vertical tail fin, etc) set align to
LIFT_HORIZONTAL.

• The location of the attack point (together with the moment coefficient) is
important for the aerodynamic stability of the vessel. Usually the attack point

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 78

will be aft of the CG, and the moment coefficient will have a negative slope
around the trim angle of attack.

• The AirfoilCoeffFunc is a callback function which must be supplied by the
module which calculates the lift, moment and drag coefficients for the airfoil.
It has the following interface:

void AirfoilCoeffFunc (
double aoa, double M, double Re,
double *cl, double *cm, double *cd)

and returns the lift coefficient (cl), moment coefficient (cm) and drag
coefficient (cd) as a function of angle of attack aoa [rad], Mach number M
and Reynolds number Re. Note that aoa can range over the full circle (-π to
π). For vertical lift components, aoa is the pitch angle of attack (α), while for
horizontal components it is the yaw angle of attack (β). Some useful
functions for calculating the coefficients can be found in Section 17.7.

• If the wing area S is set to 0, then Orbiter uses the projected vessel cross
sections to define a reference area. Let),,(ˆ

zyx vvvv = be the unit vector of
freestream air flow in vessel coordinates. Then the reference area is
calculated as yyzz CvCvS += for a LIFT_VERTICAL airfoil, and as

xxzz CvCvS += for a LIFT_HORIZONTAL airfoil, where Cx, Cy, Cz are the
vessel cross-sections in x, y and z direction, respectively.

• The wing aspect ratio is defined as defined as A = b2/S with wing span b.
• A vessel should typically define its airfoils in the ovcSetClassCaps callback

function. If no airfoils are defined, Orbiter will fall back to its legacy (pre-
030601) drag calculation, using the cw coefficients defined in SetCW.
Legacy lift calculation is no longer supported.

• For more details, see the Programmer’s Guide.

CreateAirfoil2
Identical to CreateAirfoil, but returns a handle for the new airfoil.

Synopsis:
AIRFOILHANDLE CreateAirfoil2 (

AIRFOIL_ORIENTATION align,
const VECTOR3 &ref,
AirfoilCoeffFunc cf,
double c,
double S,
double A) const

Parameters:
See CreateAirfoil.

Return value:
Handle for the new airfoil.

Notes:
• Use this function if you need to reference the airfoil later (e.g. to delete it).

DelAirfoil
Delete a previously defined airfoil.

Synopsis:
bool DelAirfoil (AIRFOILHANDLE hAirfoil) const

Parameters:
hAirfoil airfoil handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 79

Return value:
false indicated failure (invalid handle)

Notes:
• Avoid deleting all airfoils without creating new ones, because this will cause

Orbiter to revert to the obsolete legacy atmospheric flight model.

ClearAirfoilDefinitions
Remove all airfoil definitions currently defined for the vessel.

Synopsis:
void ClearAirfoilDefinitions (void) const

Notes:
• This function is useful if a vessel needs to re-define all its airfoil definitions as

a result of a structural change.
• After clearing all airfoils, you should generate new ones. Even wingless

objects (such as capsules) should define their aerodynamic behaviour by
airfoils (see CreateAirfoil). Vessels without airfoil definitions revert to the
obsolete legacy atmospheric flight model.

CreateControlSurface
Create an airfoil control surface (elevator, rudder, aileron, flaps, etc.) which allows
atmospheric flight control.

Synopsis:
void CreateControlSurface (

AIRCTRL_TYPE type,
double area,
double dCl,
const VECTOR3 &ref,
int axis = AIRCTRL_AXIS_AUTO,
UINT anim = (UINT)-1) const

Parameters:
type Control type. This is a member of the AIRCTRL_TYPE enumeration

type (see notes).
area control surface area [m2]
dCl shift in lift coefficient achieved by fully extended control
ref lift/drag force attack point for the control
axis Control rotation axis. This is a member of the

AIRCTRL_AXIS_AUTO enumeration type (see notes).
anim animation reference, if applicable

Notes:
• The following control types are available:

AIRCTRL_ELEVATOR elevator (pitch control)
AIRCTRL_RUDDER rudder (yaw control)
AIRCTRL_AILERON aileron (bank control)
AIRCTRL_FLAP flaps

• The following control axis types are available:
AIRCTRL_AXIS_AUTO automatic axis selection
AIRCTRL_AXIS_YPOS +Y axis (vertical)
AIRCTRL_AXIS_YNEG -Y axis (vertical)
AIRCTRL_AXIS_XPOS +X axis (transversal)
AIRCTRL_AXIS_XNEG -X axis (transversal)
where switching between positive and negative axes reverses the effect of
the control. Automatic axis control will select the following axes:

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 80

Elevator: XPOS
Rudder: YPOS
Aileron: XPOS if ref.x > 0,

XNEG otherwise
Flap: XPOS

• At least 2 control surfaces must be defined for ailerons (e.g. on the left and
right wing) with opposite rotation axes, to obtain the angular moment for
banking the vessel.

• Elevators will usually use the XPOS axis, assuming the attack point is aft of
the CG. If pitch control is provided by a canard configuration ahead of the
CG, XNEG should be used instead.

• To improve performance, multiple control surfaces may sometimes be
defined by a single call to CreateControlSurface. For example, the elevator
controls on the left and right wing may be combined by setting a centered
attack point.

• Control surfaces can be animated, by passing an animation reference to
CreateControlSurface. The animation reference is obtained from a call to
CreateAnimation(). The animation should support a state in the range from 0
to 1, with neutral surface position at state 0.5.

SetControlSurfaceLevel
Modify the position of a control surface.

Synopsis:
void SetControlSurfaceLevel (

AIRCTRL_TYPE type,
double level) const

Parameters:
type Control type. This is a member of the AIRCTRL_TYPE enumeration

type.
level new setting (-1 .. 1)

Notes:
• This function is only useful for flap and trim controls, because elevators,

rudder and ailerons are normally continuously scanned from the keyboard
and joystick inputs and overridden in each frame.

GetControlSurfaceLevel
Retrieve the current position of a control surface.

Synopsis:
double GetControlSurfaceLevel (AIRCTRL_TYPE type) const

Parameters:
type Control type. This is a member of the AIRCTRL_TYPE enumeration

type.

Return value:
Current control position (-1 to 1).

CreateVariableDragElement
Attach a drag force to the vessel whose magnitude is controlled by an external variable
which may vary between 0 (no drag) and 1 (full drag). Useful for defining drag
produced by movable parts such as landing gear.

Synopsis:
void CreateVariableDragElement (

double *drag,
double factor,

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 81

const VECTOR3 &ref) const

Parameters:
drag pointer to external control parameter
factor drag magnitude scale factor
ref drag attack point

Notes:
• The magnitude of the drag force is calculated as

∞⋅⋅= qfdD

where d is the control parameter (drag), f is the scale factor, and q� is the
freestream dynamic pressure.

• Depending on the attack point, the drag force may induce an angular
moment.

• Control parameter d should be restricted to values between 0 and 1.

ClearVariableDragElements
Remove all drag components previously defined with CreateVariableDragElement.

Synopsis:
void ClearVariableDragElements () const

SetWingAspect
Obsolete. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
It sets the wing aspect ratio (wingspan2 / wing area).

Synopsis:
void SetWingAspect (double aspect) const

Parameters:
aspect wing aspect ratio [dimensionless]

Notes:
• The value defined by this function is only used in legacy mode, i.e. if the

vessel does not define any airfoils via CreateAirfoil.
• Default value is 1.0

GetWingAspect
Obsolete. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
Returns the vessel’s wing aspect ratio (wingspan2 / wing area).

Synopsis:
double GetWingAspect (void) const

Return value:
Wing aspect ratio (wingspan2 / wing area)

Notes:
• The value returned by this function is used by Orbiter only for legacy

vessels, i.e. vessels which do not define any airfoils via CreateAirfoil.

SetWingEffectiveness
Obsolete. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
Sets the wing form factor. Used for lift and drag calculation.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 82

Synopsis:
void SetWingEffectiveness (double we) const

Parameters:
we wing form factor.

Notes:
• The value defined by this function is only used in legacy mode, i.e. if the

vessel does not define any airfoils via CreateAirfoil.
• Typical values are: ~3.1 for elliptic wings, ~2.8 for tapered wings, ~2.5 for

rectangular wings.

GetWingEffectiveness
Obsolete. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
Returns wing form factor: ~3.1 for elliptic wings, ~2.8 for tapered wings, ~2.5 for
rectangular wings.

Synopsis:
double GetWingEffectiveness (void) const

Return value:
Wing form factor.

Notes:
• The value returned by this function is used by Orbiter only for legacy

vessels, i.e. vessels which do not define any airfoils via CreateAirfoil.
• This form factor describes the wing’s effectiveness in producing lift in an

atmosphere as a function of its shape.

SetLiftCoeffFunc
Obsolete. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
Installs callback function for calculation of lift coefficient as a function of angle of attack.

Synopsis:
void SetLiftCoeffFunc (LiftCoeffFunc lcf) const

Parameters:
lcf callback function pointer with the following interface:

double LiftCoeff (double aoa)

Notes:
• The preferred method for defining lift and drag characteristics is via the

CreateAirfoil method, which is much more versatile. Orbiter ignores the
SetLiftCoeffFunc function if any airfoils have been created with CreateAirfoil.

• The callback function must be able to deal with aoa values in the range –π ...
π.

• If the function is not installed, the vessel is assumed not to produce any lift.

11.14 Surface contact parameters
SetSurfaceFrictionCoeff

Set the surface friction coefficients in longitudinal and lateral direction.

Synopsis:
void SetSurfaceFrictionCoeff (

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 83

double mu_lng,
double mu_lat) const

Parameters:
mu_lng longitudinal coefficient
mu_lat lateral coefficient

Notes:
• The friction forces for each touchdown reference point which intersects the

surface are calculated by
f = cF M g
where cF: friction coefficient, M: vessel mass: g: surface g-force

• Vessels with landing gear should define mu_lng < mu_lat. For isotropic
surface friction, mu_lng = mu_lat should be used.

• The default values are mu_lng = 0.1, mu_lat = 0.5.

SetMaxWheelbrakeForce
Define the maximum force which can be provided by the vessel’s wheel brake system.

Synopsis:
void SetMaxWheelbrakeForce (double f) const

Parameters:
f maximum force [N]

SetWheelbrakeLevel
Apply the wheel brake.

Synopsis:
void SetWheelbrakeLevel (

double level,
int which = 0,
bool permanent = true) const

Parameters:
level wheelbrake level (0..1)
which 0 = both, 1 = left, 2 = right main gear
permanent true sets the level permanently, false only applies to current time

step

GetWheelbrakeLevel
Returns the current wheel brake level.

Synopsis:
double GetWheelbrakeLevel (int which) const

Parameters:
which 0 = average of both main gear levels, 1 = left, 2 = right

Return value:
wheel brake level (0..1)

11.15 Communications/radio interface

InitNavRadios
Defines the number of NAV radio receivers supported by the vessel.

Synopsis:
void InitNavRadios (DWORD nnav) const

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 84

Parameters:
nnav number of NAV radio receivers

Notes:
• A vessel requires NAV radio receivers to obtain instrument navigation aids

such as ILS or docking approach information.
• Typically, a vessel should define 2-3 NAV receivers.
• If no NAV receivers are available, then certain MFD modes such as Landing

or Docking will not be supported.
• Default is 2 NAV receivers.

SetNavRecv
Set the frequency step for a NAV receiver.

Synopsis:
bool SetNavRecv (DWORD n, DWORD step) const

Parameters:
n NAV receiver index (≥ 0)
step frequency step (≥ 0)

Return value:
false if n ≥ nnav (see InitNavRadios), otherwise true.

Notes:
• NAV radios can be tuned from 108.00 to 140.00 kHz in steps of 0.05 kHz.

The frequency corresponding to a receiver step is given by
f = 108.0 kHz + step ⋅ 0.05 kHz.

GetNavRecv
Returns the frequency step of a NAV receiver.

Synopsis:
DWORD GetNavRecv (DWORD n) const

Parameters:
n NAV receiver index (≥ 0)

Return value:
frequency step (≥ 0). If index n is out of range, the return value is 0.

GetNavRadioFreq
Returns the current radio frequency of a NAV receiver [kHz]

Synopsis:
float GetNavRadioFreq (DWORD n) const

Parameters:
n NAV radio index (≥0)

Return value:
NAV radio frequency [kHz]. If index n is out of range then the return value is 0.0.

EnableTransponder
Enable/disable a vessel’s transponder. The transponder is a radio transmitter which
can be used by other vessels to obtain navigation information, e.g. for docking
rendezvous approaches.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 85

Synopsis:
void EnableTransponder (bool enable) const

Parameters:
enable flag for enabling/disabling the transponder

11.16 Visual manipulation

ClearMeshes
Removes all previously declared meshes for the vessel’s visual representation.

Synopsis:
void ClearMeshes () const

AddMesh (1)
Loads a new mesh from file and adds it to the vessel’s visual representation.

Synopsis:
int AddMesh (

const char *meshname,
const VECTOR3 *ofs=0) const

Parameters:
meshname mesh file name (without path and file extension) which must exist in

the Meshes subdirectory.
ofs optional pointer to a displacement vector which describes the offset

(in meter) of the mesh origin against the vessel origin.

Return value:
mesh index

AddMesh (2)
This version adds a preloaded mesh to the vessel’s visual representation.

Synopsis:
void AddMesh (MESHHANDLE hMesh, const VECTOR3 *ofs=0) const

Parameters:
hMesh mesh handle
ofs optional pointer to a displacement vector which describes the offset

(in meter) of the mesh origin against the vessel origin.

Return value:
mesh index

See also:
oapiLoadMesh

GetMesh
Returns a handle for a vessel mesh given by its index.

Synopsis:
MESHHANDLE GetMesh (UINT idx) const

Parameters:
idx mesh index (≥ 0)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 86

Return value:
mesh handle, or NULL if index out of range.

SetMeshVisibilityMode
Defines whether a mesh is visible for cockpit or external camera modes.

Synopsis:
void SetMeshVisibilityMode (UINT meshidx, WORD mode) const

Parameters:
meshidx mesh index as returned by AddMesh
mode visibility mode

Notes:
• mode can be a combination of any of the following flags:

MESHVIS_EXTERNAL: The mesh is rendered in external camera modes
(track or ground mode).
MESHVIS_COCKPIT: The mesh is rendered in internal (cockpit) modes.
MESHVIS_VC: The mesh is rendered only in virtual cockpit mode

• The default behaviour is MESHVIS_EXTERNAL (render in external modes
only).

• You can use MESHVIS_ALWAYS as a shortcut for MESHVIS_EXTERNAL |
MESHVIS_COCKPIT.

• To render a mesh only in virtual cockpit mode, but not in any other internal
modes, use MESHVIS_VC instead of MESHVIS_COCKPIT.

SetMeshVisibleInternal
Obsolete. This method has been replaced by SetMeshVisibilityMode.
Marks a mesh as visible from internal cockpit view.

Synopsis:
void SetMeshVisibleInternal (

UINT meshidx,
bool visible) const

Parameters:
meshidx mesh index as returned by AddMesh
visible visibility flag

Notes:
• By default, a vessel is not rendered when the camera is in internal (cockpit)

view. This function can be used to force rendering of some or all of the
vessel’s meshes.

SetExhaustScales
Sets the longitudinal and transversal scaling factors for exhaust rendering

Synopsis:
void SetExhaustScales (

EXHAUSTTYPE exh,
WORD id,
double lscale,
double wscale) const

Parameters:
exh engine group identifier (main, retro, hover, custom)
id engine identifier, as returned by AddExhaustRef
lscale longitudinal scaling factor

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 87

wscale transversal scaling factor

Notes:
• This function must be called for custom engines to reflect changes in thrust

level. For standard engine types, this is done automatically.

MeshgroupTransform
Transform a mesh group of the vessel’s visual. Transformations include translation,
rotation and scaling.

Synopsis:
bool MeshgroupTransform (

VISHANDLE vis,
const MESHGROUP_TRANSFORM &mt) const

Parameters:
vis visual handle
mt transformation parameters

Notes:
• The MESHGROUP_TRANSFORM structure is defined as follows:

typedef struct {
 union {
 struct { // rotation parameters
 VECTOR3 ref; // rotation axis reference point
 VECTOR3 axis; // rotation axis direction
 float angle; // rotation angle (rad)
 } rotparam;
 struct { // translation parameters
 VECTOR3 shift; // translation vector
 } transparam;
 struct { // scaling parameters
 VECTOR3 scale; // scaling factors along coordinate axes
 } scaleparam;
 } P;
 int nmesh; // mesh id
 int ngrp; // group id
 enum { TRANSLATE, ROTATE, SCALE }
 transform; // transform type
} MESHGROUP_TRANSFORM;

• If ngrp is set to < 0 then the complete mesh is transformed.

SetReentryTexture
Select a previously registered texture to be used for rendering reentry flames.

Synopsis:
void SetReentryTexture (

SURFHANDLE tex,
double plimit=6e7,
double lscale=1.0,
double wscale=1.0) const

Parameters:
tex texture handle
plimit friction power limit
lscale texture length scaling factor
wscale texture width scaling factor

Notes:
• The texture handle is obtained by a previous call to

oapiRegisterReentryTexture.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 88

• If a custom texture is not explicitly set, Orbiter uses a default texture
(reentry.dds) for rendering reentry flames. To suppress reentry flames
altogether for a vessel, call SetReentryTexture(NULL).

See also:
oapiRegisterReentryTexture

RegisterAnimation
Logs a request for calls to ovcAnimate, while the vessel’s visual exists.

Synopsis:
void RegisterAnimation (void) const

Notes:
• This function allows to implement animation sequences in combination with

the ovcAnimate callback function. After a call to RegisterAnimation,
ovcAnimate is called at each time step, if the vessel’s visual exists.

• Use UnregisterAnimation to stop further calls to ovcAnimate.
• Orbiter uses a reference counter to log animation requests. It calls

ovcAnimate as long as counter > 0,
• If ovcAnimate is not implemented by the module, RegisterAnimation has no

effect.

UnregisterAnimation
Unlogs an animation request.

Synopsis:
void UnregisterAnimation (void) const

Notes:
• This stops a request for animation callback calls from a previous

RegisterAnimation.
• The call to UnregisterAnimation should not be placed in the body of

ovcAnimate, since it may be lost if the vessel’s visual doesn’t exist.

CreateAnimation
Create a “semi-automatic” animation sequence. The sequence can contain multiple
components (rotations, translations, scalings of mesh groups) with a fixed temporal
correlation. The animation is driven by manipulating its “state”, which is a number
between 0 and 1 used to linearly interpolate the animation within its range. See API
User’s Guide for details.

Synopsis:
UINT CreateAnimation (double initial_state) const

Parameters:
initial_state the animation state corresponding to the unmodified mesh

Return value:
Animation identifier

Notes:
• Once you have created an animation, use AddAnimationComponent to add

components.
• Use SetAnimation to manipulate the animation state.
• initial_state defines at which state the animation is stored in the mesh file.

Example: Landing gear animation between retracted state (0) and deployed

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 89

state (1). If the landing gear is retracted in the mesh file set initial_state to 0.
If it is deployed in the mesh file, set initial_state to 1.

AddAnimationComponent
Add a component (rotation, translation or scaling of mesh groups) to an animation.
Optionally, animations can be stacked hierachically, where transforming a parent
recursively also transforms all its children (e.g. a wheel spinning while the landing gear
is being retracted).

Synopsis:
ANIMATIONCOMPONENT_HANDLE AddAnimationComponent (

UINT anim,
double state0,
double state1,
MGROUP_TRANSFORM *trans,
ANIMATIONCOMPONENT_HANDLE parent = NULL) const

Parameters:
anim animation identifier, as returned by CreateAnimation
state0 animation cutoff state 0 for the component
state1 animation cutoff state 1 for the component
trans transformation data (see notes)
parent parent transformation

Return value:
Animation component handle

Notes:
• state0 and state1 (0..1) allow to define the temporal endpoints of the

component’s animation within the sequence. For example, state0=0 and
state1=1 perform the animation over the whole sequence animation, while
state0=0 and state1=0.5 perform the animation over the first half of the
sequence animation. This allows to build complex animations where different
components are animated in a defined temporal sequence.

• MGROUP_TRANSFORM is the base class for mesh group transforms. The
following derived classes are available:

MGROUP_ROTATE (rotation)
Constructor:
MGROUP_ROTATE (UINT mesh, UINT *grp, UINT ngrp,

const VECTOR3 &ref, const VECTOR3 &axis,
float angle)

where:
mesh mesh index (0=first mesh, etc.)
grp array of mesh group indices
ngrp number of mesh groups
ref rotation reference point
axis rotation axis
angle angular range of rotation [rad]

MGROUP_TRANSLATE (translation)
Constructor:
MGROUP_TRANSLATE (UINT mesh, UINT *grp, UINT ngrp,

const VECTOR3 &shift)
where:

mesh mesh index
grp array of mesh group indices
ngrp number of mesh groups

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 90

shift translation vector

MGROUP_SCALE (scaling)
Constructor:
MGROUP_SCALE (UINT mesh, UINT *grp, UINT ngrp,

const VECTOR3 &ref, const VECTOR3 &scale)
where:

mesh mesh index
grp array of mesh group indices
ngrp number of mesh groups
ref reference point for scaling origin
scale scaling factors in x, y and z

• To animate a complete mesh, rather than individual mesh groups, set the
“grp” pointer to NULL in the constructor of the corresponding
MGROUP_TRANSFORM operator. The “ngrp” value is then ignored.

• To define a transformation as a child of another transformation, set parent to
the handle returned by the AddAnimationComponent call for the parent.

• Instead of adding mesh groups to an animation, it is also possible to add a
local VECTOR3 array. To do this, set “mesh” to LOCALVERTEXLIST, and
set “grp” to MAKEGROUPARRAY(vtxptr), where vtxptr is the VECTOR3
array. “ngrp” is set to the number of vertices in the array. Example:

VECTOR3 vtx[2] = {_V(0,0,0), _V(1,0,-1)};

MGROUP_TRANSFORM *mt = new MGROUP_TRANSFORM (LOCALVERTEXLIST,

 MAKEGROUPARRAY(vtx), 2);

AddAnimationComponent (anim, 0, 1, mt);

Transforming local vertices in this way does not have an effect on the visual
appearance of the animation, but it can be used by the module to keep track
of a transformed point during animation. The Atlantis module uses this
method to track a grappled satellite during animation of the RMS arm.

Bugs:
• When defining a scaling transformation as a child of a parent rotation, only

homogeneous scaling is supported, i.e. scale.x = scale.y = scale.z is
required.

DelAnimationComponent
Remove a component from an animation.

Synopsis:
bool DelAnimationComponent (

UINT anim,
ANIMATIONCOMPONENT_HANDLE hAC)

Parameters:
anim animation identifier
hAC animation component handle

Return value:
false indicates failure (anim out of range, or hAC invalid)

Notes:
• If the component has children belonging to the same animation, these will be

deleted as well.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 91

• In the current implementation, the component must not have children
belonging to other animations. Trying to delete such a component will result
in undefined behaviour.

SetAnimation
Set the state of an animation.

Synopsis:
bool SetAnimation (UINT anim, double state) const

Parameters:
anim animation identifier
state animation state (0..1)

Return value:
false indicates failure (animation identifier out of range)

Notes:
• Each animation is defined by its state, with extreme points state=0 and

state=1. When setting a state between 0 and 1, Orbiter carries out the
appropriate transformations to advance the animation to that state. It is the
responsibility of the code developer to call SetAnimation in such a way as to
provide a smooth movement of the animated parts.

RegisterAnimSequence
Obsolete. This method has been replaced by CreateAnimation. It is available for
backward compatibility only and will be removed in a future version.

Synopsis:
UINT RegisterAnimSequence (double defstate) const

Parameters:
defstate animation state stored in the mesh.

Return value:
Animation sequence identifier.

Notes:
• Unlike RegisterAnimation/UnregisterAnimation, this function allows to create

animation sequences which are processed by the Orbiter core, rather than
manually by the module. The user only needs to define the components of
the animation sequence once after creating the vessel, using
AddAnimComp, and can then manipulate the animation state via
SetAnimState.

• Each animation sequence is defined by its state, which has a value between
0 and 1. For example, for an animated landing gear operation state 0 may
correspond to retracted gears, state 1 to fully deployed gears.

• defstate defines at which state the animation is stored in the mesh file.

AddAnimComp
Obsolete. This method has been replaced by AddAnimationComponent. It is available
for backward compatibility only and will be removed in a future version.

Synopsis:
bool AddAnimComp (UINT seq, ANIMCOMP *comp)

Parameters:
seq sequence identifier, as returned by RegisterAnimSequence

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 92

comp animation component description (see notes)

Return value:
false indicates failure.

Notes:
• ANIMCOMP is a structure defining the component’s animation:

typedef struct {
 UINT *grp; // array of group indices to be included in component
 UINT ngrp; // number of groups in the grp array
 double state0; // animation cutoff state 1
 double state1; // animation cutoff state 2
 MESHGROUP_TRANSFORM trans; // transformation parameters
} ANIMCOMP;

• For a complete description of the MESHGROUP_TRANSFORM structure
see method VESSEL::MeshgroupTransform.

• Note that in this case the angle or shift fields in
MESHGROUP_TRANSFORM describe the range of animation, e.g. the
angle over which a landing gear is rotated from fully retracted to fully
deployed.

• state0 and state1 (0..1) allow to define the temporal endpoints of the
component’s animation within the sequence. For example, state0=0 and
state1=1 perform the animation over the whole sequence animation, while
state0=0 and state1=0.5 perform the animation over the first half of the
sequence animation.

RecordEvent
Not implemented yet.

11.17 Particle systems
AddExhaustStream (1)

Add a particle stream definition to generate an exhaust stream for a vessel. Exhaust
streams can be emissive (to simulate “glowing” ionised gases) or diffuse (e.g. for
simulating vapour trails).

Synopsis:
PSTREAM_HANDLE AddExhaustStream (

THRUSTER_HANDLE th,
PARTICLESTREAMSPEC *pss = 0) const

Parameters:
th thruster handle to which the exhaust stream is linked.
pss particle stream specification

Return value:
Handle to the newly created particle stream.

Notes:
• The PARTICLESTREAMSPEC structure is defined in section 8. More details

can be found in the Programmer’s Guide.
• Multiple streams can be defined for a single engine. For example, an

emissive stream with short lifetime may represent the ionised exhaust gases,
while a diffuse stream with longer lifetime represents the vapour trail.

• To improve performance, closely packed engines may share a single
exhaust stream.

• If the user has disabled particle streams in the launchpad dialog, this
function will return NULL. The module must be able to cope with this case.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 93

AddExhaustStream (2)
Add a particle stream definition to generate an exhaust stream for a vessel. This
version allows to specify an independent reference point for particle emission.

Synopsis:
PSTREAM_HANDLE AddExhaustStream (

THRUSTER_HANDLE th,
const VECTOR3 &pos,
PARTICLESTREAMSPEC *pss = 0) const

Parameters:
th thruster handle to which the exhaust stream is linked.
pos particle emission reference point
pss particle stream specification

Return value:
Handle to the newly created particle stream.

Notes:
• This version allows to pass an explicit particle emission reference position,

independent of the engine reference point.
• If the user has disabled particle streams in the launchpad dialog, this

function will return NULL. The module must be able to cope with this case.

AddReentryStream
Add a particle stream definition to generate a reentry stream for a vessel.

Synopsis:
PSTREAM_HANDLE AddReentryStream (

PARTICLESTREAMSPEC *pss) const

Parameters:
pss particle stream specification

Return value:
Handle to the newly created particle stream.

Notes:
• Vessels automatically define a default emissive particle stream, but you may

want to add further stream to customise the appearance.

DelExhaustStream
Delete a previously added particle stream.

Synopsis:
bool DelExhaustStream (PSTREAM_HANDLE ch) const

Parameters:
ch particle stream handle

Return value:
false indicates failure (particle stream does not exist)

Notes:
• If a thruster is deleted (with DelThruster), any attached particle streams are

deleted automatically.
• A deleted particle stream will no longer emit particles, but existing particles

persist until they expire.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 94

12 VESSEL class extensions
Additions to the VESSEL interface are implemented by a chain of classes derived from
VESSEL. Each interface in the chain inherits all methods of the previous classes. New
interfaces may add addtional callback or query functions. You should always derive your own
vessel class from the most recent interface in the chain. Older interfaces will remain valid for
backward comparison, unless explicitly stated.

12.1 Class VESSEL2
Inheritance:

VESSEL → VESSEL2

The VESSEL2 class adds a variety of callback functions to the VESSEL interface (clbkXXX).
These are called by Orbiter to notify the vessel about different types of events and allow it to
react to them. The VESSEL2 class implements these as virtual functions which act as
placeholders to be overwritten by derived classes whenever a non-default behaviour is
required.
Some of the callback methods defined in this section replace ovcXXX vessel module callback
functions defined in section 10. In those cases, the default behaviour of VESSEL2::clbkXXX
functions will be to call the equivalent ovcXXX function (if it exists) for backward compatibility.
Addon developers should always use the VESSEL2::clbkXXX methods in preference over the
ovcXXX functions.

clbkSetClassCaps
Called after vessel creation, this function allows to set vessel class capabilities and
parameters. This can include definition of physical properties (size, mass, docking
ports, etc.), creation of propellant resources and engines, aerodynamic parameters,
including airfoil definitions, lift and drag properties, or active control surfaces.

Synopsis:
void clbkSetClassCaps (FILEHANDLE cfg)

Parameters:
cfg handle for the vessel class configuration file

Default action:
Calls module callback function ovcSetClassCaps if present, for backward
compatibility.

Notes:
• This function is called after the vessel has been created, but before its state

is read from the scenario file. This means that its state (position, velocity,
fuel level, etc.) is undefined at this point.

• Use this function to set vessel class capabilities, not vessel state
parameters.

• Orbiter will scan the vessel class configuration file for generic parameters
(like mass or size) after clbkSetClassCaps returns. This allows to override
generic caps defined in the module by editing the configuration file.

• The configuration file handle is also passed to clbkSetClassCaps, to allow
reading of vessel class-specific parameters from file.

• The default action of calling ovcSetClassCaps will be dropped in future
versions.

clbkLoadStateEx
Called when the vessel needs to load its initial state from a scenario file.

Synopsis:
void clbkLoadStateEx (FILEHANDLE scn, void *status)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 95

Parameters:
scn scenario file handle
status pointer to VESSELSTATUSx structure (x ≥ 2)

Default action:
Calls ovcLoadStateEx if defined by the module, for backward compatibility. In
ovcLoadStateEx doesn’t exist, clbkLoadStateEx loads the generic vessel state.

Notes:
• This callback function allows to read custom vessel status parameters from a

scenario file.
• The function should define a loop which parses lines from the scenario file

via oapiReadScenario_nextline.
• You should not call the base class VESSEL2::clbkLoadStateEx to parse

generic parameters, because this will skip over any custom scenario entries.
Instead, any lines which the module parser does not recognise should be
forwarded to Orbiter’s default scenario parser via
VESSEL::ParseScenarioLineEx.

• Orbiter will always pass the latest supported VESSELSTATUSx version to
ovcLoadStateEx. This is currently VESSELSTATUS2, but may change in
future versions. To maintain compatibility, vs should therefore not be used
other than to pass it on to ParseScenarioLineEx.

• A typical parser implementation may look like this:
void MyVessel::clbkLoadStateEx (FILEHANDLE scn, void *status)
{
 char *line;
 int my_value;

 while (oapiReadScenario_nextline (scn, line)) {
 if (!strnicmp (line, “my_option”, 9)) { // custom item
 sscanf (line+9, “%d”, &my_value);
 } else if (...) { // more items
 ...
 } else { // anything not recognised is passed on to Orbiter
 ParseScenarioLineEx (line, vs);
 }
 }
}

See also:
VESSELSTATUS2
VESSEL::ParseScenarioLineEx
oapiReadScenario_nextline

clbkSaveState
Called when the vessel needs to save its current status to a scenario file (typically at
the end of a simulation session).

Synopsis:
void clbkSaveState (FILEHANDLE scn)

Parameters:
scn scenario file handle

Default action:
Calls ovcSaveState if defined by the module, for backward compatibility. If
ovcSaveState doesn’t exist, clbkSaveState saves the generic vessel state.

Notes:
• This function only needs to be overloaded if the vessel must save

nonstandard parameters.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 96

• If clbkSaveState is overloaded, generic state parameters will only be written
if the base class VESSEL2::clbkSaveState is called.

• To write custom parameters to the scenario file, use the oapiWriteLine
function.

• The default action of calling ovcSaveState will be dropped in future versions.

clbkSetStateEx
This callback function is invoked by Orbiter when a vessel is created during the
simulation with a call to oapiCreateVesselEx. It allows the vessel to initialise its state
according to the provided VESSELSTATUSx interface (version x ≥ 2). To allow default
initialisation, the status can be passed to VESSEL::DefSetStateEx.

Synopsis:
void clbkSetStateEx (const void *status)

Parameters:
status pointer to a VESSELSTATUSx structure

Default action:
Calls the module’s ovcSetStateEx callback function if present, to provide
backward compatibility.

Notes:
• This callback function receives the VESSELSTATUSx structure passed to

oapiCreateVesselEx. It must therefore be able to process the interface
version used by those functions.

• This function remains valid even if future versions of Orbiter introduce new
VESSELSTATUSx interfaces.

• A typical implementation may look like this:
void MyVessel::clbkSetStateEx (const void *status)
{
 // specialised vessel initialisations
 // ...

 // default initialisation:
 DefSetStateEx (status);
}

clbkPostCreation
Called after a vessel has been created and its state has been set.

Synopsis:
void clbkPostCreation ()

Default action:
Calls the module callback function ovcPostCreation if present, to provide
backward compatibility.

Notes:
• This function can be used to perform the final setup steps for the vessel,

such as animation states and instrument panel states. When this function is
called, the vessel state (e.g. position, thruster levels, etc.) have been
defined.

• The default action of calling ovcPostCreation will be dropped in future
versions.

clbkPlaybackEvent
Not implemented yet.

clbkFocusChanged
Called after a vessel gained or lost input focus.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 97

Synopsis:
void clbkFocusChanged (

bool getfocus,
OBJHANDLE hNewVessel,
OBJHANDLE hOldVessel)

Parameters:
getfocus true if the vessel gained focus, false if it lost focus
hNewVesselhandle of vessel gaining focus
hOldVessel handle of vessel losing focus

Default action:
Calls the module callback function ovcFocusChanged if present, to provide
backward compatibility.

Notes:
• Whenever the input focus is switched to a new vessel (e.g. via user selection

F3), this method is called for both the vessel losing focus (getfocus=false)
and the vessel gaining focus (getfocus=true).

• In both calls, hNewVessel and hOldVessel are the vessel handles for the
vessel gaining and the vessel losing focus, respectively.

• This method is also called at the beginning of the simulation for the initial
focus object. In this case hOldVessel is NULL.

clbkPreStep
Called at each simulation time step before the state is updated to the current simulation
time. This function allows to define actions which need to be controlled continuously.

Synopsis:
void clbkPreStep (double SimT, double SimDT, double mjd)

Parameters:
SimT next simulation run time (second)
SimDT step length over which the current state will be integrated (seconds)
mjd next absolute simulation time (days) in Modified Julian Date format

Default action:
None

Notes:
• This function is called at each frame of the simulation, after the integration

step length has been determined, but before the time integration is applied to
the current simulation state.

• This function is useful when the step length ∆t is required in advance of the
time integration, for example to apply a force that produces a given ∆v, since
the AddForce request will be applied in the next update. Using clbkPostStep
for this purpose would be wrong, because its ∆t parameter refers to the
previous step length.
void MyVessel::clbkPreStep (double simt, double simdt, double mjd)
{
 double F = mass * dv/simdt;
 AddForce(_V(0,0,F), _V(0,0,0));
}

See also:
VESSEL2::clbkPostStep, opcPreStep, opcPostStep

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 98

clbkPostStep
Called at each simulation time step after the state has been updated to the current
simulation time. This function allows to define actions which need to be controlled
continuously.

Synopsis:
void clbkPostStep (double simt, double simdt, double mjd)

Parameters:
simt current simulation run time (seconds)
simdt last time step length (seconds)
mjd absolute simulation time (days) in Modified Julian Date format.

Default action:
Calls the module callback function ovcTimestep(this,simt) if present, to provide
backward compatibility.

Notes:
• This function, if implemented, is called at each frame for each instance of

this vessel class, and is therefore time-critical. Avoid any unnecessary
calculations here which may degrade performance.

• The default action of calling ovcTimestep will be dropped in future versions.

See also:
VESSEL2::clbkPreStep, opcPreStep, opcPostStep

clbkVisualCreated
Called after a visual representation (a render object) has been created for the vessel.

Synopsis:
void clbkVisualCreated (VISHANDLE vis, int refcount)

Parameters:
vis handle for the newly created visual
refcount visual reference count

Default action:
Calls the module ovcVisualCreated callback function if present, for backward
compatibility.

Notes:
• The logical interface to a vessel exists as long as the vessel is present in the

simulation. However, the visual interface exists only when the vessel is
within visual range of the camera. Orbiter creates and destroys visuals as
required. This enhances simulation performance in the presence of a large
number of objects in the simulation.

• Whenever Orbiter creates a vessel’s visual it reverts to its initial configuration
(e.g. as defined in the mesh file). The module can use this function to update
the visual to the current state, wherever dynamic changes are required.

• More than one visual representation of an object may exist. The refcount
parameter defines how many visual interfaces to the object exist.

• The default action of calling ovcVisualCreated will be dropped in future
versions.

clbkVisualDestroyed
Called before the visual representation of the vessel is destroyed.

Synopsis:
void clbkVisualDestroyed (VISHANDLE vis, int refcount)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 99

Parameters:
vis handle for the visual to be destroyed
refcount visual reference count

Default action:
Calls the module ovcVisualDestroyed callback function if present, for backward
compatibility.

Notes:
• Orbiter calls this function before it destroys a visual representation of the

vessel. This may be in response to the destruction of the actual vessel, but
in general simply means that the vessel has moved out of visual range of the
current camera location.

• The default action of calling ovcVisualDestroyed will be dropped in future
versions.

clbkRCSMode
Called when a vessel’s RCS (reaction control system) mode changes. Usually the RCS
consists of a set of small thrusters arranged so as to allow controlled attitude changes.
In Orbiter, the RCS can be driven in either rotational mode (to change the vessel’s
angular velocity) or in linear mode (to change its linear velocity), or be switched off.

Synopsis:
void clbkRCSMode (int mode)

Parameters:
mode new RCS mode: 0=disabled, 1=rotational, 2=linear

Default action:
Calls the module ovcRCSmode callback function if present, for backward
compatibility.

Notes:
• This callback function is invoked when the user switches RCS mode via the

keyboard (“/” or “Ctrl-/” on numerical keypad) or after a call to
VESSEL::SetAttitudeMode or VESSEL::ToggleAttitudeMode.

• Not all vessel types may support a reaction control system. In that case, the
callback function can be ignored by the module.

clbkADCtrlMode
Called when user input mode for aerodynamic control surfaces (elevator, rudder,
aileron) changes.

Synopsis:
void clbkADCtrlMode (DWORD mode)

Parameters:
mode control mode

Default action:
Calls module ovcADCtrlmode callback function if present. Otherwise no action.

Notes:
• The returned control mode contains bit flags as follows:

bit 0: elevator enabled/disabled
bit 1: rudder enabled/disabled
bit 2: ailerons enabled/disabled

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 100

Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates
fully enabled.

clbkNavMode
Called when an automated “navigation mode” is activated or deactivated for a vessel.
Most navigation modes engage the vessel’s RCS to attain a specific attitude, including
pro/retrograde, normal to the orbital plane, level with the local horizon, etc.

Synopsis:
void clbkNavMode (int mode, bool active)

Parameters:
mode navmode identifier (see Section 9).
active true if activated, false if deactivated.

Default action:
Calls the module ovcNavmode callback function if present, for backward
compatibility.

clbkHUDMode
Called after a change of the vessel’s HUD (head-up-display) mode.

Synopsis:
void clbkHUDMode (int mode)

Parameters:
mode new HUD mode

Default action:
Calls the module ovcHUDmode callback function if present, for backward
compatibility.

Notes:
• For currently supported HUD modes see HUD_xxx constants in section 9.
• mode HUD_NONE indicates that the HUD has been turned off.

clbkMFDMode
Called when the user has switched one of the MFD (multi-functional display)
instruments to a different display mode.

Synopsis:
void clbkMFDMode (int mfd, int mode)

Parameters:
mfd MFD identifier (see Section 9)
mode new MFD mode id (see Section 9)

Default action:
Calls the module ovcMFDmode callback function if present, for backward
compatibility.

clbkDrawHUD
Called when the vessel’s head-up display (HUD) needs to be redrawn (usually at each
time step, unless the HUD is turned off). Overwriting this function allows to implement
vessel-specific modifications of the HUD display (or to suppress the HUD altogether).

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 101

Synopsis:
void clbkDrawHUD (

int mode,
const HUDPAINTSPEC *hps,
HDC hDC)

Parameters:
mode HUD mode (see HUD_xxx constants in section 9).
hps pointer to a HUDPAINTSPEC structure (see notes)
hDC GDI drawing device context

Default action:
Draws a standard HUD display with Orbiter’s default display layout.

Notes:
• If a vessel overwrites this method, Orbiter will draw the default HUD only if

the base class VESSEL::clbkDrawHUD is called.
• hps points to a HUDPAINTSPEC structure containing information about the

HUD drawing surface. It has the following format:

typedef struct {
 int W, H;
 int CX, CY;
 double Scale;
 int Markersize;
} HUDPAINTSPEC;

where W and H are width and height of the HUD drawing surface in pixels,
CX and CY are the x and y coordinates of the HUD centre (the position of
the "forward marker", which is not guaranteed to be in the middle of the
drawing surface or even within the drawing surface!), Scale represents an
angular aperture of 1° expressed in HUD pixels, and Markersize is a "typical"
size which can be used to scale objects like direction markers.

• The device context passed to clbkDrawHUD contains the appropriate
settings for the current HUD display (font, pen, colours). If you need to
change any of the GDI settings, make sure to restore the defaults before
calling the base class clbkDrawHUD. Otherwise the default display will be
corrupted.

• Try to avoid changing HUD display colours. Orbiter has its own internal
mechanism to allow users to switch the HUD colour.

• clbkDrawHUD can be used to implement entirely new vessel-specific HUD
modes. In this case, the module would maintain its own record of the current
HUD mode, and ignore the mode parameter passed to clbkDrawHUD.

clbkConsumeDirectKey
Keyboard handler. Called at each simulation time step. This callback function allows
the installation of a custom keyboard interface for the vessel.

Synopsis:
int ovcConsumeDirectKey (char *kstate)

Parameters:
kstate keyboard state

Return value:
A nonzero return value will completely disable default processing of the key state
for the current time step. To disable the default processing of selected keys only,
use the RESETKEY macro (see orbiterapi.h) and return 0.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 102

Default action:
Calls the module ovcConsumeKey callback function if present. Otherwise returns
0.

Notes:
• The keystate contains the current keyboard state. Use the KEYDOWN

macro in combination with the key identifiers as defined in orbiterapi.h
(OAPI_KEY_xxx) to check for particular keys being pressed. Example:
if (KEYDOWN (kstate, OAPI_KEY_F10)) {
 // perform action
 RESETKEY (kstate, OAPI_KEY_F10);
 // optional: prevent default processing of the key
}

• This function should be used where a key state, rather than a key event is
required, for example when engaging thrusters or similar. To test for key
events (key pressed, key released) use clbkConsumeBufferedKey instead.

clbkConsumeBufferedKey
This callback function notifies the vessel of a buffered key event (key pressed or key
released).

Synopsis:
int ovcConsumeBufferedKey (

DWORD key,
bool down,
char *kstate)

Parameters:
key key scan code (see OAPI_KEY_xxx constants in orbiterapi.h)
down true if key was pressed, false if key was released
kstate current keyboard state

Return value:
The function should return 1 if Orbiter’s default processing of the key should be
skipped, 0 otherwise.

Default action:
Calls the module ovcConsumeBufferedKey callback function if present.
Otherwise returns 0.

Notes:
• The key state (kstate) can be used to test for key modifiers (Shift, Ctrl, etc.).

The KEYMOD_xxx macros defined in orbiterapi.h are useful for this purpose.
• This function may be called repeatedly during a single frame, if multiple key

events have occurred in the last time step.

clbkDockEvent
Called after a docking or undocking event at one of the vessel’s docking ports.

Synopsis:
void clbkDockEvent (int dock, OBJHANDLE mate)

Parameters:
dock docking port index
mate handle to docked vessel, or NULL for undocking event

Default action:
Calls the module ovcDockEvent callback function if present. Otherwise no action.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 103

Notes:
• dock is the index (≥ 0) of the vessel’s docking port at which the

docking/undocking event takes place.
• mate is a handle to the vessel docking at the port, or NULL to indicate an

undocking event.

clbkAnimate
Called at each simulation time step if the module has registered at least one animation
request and if the vessel’s visual exists.

Synopsis:
void clbkAnimate (double simt)

Parameters:
simt simulation up time (seconds since simulation start)

Default action:
Calls the module ovcAnimate callback function if present. Otherwise no action.

Notes:
• This callback allows the module to animate the vessel’s visual representation

(moving undercarriage, cargo bay doors, etc.)
• It is only called as long as the vessel has registered an animation (between

matching VESSEL::RegisterAnimation and VESSEL::UnregisterAnimation
calls) and if the vessel’s visual exists.

clbkLoadGenericCockpit
Called when the vessel’s generic cockpit view (consisting of two “floating” MFD
instruments and a HUD, displayed on top of the 3-D render window) is selected by the
user pressing F8, or by a function call.

Synopsis:
bool clbkLoadGenericCockpit ()

Return value:
The function should return true if it supports generic cockpit view, false
otherwise.

Default behaviour:
Sets camera direction to “forward” (0,0,1) and returns true.

Notes:
• The generic cockpit view is available for all vessel types by default, unless

this function is overwritten to return false.
• Only disable the generic view if the vessel supports either 2-D instrument

panels (see clbkLoadPanel) or a virtual cockpit (see clbkLoadVC). If no
valid cockpit view at all is available for a vessel, Orbiter will crash.

• Even if the vessel supports panels or virtual cockpits, you shouldn’t normally
disable the generic view, because it provides the best performance on
slower computers.

clbkLoadPanel
Called when Orbiter tries to switch the cockpit view to a 2-D instrument panel.

Synopsis:
bool clbkLoadPanel (int id)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 104

Parameters:
id panel identifier (≥ 0)

Return value:
The function should return true if it supports the requested panel, false
otherwise.

Default action:
Calls ovcLoadPanel if defined, for backward compatibility, otherwise returns
false.

Notes:
• In the body of this function the module should define the panel background

bitmap and panel capabilities, e.g. the position of MFDs and other
instruments, active areas (mouse hotspots) etc.

• A vessel which implements panels must at least support panel id 0 (the main
panel). If any panels register neighbour panels (see
oapiSetPanelNeighbours), all the neighbours must be supported, too.

• The default action of calling ovcLoadPanel will be dropped in future
versions.

See also:
oapiRegisterPanelBackground, oapiRegisterPanelArea,
oapiRegisterMFD.

clbkPanelMouseEvent
Called when a mouse-activated panel area receives a mouse event.

Synopsis:
bool clbkPanelMouseEvent (

int id,
int event,
int mx,
int my)

Parameters:
id panel area identifier
event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)
mx, my relative mouse position in area at event

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
Calls ovcPanelMouseEvent if defined, for backward compatibility, otherwise
returns false.

Notes:
• Mouse events are only sent for areas which requested notification during

definition (see oapiRegisterPanelArea).
• The default action of calling ovcPanelMouseEvent will be dropped in

future versions.

clbkPanelRedrawEvent
Called when a registered panel area needs to be redrawn.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 105

Synopsis:
bool clbkPanelRedrawEvent (

int id,
int event,
SURFHANDLE surf)

Parameters:
id panel area identifier
event redraw event (see PANEL_REDRAW_xxx constants in orbitersdk.h)
surf area surface handle

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
Calls ovcPanelRedrawEvent if defined, for backward compatibility, otherwise
returns false.

Notes:
• This callback function is only called for areas which were not registered with

the PANEL_REDRAW_NEVER flag.
• All redrawable panel areas receive a PANEL_REDRAW_INIT redraw

notification when the panel is created, in addition to any registered redraw
notification events.

• The surface handle surf contains either the current area state, or the area
background, depending on the flags passed during area registration.

• The surface handle may be used for blitting operations, or to receive a
Windows device context (DC) for Windows-style redrawing operations.

• The default action of calling ovcPanelRedrawEvent will be dropped in
future versions.

See also:
oapiGetDC, oapiReleaseDC, oapiTriggerPanelRedrawArea

clbkLoadVC
Called when Orbiter tries to switch the cockpit view to a 3-D virtual cockpit mode (for
example in response to the user switching cockpit modes with F8).

Synopsis:
bool clbkLoadVC (int id)

Parameters:
id virtual cockpit identifier (≥ 0)

Return value:
true if the vessel supports the requested virtual cockpit, false otherwise.

Default action:
None, returning false (i.e. virtual cockpit mode not supported).

Notes:
• In the body of this function the module should define MFD display targets

(with oapiVCRegisterMFD) and other active areas (with
oapiVCRegisterArea) for the requested virtual cockpit.

clbkVCMouseEvent
Called when a mouse-activated virtual cockpit area receives a mouse event.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 106

Synopsis:
bool clbkVCMouseEvent (int id, int event, VECTOR3 &p)

Parameters:
id area identifier
event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)
p parameter vector (area type-dependent, see notes)

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
None, returning false.

Notes:
• To generate a mouse-activated area in a virtual cockpit, you must do the

following when registering the area during clbkLoadVC:
• register the area with a call to oapiVCRegisterArea with a mouse

mode other than PANEL_MOUSE_IGNORE.
• define a mouse-click area in the vessel’s local frame. Use one of the

oapiVCRegisterAreaClickmode_XXX functions. You can define
spherical or quadrilateral click areas.

• Parameter p returns information about the mouse position at the mouse
event. The type of information returned depends on the area type for which
the event was generated:

Area type p
spherical p.x is distance of mouse event from area centre

p.y and p.z not used
quadrilateral p.x and p.y are the area-relative mouse x and y positions (top

left = (0,0), bottom right = (1,1)
p.z not used

clbkVCRedrawEvent
Called when a registered virtual cockpit area needs to be redrawn.

Synopsis:
bool clbkVCRedrawEvent (int id, int event, SURFHANDLE surf)

Parameters:
id area identifier
event redraw event (see PANEL_REDRAW_xxx constants in orbitersdk.h)

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
None, returning false.

Notes:
• To allow an area of the virtual cockpit to be redrawn dynamically, the area

must be registered with oapiVCRegisterArea during clbkLoadVC, using
a redraw mode other than PANEL_REDRAW_NEVER.

• When registering the area with oapiVCRegisterArea, you must also
provide a handle to the texture onto which the redrawn surface is mapped.
This texture must be part of the virtual cockpit mesh, and it must be listed in
the mesh file with the 'D’ (“dynamic”) flag (see 3DModel.pdf).

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 107

• “Redrawing” an area is not limited to dynamically updating textures. It may
also involve mesh transforms (e.g. to animate levers and switches rendered
in 3D).

13 Class MFD
This class acts as an interface for user defined MFD (multi functional display) modes. It
provides control over keyboard and mouse functions to manipulate the MFD mode, and
allows the module to draw the MFD display. The MFD class is a pure virtual class. Each user-
defined MFD mode requires the definition of a specialised class derived from MFD. An
example for a generic MFD mode implemented as a plugin module can be found in
orbitersdk\samples\CustomMFD.

Public member functions

13.1 Construction/creation
MFD

Constructor. Creates a new MFD.

Synopsis:
MFD (DWORD w, DWORD h, VESSEL *vessel)

Parameters:
w width of the MFD display (pixel)
h height of the MFD display (pixel)
vessel pointer to VESSEL interface associated with the MFD.

Notes:
• MFD is a pure virtual function, so it can’t be instantiated directly. It is used as

a base class for specialised MFD modes.
• New MFD modes are registered by a call to oapiRegisterMFDMode.

Whenever the new mode is selected by the user, Orbiter sends a
OAPI_MSG_MFD_OPENED signal to the message handler, to which the
module should respond by creating the MFD mode and returning a pointer to
it. Orbiter will automatically destroy the MFD mode when it is turned off.

13.2 Display repaint
Update

Callback function: Orbiter calls this method when the MFD needs to update its display.

Synopsis:
virtual void Update (HDC hDC) = 0

Parameters:
hDC Windows device context for drawing on the MFD display surface.

Notes:
• The frequency at which this function is called corresponds to the “MFD

refresh rate” setting in Orbiter’s parameter settings, unless a redraw is forced
by InvalidateDisplay.

• This function must be overwritten by derived classes.

InvalidateDisplay
Force a display update in the next frame. This function causes Orbiter to call the MFD’s
Update method in the next frame.

Synopsis:
void InvalidateDisplay ()

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 108

Title
Displays a title string in the upper left corner of the MFD display.

Synopsis:
void Title (HDC hDC, const char *title) const

Parameters:
hDC device context
title title string (null-terminated)

Notes:
• This method should be called from within Update()
• The title string can contain up to approx. 35 characters when displayed in the

default Courier MFD font.
• This method switches the text colour of the GDI context to white.

SelectDefaultFont
Selects a predefined MFD font into the device context.

Synopsis:
HFONT SelectDefaultFont (HDC hDC, DWORD i) const

Parameters:
hDC Windows device context
i font index

Return value:
Windows font handle

Notes:
• Currently supported are font indices 0-2, where

0 = standard MFD font (Courier, fixed pitch)
1 = small font (Arial, variable pitch)
2 = small font, rotated 90 degrees (Arial, variable pitch)

• In principle, an MFD mode may create its own fonts using the standard
Windows CreateFont function, but using the predefined fonts is preferred to
provide a consistent MFD look.

• Default fonts are scaled automatically according to the MFD display size.

SelectDefaultPen
Selects a predefined pen into the device context.

Synopsis:
HPEN SelectDefaultPen (HDC hDC, DWORD i) const

Parameters:
hDC Windows device context
i pen index

Return value:
Windows pen handle

Notes:
• Currently supported are pen indices 0-5, where

0 = solid, HUD display colour
1 = solid, light green
2 = solid, medium green
3 = solid, medium yellow

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 109

4 = solid, dark yellow
5 = solid, medium grey

• In principle, an MFD mode may create its own pen resources using the
standard Windows CreatePen function, but using predefined pens is
preferred to provide a consistent MFD look.

ButtonLabel
Return the label for the specified MFD button.

Synopsis:
vi r t ual char * But t onLabel (i nt bt)

Parameters:
bt button identifier

Return value:
The function should return a 0-terminated character string of up to 3 characters,
or NULL if the button is unlabelled.

ButtonMenu
Defines a list of short descriptions for the various MFD mode button/key functions.

Synopsis:
vi r t ual i nt But t onMenu (const MFDBUTTONMENU * * menu) const

Parameters:
menu on return this should point to an array of button menu items. (see

notes)

Return value:
number of items in the list

Notes:
• The definition of the MFDBUTTONMENU struct is:

t ypedef st r uct {
 const char * l i ne1, * l i ne2;
 char sel char ;
} MFDBUTTONMENU;
containing up to 2 lines of short description, and the keyboard key to trigger
the function.

• Each line should contain no more than 16 characters, to fit into the MFD
display.

• If the menu item only uses one line, then line2 should be set to NULL.
• menu==0 is valid and indicates that the caller only requires the number of

items, not the actual list.
• A typical implementation would be

i nt MyMFD: : But t onMenu (const MFDBUTTONMENU * * menu) const
{
 st at i c const MFDBUTTONMENU mnu[2] = {
 { " Sel ect t ar get " , 0, ' T' } ,
 { " Sel ect or bi t " , " r ef er ence" , ' R' }
 } ;
 i f (menu) * menu = mnu;
 r et ur n 2;
}

13.3 Input
ConsumeKeyBuffered

MFD keyboard handler for buffered keys.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 110

Synopsis:
virtual bool ConsumeKeyBuffered (DWORD key)

Parameters:
key key code (see OAPI_KEY_xxx constants in orbitersdk.h)

Return value:
The function should return true if it recognises and processes the key, false
otherwise.

ConsumeKeyImmediate
MFD keyboard handler for immediate (unbuffered) keys.

Synopsis:
virtual bool ConsumeKeyImmediate (char *kstate)

Parameters:
kstate: keyboard state.

Return value:
The function should return true only if it wants to inhibit Orbiter’s default
immediate key handler for this time step completely.

Notes:
• The state of single keys can be queried by the KEYDOWN macro.
• The immediate key handler is useful where an action should take place while

a key is pressed.

ConsumeButton
MFD button handler. This function is called when the user performs a mouse click on a
panel button associated with the MFD.

Synopsis:
virtual bool ConsumeButton (int bt, int event)

Parameters:
bt button identifier.
event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)

Return value:
The function should return true if it processes the button event, false otherwise.

Notes:
• This function is invoked as a response to a call to

oapiProcessMFDButton in a vessel module.
• Typically, ConsumeButton will call ConsumeKeyBuffered or

ConsumeKeyImmediate to emulate a keyboard event.

13.4 Load/save state
WriteStatus

Called when the MFD should write its status to a scenario file.

Synopsis:
virtual void WriteStatus (FILEHANDLE scn) const

Parameters:
scn scenario file handle (write only)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 111

Notes:
• Use the oapiWriteScenario_xxx functions to write MFD status parameters to

the scenario.
• The default behaviour is to do nothing. MFD modes which need to save

status parameters should overwrite this function.

ReadStatus
Called when the MFD should read its status from a scenario file.

Synopsis:
virtual void ReadStatus (FILEHANDLE scn)

Parameters:
scn scenario file handle (read only)

Notes:
• Use a loop with oapiReadScenario_nextline to read MFD status parameters

from the scenario.
• The default behaviour is to do nothing. MFD modes which need to read

status parameters should overwrite this function.

StoreStatus
Called before destruction of the MFD mode, to allow the mode to save its status to
static memory.

Synopsis:
virtual void StoreStatus (void) const

Notes:
• This function is called before an MFD mode is destroyed (either because the

MFD switches to a different mode, or because the MFD itself is destroyed). It
allows the MFD to back up its status parameters, so it can restore its last
status when it is created next time.

• Since the MFD mode instance is about to be destroyed, status parameters
should be backed up either in static data members, or outside the class
instance.

• In principle this function could be implemented by opening a file and calling
WriteStatus with the file handle. However for performance reasons file I/O
should be avoided in this function.

• The default behaviour is to do nothing. MFD modes which need to save
status parameters should overwrite this function.

RecallStatus
Called after creation of the MFD mode, to allow the mode to restore its status from the
last save.

Synopsis:
virtual void RecallStatus (void)

Notes:
• This is the counterpart to the StoreStatus function. It should be implemented

if and only if StoreStatus is implemented.

14 Class GraphMFD
This class is derived from MFD and provides a template for MFD modes containing 2D
graphs. An example is the ascent profile recorder in the samples\CustomMFD folder.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 112

14.1 Construction/creation
GraphMFD

Constructor. Creates a new GraphMFD.

Synopsis:
GraphMFD (DWORD w, DWORD h, VESSEL *vessel)

Parameters:
w width of the MFD display (pixel)
h height of the MFD display (pixel)
vessel pointer to VESSEL interface associated with the MFD

14.2 Graph/plot management
AddGraph

Adds a new graph to the MFD.

Synopsis:
int AddGraph (void)

Return value:
graph identifier

Notes:
• This function allocates data for a new graph. To display plots in the new

graph, one or more calls to AddPlot are required.

AddPlot
Adds a plot to an existing graph.

Synopsis:
void AddPlot (

int g,
float *absc,
float *data,
int ndata,
int col,
int *ofs = 0)

Parameters:
g graph identifier
absc pointer to array containing the abscissa (x-axis) values.
data pointer to array containing the data (y-axis) values.
ndata number of data points
col plot colour index
ofs pointer to data offset (optional)

Notes:
• Data arrays are not copied, so they should not be deleted after the call to

AddPlot.
• col is used as an index to select a pen for the plot using the

SelectDefaultPen function. Valid range is the same as for SelectDefaultPen.
• If defined, *ofs is the index of the first plot value in the data array. The plot is

drawn using the points *ofs to ndata-1, followed by points 0 to *ofs-1. This
allows to define continuously updated plots without having to copy blocks of
data within the arrays.

SetRange
Sets a fixed range for the x or y axis of a graph.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 113

Synopsis:
void SetRange (int g, int axis, float rmin, float rmax)

Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)
rmin minimum value
rmax maximum value

Notes:
• The range applies to all plots in the graph.

SetAutoRange
Allows the graph to set its range automatically according to the range of the plots.

Synopsis:
void SetAutoRange (int g, int axis, int p = -1)

Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)
p plot identifier (-1=all)

Notes:
• If p ≥ 0, then p specifies the plot used for determining the graph range. If p =

-1, then all of the graph’s plots are used to determine the range.

FindRange
Determines the range of an array of data.

Synopsis:
void FindRange (

float *d,
int ndata,
float &dmin,
float &dmax) const

Parameters:
d data array
ndata number of data
dmin minimum value on return
dmax maximum value on return

SetAxisTitle
Sets the title for a given graph and axis.

Synopsis:
void SetAxisTitle (int g, int axis, char *title)

Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)
title axis title

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 114

Notes:
• The MFD may append an extension of the form “x <scale>” to the title,

where <scale> is a scaling factor applied to the tick labels of the axis. It is
therefore a good idea to finish the title with the units applicable to the data of
this axis, so that for example a title “Altitude: km” may become “Altitude: km
x 1000”.

SetAutoTicks
Calculates tick intervals for a given graph and axis.

Synopsis:
void SetAutoTicks (int g, int axis)

Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)

Notes:
• This function is called from within SetRange and normally doesn’t need to be

called explicitly by derived classes.

Plot
Displays a graph.

Synopsis:
void Plot (

HDC hDC,
int g,
int h0,
int h1,
const char *title = 0)

Parameters:
hDC Windows device context
g graph identifier
h0 upper boundary of plot area (pixel)
h1 lower boundary of plot area (pixel)
title graph title

Notes:
• This function should be called from Update to paint the graph(s) into the

provided device context.

15 Plugin callback function reference
This is a list of callback functions which Orbiter will call for all activated plugin modules. (i.e.
DLLs in the Modules\Plugin subdirectory which were activated by the user via the Launchpad
dialog). Plugin callback functions use an opc (“orbiter plugin callback”) prefix.

InitModule
Called after the DLL is loaded by Orbiter, before the simulation window is opened.
DLLs are loaded either during the program start, or when the user activates a DLL in
the Modules tab of the launchpad dialog.

Synopsis:
DLLCLBK void InitModule (HINSTANCE hDLL)

Parameters:
hDLL DLL module handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 115

Notes:
• To guarantee correct initialisation of your module, you must link the

Orbitersdk.lib library (found in Orbitersdk\lib) with your plugin project, and
add the line
#define ORBITER_MODULE
at the beginning of the main source file of your project.

• If Orbitersdk.lib is not linked, the standard Windows entry point DllMain will
be called instead when the library is loaded.

ExitModule
Called before the DLL is unloaded by Orbiter, after the simulation window has closed.
DLLs are unloaded either when Orbiter exits, or when the user deactivates a DLL in the
Modules tab of the launchpad dialog.

Synopsis:
DLLCLBK void ExitModule (HINSTANCE hDLL)

Parameters:
hDLL DLL module handle

Notes:
• To guarantee correct cleanup of your module, you must link the

Orbitersdk.lib library (found in Orbitersdk\lib) with your plugin project, and
add the line
#define ORBITER_MODULE
at the beginning of the main source file of your project.

• If Orbitersdk.lib is not linked, the standard Windows entry point DllMain will
be called instead when the library is unloaded.

opcDLLInit
Obsolete. Use InitModule instead.

opcDLLExit
Obsolete. Use ExitModule instead.

opcOpenRenderViewport
Called after the simulation window has been opened. The DLL should use this function
for initialisations which depend on the size of the render window. The size remains
valid until the opcCloseRenderViewport method is called. Note that for windowed
modes the width and height parameters may be smaller than the user-defined window
size, to accommodate window borders and title line.

Synopsis:
DLLCLBK void opcOpenRenderViewport (

HWND renderWnd,
DWORD width,
DWORD height,
BOOL fullscreen)

Parameters:
renderWnd render window handle
width width of the render viewport (pixel)
height height of the render viewport (pixel)
fullscreen TRUE if a fullscreen video mode is used, FALSE for a windowed

mode

opcCloseRenderViewport
Called before the simulation window is closed.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 116

Synopsis:
DLLCLBK void opcCloseRenderViewport (void)

opcPreStep
Called at each time step of the simulation, before the state is updated to the current
simulation time. This function is only called when the “physical” state of the simulation
is propagated in time. opcPreStep is not called while the simulation is paused, even if
the user moves the camera.

Synopsis:
DLLCKBK void opcPreStep (

double SimT,
double SimDT,
double mjd)

Parameters:
SimT elapsed simulation time since simulation start (seconds)
SimDT time interval to be applied in current time step (seconds)
mjd simulation universal time in MJD (modified Julian date) format.

Notes:
• This function is called by Orbiter after the new time step (SimDT) and

simulation time (SimT) have been calculated, but before the simulation state
is integrated to SimT. The parameters passed to opcPreStep therefore are
the values that will be applied in the current simulation step.

• A schematic flow diagram of the frame update loop is given by
Set 0=k , 00 =simT and timesystem0 =sysT
Loop

1+= kk
 timesystem=sys

kT
sys

k
sys

k
sys

k TTT 1−−=∆
factor warp⋅∆=∆ sys

k
sim

k TT
sim

k
sim

k
sim

k TTT ∆+= −1

Call opcPreStep (sim
k

sim
k TT ∆,)

Integrate simulation state from sim
kT 1− to sim

kT
Call opcPostStep (sim

k
sim

k TT ∆,)
Render scene

end
• See also opcPostStep.

opcPostStep
Called at each time step of the simulation, after the state has been updated to the
current simulation time.

Synopsis:
DLLCLBK void opcPostStep (

double SimT,
double SimDT,
double mjd)

Parameters:
SimT elapsed simulation time since simulation start (seconds)
SimDT time interval applied in last update (seconds)
mjd simulation universal time in MJD (modified Julian date) format.

opcTimestep
Obsolete. Replaced by opcPreStep.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 117

opcFocusChanged
Called when input focus (keyboard and joystick control) is switched to a new vessel (for
example as a result of a call to oapiSetFocus).

Synopsis:
DLLCLBK opcFocusChanged (

OBJHANDLE new_focus,
OBJHANDLE old_focus)

Parameters:
new_focus handle of vessel receiving the input focus
old_focus handle of vessel losing focus

Notes:
• Currently only objects of type “vessel” can receive the input focus. This may

change in future versions.
• This callback function is also called at the beginning of the simulation, where

new_focus is the vessel receiving the initial focus, and old_focus is NULL.
• opcFocusChanged is sent to plugin modules after the vessels receiving and

losing focus have been notified via VESSEL2::clbkFocusChanged.

opcTimeAccChanged
Called when the simulation time acceleration factor changes.

Synopsis:
DLLCLBK void opcTimeAccChanged (

double nWarp,
double oWarp)

Parameters:
nWarp new time acceleration factor
oWarp old time acceleration factor

16 Planet modules
Planet modules can be used to calculate ephemerides (position and velocity) in cases where
Orbiter’s standard 2-body approximation or dynamic update is not sufficient. By defining a
custom module for a planet or moon, more accurate solutions, including semi-analytic pertur-
bation codes, can be implemented. Modules also allow to implement altitude-dependent at-
mospheric parameters.

See the API Guide manual on how to write a planet module. Typically, during instance initiali-
sation a planet class derived from CELBODY will be created, and Orbiter then communicates
with the module by calling its overloaded callback functions. The module must be referenced
in the planet’s configuration file.

The older standalone module callback functions (opcXXX) are obsolete and should no longer
be used.

16.1 Initialisation functions
The following global functions will be called by Orbiter during module and instance
initialisation/cleanup. They require that the module is linked with Orbitersdk\lib\orbitersdk.lib,
and defines #define ORBITER_MODULE in its main source file.

InitModule
Called after the DLL is loaded by Orbiter. This happens only once per Orbiter session.

Synopsis:
DLLCLBK void InitModule (HINSTANCE hModule)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 118

Parameters:
hModule module instance handle

Notes:
• This function is optional. You can use this function to initialise global

parameters, if required.
• It is called the first time Orbiter loads a planet referencing this module. It will

not be called again if the user exits to the Launchpad and runs another
scenario.

ExitModule
Called before Orbiter unloads the DLL. This usually happens when Orbiter is closed.

Synopsis:
DLLCLBK void ExitModule (HINSTANCE hModule)

Parameters:
hModule module instance handle

Notes:
• This function is optional. You can use it to clean up the module, e.g. by

deallocating dynamic data.

InitInstance
Called when Orbiter loads a planet referencing this module.

Synopsis:
DLLCLBK CELBODY *InitInstance (OBJHANDLE hBody)

Parameters:
hBody object handle for the planet

Return value:
CELBODY-derived class instance

Notes:
• Your module must define this function.
• Create an instance of your planet class (derived from CELBODY) here, and

return a pointer to it.

ExitInstance
Called after a simulation run when Orbiter destroys the planet.

Synopsis:
DLLCLBK void ExitInstance (CELBODY *body)

Parameters:
body pointer to planet class

Notes:
• Use this method to destruct the planet class instance created in InitInstance.
• You should cast body to your derived class when deleting the instance, e.g.

delete (MyPlanet*)body.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 119

16.2 The CELBODY class
CELBODY defines callback methods which Orbiter will call whenever it requires information
from your planet module. You define the behaviour of the planet by overloading the relevant
methods. Below is a list of public CELBODY methods:

bEphemeris
Returns true or false depending on whether the module supports ephemeris
calculation.

Synopsis:
virtual bool bEphemeris() const

Return value:
If your module supports ephemeris calculation (that is, if it defines the
clbkEphemeris and clbkFastEphemeris methods) return true. Otherwise return
false.

Default action:
Returns false.

clbkInit
Called when the planet is initialised at the beginning of a simulation run. This function
allows to read any parameters from the configuration file, and perform additional
initialisation tasks such as reading data files.

Synopsis:
virtual void clbkInit (FILEHANDLE cfg);

Parameters:
cfg file handle of configuration file

Default action:
None.

clbkEphemeris
Called when Orbiter requires (non-sequential) ephemeris data from the planet for a
given time.

Synopsis:
virtual int clbkEphemeris (

double mjd,
int req,
double *ret)

Parameters:
mjd ephemeris date (days, in Modified Julian Date format)
req data request bitflags (see notes)
ret pointer to result vector

Return value:
bitflags describing returned data (see notes)

Default action:
None, returning 0.

Notes:
• The ephemeris data should be calculated with respect to the body’s parent

body, in the ecliptic frame (J2000 equator and equinox).

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 120

• req specifies the data that should be calculated by the callback function. This
can be any combination of
EPHEM_TRUEPOS (true body position)
EPHEM_TRUEVEL (true body velocity)
EPHEM_BARYPOS (barycentric position)
EPHEM_BARYVEL (barycentric velocity)
where the barycentre refers to the system consisting of the body itself and all
its children (e.g. moons).

• ret is a pointer to an array of 12 doubles, to which the function should write
its results:
ret[0-2]: true position (if requested)
ret[3-5]: true velocity (if requested)
ret[6-8]: barycentric position (if requested)
ret[9-11]: barycentric velocity (if requested)

• Data can be returned in either polar or cartesian format. In cartesian format,
the position data blocks should contain x,y and z position (in meters), and
the velocity data blocks should contain dx/dt, dy/dt and dz/dt (in m/s), where
x points to the vernal equinox, y points to ecliptic zenith, and z is orthogonal
to both.
In polar format, the position data blocks should contain longitude ϕ [rad],
latitude θ [rad] and radial distance r [AU], and the velocity data blocks should
contain dϕ/dt [rad/s], dθ/dt [rad/s] and d r/dt [AU/s].
When returning data in polar format, include the EPHEM_POLAR flag in the
return value.

• The return value should contain the flags for the data that were actually
computed. For example, if both true and barycentric data were requested,
but the module can only compute true positions, it should return
EPHEM_TRUEPOS | EPHEM_TRUEVEL.

• If the true and barycentric positions are identical (that is, if the body has no
child objects) the return value should contain the additional flag
EPHEM_TRUEISBARY.

• If both true and barycentric data are requested, but are computationally
expensive to compute (for example, if they require two separate series
evaluations), the module can return true positions only. Orbiter will then
calculate the barycentric data directly, after evaluating the child object
positions.

• If a request can’t be satisfied at all (e.g. if barycentric data were requested,
but the module can only compute true positions), the module should
calculate whatever data it can, and signal so via the return value. Orbiter will
then try to convert these data to the required ones.

• If the returned ephemerides are computed in terms of the barycentre of the
parent body’s system, the return value should include the
EPHEM_PARENTBARY flag. If the ephemerides are computed in terms of the
parent body’s true position, this flag should not be included.

• This function is not called by Orbiter to update the planet’s position during
the normal simulation frame update. (For that purpose, clbkFastEphemeris is
called instead). clbkEphemeris is only called if the planet state at some
arbitrary time point is required, e.g. by an instrument calculating a transfer
orbit.

clbkFastEphemeris
Called by Orbiter to update the body’s state to the next simulation frame.

Synopsis:
virtual int clbkFastEphemeris (

double simt,
int req,
double *ret)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 121

Parameters:
simt simulation time (seconds)
req data request bitflags (see notes)
ret pointer to result vector

Return value:
bitflags describing returned data (see notes)

Default action:
None, returning 0.

Notes:
• This function should perform the same function as clbkEphemeris, but it will

be called at each simulation frame. This means that the sampling times will
be incremented in small steps, allowing for a potentially more efficient
implementation, e.g. by using an interpolation scheme.

• If possible, a full evaluation of a long series of perturbation terms should be
avoided here, to avoid performance hits.

• Note that the time parameter is passed in the form of simulation time
(seconds) unlike clbkEphemeris, which uses absolute MJD time. This avoids
rounding errors in the time variable, and allows higher temporal resolutions.

clbkAtmParam
Called by Orbiter to obtain atmospheric parameters at a given altitude.

Synopsis:
virtual bool clbkAtmParam (double alt, ATMPARAM *prm)

Parameters:
alt altitude over planet mean radius
prm pointer to ATMPARAM structure receiving results

Return value:
true if parameters have been retrieved sucessfully, false to indicate that the
planet has no atmosphere, or if alt is above the cutoff limit for atmospheric
calculations.

Default action:
None, returning false.

Notes:
• The ATMPARAM structure contains the following fields:

double T absolute temperature [K]
double p pressure [N/m2]
double rho density [kg/m3]

• Currently, atmospheric parameters are assumed to be functions of altitude
only. Local variations (“weather”) are not yet supported.

16.3 Orbital parameters
<Planet>_SetPrecision

Obsolete. Set the error limit in CELBODY::clbkInit instead.
Define the relative error for the calculations for <Planet>.

Synopsis:
DLLCLBK int <Planet>_SetPrecision (double prec)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 122

Parameters:
prec module-specific

Return value:
0 if successful, < 0 otherwise

Notes:
• Orbiter calls this function at the start of each simulation with the value of the

ErrorLimit entry of the planet’s configuration file. The module can use this to
set its calculation precision.

• If the ErrorLimit entry is not defined in the cfg file, then
<Planet>_SetPrecision will not be called, so the module should initialise
some default precision.

• It is up to the module how to interpret the passed precision value, but by
convention prec should specify the relative error for position and velocity
calculations.

• This function is optional. If the module doesn’t define it, Orbiter will ignore
the ErrorLimit entry in the cfg file.

<Planet>_Ephemeris
Obsolete. Use CELBODY::clbkEphemeris instead.
Calculate ecliptic positions and velocities. Reference frame is ecliptic and equinox of
J2000. For planets (i.e. objects defined as “Planet” in the solar system cfg file)
heliocentric coordinates should be calculated. For moons (i.e. objects defined as
“Moon” in the solar system cfg file) coordinates w.r.t. the moon’s reference planet
should be calculated, e.g. geocentric for Earth’s moon.

Synopsis:
DLLCLBK int <Planet>_Ephemeris (

double mjd,
double *ret,
int &format)

Parameters:
mjd date in MJD format (MJD = JD-2400000.5)
ret array of position and velocity data calculated by the function. The

type of data depends on the format flag (see notes).
format data format flag (see notes).

Return value:
Error code (not currently used)

Notes:
• Orbiter currently accepts the following data formats:

EPHEMERIS_POLAR - returned values are polar coordinates and velocities:
ret[0] = ecliptic longitude [rad]
ret[1] = ecliptic latitude [rad]
ret[2] = radius [m]
ret[3] = velocity in longitude [rad/s]
ret[4] = velocity in latitude [rad/s]
ret[5] = radial velocity [m/s]

EPHEMERIS_CARTESIAN - returned values are cartesian coordinates and
velocities:

ret[0] = x-coordinate (direction of vernal equinox) [m]
ret[1] = y-coordinate (perpendicular to ecliptic) [m]
ret[2] = z-coordinate (perpendicular to x and y) [m]
ret[3] = velocity in x [m/s]
ret[4] = velocity in y [m/s]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 123

ret[5] = velocity in z [m/s]
When implementing this function, you should calculate the ephemeris data in
one of these formats and set the format flag accordingly.

• The function should calculate the values for ret in the J2000 ecliptic frame,
but Orbiter’s precision requirements are not very high, so the ecliptic of a
different epoch (or the ecliptic of date) is probably ok.

• Orbiter only calls this function directly to calculate positions at times other
than the current simulation time (e.g. for trajectory predictions). Otherwise it
calls <Planet>_FastEphemeris (see below).

<Planet>_FastEphemeris
Obsolete. Use CELBODY::clbkFastEphemeris instead.
This function is called by Orbiter at each frame to update planet positions and
velocities. Therefore the implementation can make use of interpolation methods to
increase the efficiency of the calculation.

Synopsis:
DLLCLBK int <Planet>_FastEphemeris (

double simt,
double *ret,
int &format)

Parameters:
simt Time (in seconds) since simulation start
ret results (as in <Planet>_Ephemeris)
format data format flag (see <Planet>_Ephemeris for details)

Return value:
currently not used

Notes:
• Orbiter passes simt (simulation time in seconds) rather than mjd to this

function to allow more precise calculation of the interpolation point.
• The simplest way to implement this function is as

return <Planet>_Ephemeris (oapiTime2MJD (simt), ret,
format);
However this is not recommended. Instead the function should sample the
planet data in appropriate intervals and use an interpolation scheme to
calculate the data for a given time. This is more efficient and helps
smoothing rounding errors in the full updates.

• This function is called at every frame by Orbiter and is therefore extremely
time-critical. As a performance target, the execution of this function for all
planets should take < 10 milliseconds on a low-end machine.

• The sampling times for full position calculations should be staggered for
different planets, so that not all full updates occur at the same frame.

16.4 Physical parameters
<Planet>_AtmPrm

Obsolete. Use CELBODY::clbkAtmParam instead.
If defined, this function returns atmospheric parameters as a function of altitude above
zero (“sea level”).

Synopsis:
DLLCLBK void <Planet>_AtmPrm (double alt, ATMPARAM *prm)

Parameters:
alt altitude [m]
prm structure to be filled with atmospheric parameters

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 124

Notes:
• The ATMPARAM structure contains the following fields:

double T absolute temperature [K]
double p pressure [N/m2]
double rho density [kg/m3]

17 API function reference
This is the reference list for the Orbiter API functions which can be used by modules to obtain
and set simulation parameters from the Orbiter kernel. See index for alphabetical listing.

17.1 General functions
oapiGetOrbiterInstance

Returns the instance handle for the running Orbiter application.

Synopsis:
HINSTANCE oapiGetOrbiterInstance ()

Return value:
Orbiter instance handle

17.2 Obtaining object handles

oapiGetObjectByName
Retrieve the handle for an object from its name. Objects may be vessels, planets,
moons or suns. The handle remains valid until the object is deleted or the simulation
terminates.

Synopsis:
OBJHANDLE oapiGetObjectByName (char *name)

Parameters:
name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

Notes:
• This function can not be used to obtain handles for surface bases. Use

oapiGetBaseByName or oapiGetBaseByIndex instead.

oapiGetObjectByIndex
Retrieve the handle for an object from its index. This is useful to construct loops over a
series of objects. The handle remains valid until the object is deleted or the simulation
terminates.

Synopsis:
OBJHANDLE oapiGetObjectByIndex (int index)

Parameters:
index object index (>= 0)

Return value:
object handle. (NULL indicates that the object does not exist)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 125

Notes:
0 <= index < oapiGetObjectCount() is required. The function does not perform a
range check!

oapiGetObjectCount
Returns the number of objects currently present in the simulation.

Synopsis:
DWORD oapiGetObjectCount (void)

Return value:
object count

oapiGetVesselByName
Retrieve the handle for a vessel from its name. The handle remains valid until the
object is deleted or the simulation terminates.

Synopsis:
OBJHANDLE oapiGetVesselByName (char *name)

Parameters:
name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the vessel does not exist)

oapiGetVesselByIndex
Retrieve the handle for a vessel from its index. This is useful to construct loops over a
series of vessels. The handle remains valid until the object is deleted or the simulation
terminates.

Synopsis:
OBJHANDLE oapiGetVesselByIndex (int index)

Parameters:
index object index (>= 0)

Return value:
vessel handle. (NULL indicates that the vessel does not exist)

Notes:
0 <= index < oapiGetVesselCount() is required. The function does not perform a
range check!

oapiGetVesselCount
Returns the number of vessels currently present in the simulation.

Synopsis:
DWORD oapiGetVesselCount (void)

Return value:
vessel count

oapiGetStationByName
Obsolete. Returns NULL.

Synopsis:
OBJHANDLE oapiGetStationByName (char *name)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 126

oapiGetStationByIndex
Obsolete. Returns NULL.

Synopsis:
OBJHANDLE oapiGetStationByIndex (int index)

oapiGetStationCount
Obsolete. Returns 0.

Synopsis:
DWORD oapiGetStationCount (void)

oapiGetGbodyByName
Retrieves the handle of a “massive” object (a gravitational field source: sun, planet or
moon) from its name.

Synopsis:
OBJHANDLE oapiGetGbodyByName (char *name)

Parameters:
name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

oapiGetGbodyByIndex
Retrieves the handle of a massive object from its list index.

Synopsis:
OBJHANDLE oapiGetGbodyByIndex (int index)

Parameters:
index object index (� 0)

Return value:
object handle. (NULL indicates that the index is out of range)

oapiGetGbodyCount
Returns the number of massive objects (suns, planets and moons) currently in the
simulation.

Synopsis:
DWORD oapiGetGbodyCount ()

Return value:
Number of objects

oapiGetBaseByName
Returns the handle of a surface base on a given planet or moon.

Synopsis:
OBJHANDLE oapiGetBaseByName (OBJHANDLE hPlanet, char *name)

Parameters:
hPlanet handle of the planet or moon on which the base is located
name base name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 127

oapiGetBaseByIndex
Returns the handle of a surface base on a given planet or moon from its list index.

Synopsis:
OBJHANDLE oapiGetBaseByIndex (OBJHANDLE hPlanet, int index)

Parameters:
hPlanet handle of the planet or moon on which the base is located.
index object index (� 0)

Return value:
object handle. (NULL indicates that the index is out of range)

oapiGetBaseCount
Returns the number of surface bases located on the specified planet.

Synopsis:
DWORD oapiGetBaseCount (OBJHANDLE hPlanet)

Parameters:
hPlanet handle of a planet or moon.

Return value:
Number of surface bases.

oapiGetObjectName
Returns the name of an object.

Synopsis:
void oapiGetObjectName (

OBJHANDLE hObj,
char *name,
int n)

Parameters:
hObj object handle
name pointer to character array to receive object name
n length of string buffer

Notes:
name must be allocated to at least size n by the calling function.
If the string buffer is not long enough to hold the object name, the name is
truncated.

oapiGetFocusObject
Retrieve the handle for the current focus object. The focus object is the user-controlled
vessel which receives keyboard and joystick input.

Synopsis:
OBJHANDLE oapiGetFocusObject (void)

Return value:
focus object handle. This is guaranteed to exist during the simulation (between
opcOpenRenderViewport and opcCloseRenderViewport)

Notes:
Currently the focus object is guaranteed to be a vessel. This may change in
future versions.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 128

oapiSetFocusObject
Switches the input focus to a different vessel object.

Synopsis:
OBJHANDLE oapiSetFocusObject (OBJHANDLE hVessel)

Parameters:
hVessel handle of vessel to receive the focus

Return value:
handle of vessel losing focus, or NULL if focus did not change

Notes:
hVessel must refer to a vessel object. Trying to set the focus to a different object
type (e.g. a planet or moon) will fail.

oapiGetVesselInterface
Returns the VESSEL class interface for a vessel handle.

Synopsis:
VESSEL *oapiGetVesselInterface (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
Pointer to VESSEL class interface for this vessel (see section 11).

oapiGetFocusInterface
Returns the VESSEL class interface for the current focus object.

Synopsis:
VESSEL *oapiGetFocusInterface ()

Return value:
Pointer to VESSEL class interface for focus object (see section 11).

oapiCreateVessel
Creates a new vessel. This version uses the original VESSELSTATUS interface.

Synopsis:
OBJHANDLE oapiCreateVessel (

const char *name,
const char *classname,
const VESSELSTATUS &status)

Parameters:
name vessel name
classname vessel class name
status status parameters

Return value:
handle of the newly created vessel

Notes:
• A configuration file for the specified vessel class must exist in the Config

subdirectory.
• This function replaces VESSEL::Create().

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 129

See also:
oapiCreateVesselEx, ovcSetState, VESSELSTATUS

oapiCreateVesselEx
Creates a new vessel. This version allows to use a VESSELSTATUSx interface
(version x ≥ 2).

Synopsis:
OBJHANDLE oapiCreateVesselEx (

const char *name,
const char *classname,
const void *status)

Parameters:
name vessel name
classname vessel class name
status pointer to a VESSELSTATUSx structure

Return value:
• A configuration file for the specified vessel class must exist in the Config

subdirectory.
• status must point to a VESSELSTATUSx structure. Currently only

VESSELSTATUS2 is supported, but future Orbiter versions may add new
interfaces.

• During the vessel creation process Orbiter will call the module’s
ovcSetStateEx callback function if it exists. Orbiter will not try to call the
ovcSetState function.

See also:
oapiCreateVessel, ovcSetStateEx, VESSELSTATUS2

oapiDeleteVessel
Deletes an existing vessel.

Synopsis:
bool oapiDeleteVessel (

OBJHANDLE hVessel,
OBJHANDLE hAlternativeCameraTarget = 0)

Parameters:
hVessel vessel handle
hAlternativeCameraTarget optional new camera target

Return value:
true if vessel could be deleted.

Notes:
• If the current focus vessel is deleted, Orbiter will switch focus to the closest

focus-enabled vessel. If the last focus-enabled vessel is deleted, Orbiter
returns to the launchpad.

• If the current camera target is deleted, a new camera target can be provided
in hAlternativeCameraTarget. If not specified, the focus object is used as
default camera target.

• The actual vessel destruction does not occur until the end of the current
frame. Self-destruct calls are therefore permitted.

• A vessel will undock all its docking ports before being destructed.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 130

17.3 Generic object parameters
oapiGetSize

Returns the size (mean radius) of an object.

Synopsis:
double oapiGetSize (OBJHANDLE hObj)

Parameters:
hObj object handle

Return value:
Object size (mean radius) in meter.

oapiGetMass
Returns the mass [kg] of an object. For vessels, this is the total mass, including current
fuel mass.

Synopsis:
double oapiGetMass (OBJHANDLE hObj)

Parameters:
hObj object handle

Return value:
object mass [kg]

17.4 Vessel fuel management
oapiGetEmptyMass

Returns empty mass of a vessel, excluding fuel.

Synopsis:
double oapiGetEmptyMass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
empty vessel mass [kg]

Notes:
• hVessel must be a vessel handle. Other object types are invalid.
• Do not rely on a constant empty mass. Structural changes (e.g. discarding a

rocket stage) will affect the empty mass.
• For multistage configurations, the fuel mass of all currently inactive stages

contributes to the empty mass. Only the fuel mass of active stages is
excluded.

oapiGetPropellantHandle
Returns an identifier of a vessel’s propellant resource.

Synopsis:
PROPELLANT_HANDLE oapiGetPropellantHandle (

OBJHANDLE hVessel,
DWORD idx)

Parameters:
hVessel vessel handle
idx propellant resource index (≥ 0)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 131

Return value:
propellant resource id, or NULL if idx ≥ # propellant resources

oapiGetPropellantMaxMass
Returns the maximum capacity [kg] of a propellant resource.

Synopsis:
double oapiGetPropellantMaxMass (PROPELLANT_HANDLE ph)

Parameters:
ph propellant resource identifier

Return value:
maximum fuel capacity [kg] of the resource.

See also:
oapiGetPropellantHandle(), VESSEL::GetPropellantMaxMass()

oapiGetPropellantMass
Returns the current fuel mass [kg] of a propellant resource.

Synopsis:
double oapiGetPropellantMass (PROPELLANT_HANDLE ph)

Parameters:
ph propellant resource identifier

Return value:
current fuel mass [kg] of the resource.

oapiGetFuelMass
Returns current fuel mass of the first propellant resource of a vessel.

Synopsis:
double oapiGetFuelMass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
Current fuel mass [kg]

Notes:
• This function is equivalent to

oapiGetPropellantMass (oapiGetPropellantHandle (hVessel, 0))

• hVessel must be a vessel handle. Other object types are invalid.
• For multistage configurations, this returns the current fuel mass of active

stages only.

oapiGetMaxFuelMass
Returns maximum fuel capacity of the first propellant resource of a vessel.

Synopsis:
double oapiGetMaxFuelMass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 132

Return value:
Maximum fuel mass [kg]

Notes:
• This function is equivalent to

oapiGetPropellantMaxMass (oapiGetPropellantHandle (hVessel, 0))

• hVessel must be a vessel handle. Other object types are invalid.
• For multistage configurations, this returns the sum of the max fuel mass of

active stages only.

oapiSetEmptyMass
Set the empty mass of a vessel (excluding fuel)

Synopsis:
void oapiSetEmptyMass (OBJHANDLE hVessel, double mass)

Parameters:
hVessel vessel handle
mass empty mass [kg]

Notes:
• Use this function to register structural mass changes, for example as a result

of jettisoning a fuel tank, etc.

17.5 Object state vectors

oapiGetGlobalPos
Returns the position of an object in the global reference frame.

Synopsis:
void oapiGetGlobalPos (OBJHANDLE hObj, VECTOR3 *pos)

Parameters:
hObj object handle
pos pointer to vector receiving coordinates

Notes:
• The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.
• Units are meters.

oapiGetGlobalVel
Returns the velocity of an object in the global reference frame.

Synopsis:
void oapiGetGlobalVel (OBJHANDLE hObj, VECTOR3 *vel)

Parameters:
hObj object handle
vel pointer to vector receiving velocity data

Notes:
• The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.
• Units are meters/second.

oapiGetFocusGlobalPos
Returns the position of the current focus object in the global reference frame.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 133

Synopsis:
void oapiGetFocusGlobalPos (VECTOR3 *pos)

Parameters:
pos pointer to vector receiving coordinates

Notes:
• The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.0.
• Units are meters.

oapiGetFocusGlobalVel
Returns the velocity of the current focus object in the global reference frame.

Synopsis:
void oapiGetFocusGlobalVel (VECTOR3 *vel)

Parameters:
vel pointer to vector receiving velocity data

Notes:
• The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.
• Units are meters/second.

oapiGetRelativePos
Returns the distance vector from hRef to hObj in the ecliptic reference frame.

Synopsis:
void oapiGetRelativePos (

OBJHANDLE hObj,
OBJHANDLE hRef,
VECTOR3 *pos)

Parameters:
hObj object handle
hRef reference object handle
pos pointer to vector receiving distance data

Notes:
Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetRelativeVel
Returns the velocity difference vector of hObj relative to hRef in the ecliptic reference
frame.

Synopsis:
void oapiGetRelativeVel (

OBJHANDLE hObj,
OBJHANDLE hRef,
VECTOR3 *vel)

Parameters:
hObj object handle
hRef reference object handle
vel pointer to vector receiving velocity difference data

Notes:
Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 134

oapiGetFocusRelativePos
Returns the distance vector from hRef to the current focus object.

Synopsis:
void oapiGetFocusRelativePos (OBJHANDLE hRef, VECTOR3 *pos)

Parameters:
hRef reference object handle
pos pointer to vector receiving distance data

Notes:
Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetFocusRelativeVel
Returns the velocity difference vector of the current focus object relative to hRef.

Synopsis:
void oapiGetFocusRelativeVel (OBJHANDLE hRef, VECTOR3 *vel)

Parameters:
hRef reference object handle
vel pointer to vector receiving velocity difference data

Notes:
Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetBarycentre
Returns the global position of the barycentre of a complete planetary system or a single
planet-moons system.

Synopsis:
void oapiGetBarycentre (OBJHANDLE hObj, VECTOR3 *bary)

Parameters:
hObj celestial body handle
bary pointer to vector receiving barycentre data

Notes:
• The barycentre is the centre of mass of a distribution of objects. In this case,

all involved celestial bodies are considered point masses, and the barycentre
is defined as

��
−

		

�
��

�
=

i
ii

i
i

B mm rr
��

1

• hObj must be the handle of a celestial body.
• The summation involves the body itself and all its secondaries, e.g. a planet

and its moons.
• The barycentre of a star (0th level object) is always the origin (0,0,0).
• The barycentre of an object without associated secondaries is identical to its

position.

17.6 Surface-relative parameters

oapiGetAltitude
Returns the altitude of a vessel over a planetary surface.

Synopsis:
BOOL oapiGetAltitude (OBJHANDLE hVessel, double *alt)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 135

Parameters:
hVessel vessel handle
alt pointer to variable receiving altitude value

Return value:
Error flag (FALSE on failure)

Notes:
• Unit is meter [m]
• Returns altitude above closest planet.
• Altitude is measured above mean planet radius (as defined by SIZE

parameter in planet’s cfg file)
• The handle passed to the function must refer to a vessel.

oapiGetFocusAltitude
Returns the altitude of the current focus vessel over a planetary surface.

Synopsis:
BOOL oapiGetFocusAltitude (double *alt)

Parameters:
alt pointer to variable receiving altitude value [m]

Return value:
Error flag (FALSE on failure)

oapiGetPitch
Returns a vessel’s pitch angle w.r.t. the local horizon.

Synopsis:
BOOL oapiGetPitch (OBJHANDLE hVessel, double *pitch)

Parameters:
hVessel vessel handle
pitch pointer to variable receiving pitch value

Return value:
Error flag (FALSE on failure)

Notes:
• Unit is radian [rad]
• Returns pitch angle w.r.t. closest planet
• The local horizon is the plane whose normal is defined by the distance

vector from the planet centre to the vessel.
• The handle passed to the function must refer to a vessel.

oapiGetFocusPitch
Returns the pitch angle of the current focus vessel w.r.t. the local horizon.

Synopsis:
BOOL oapiGetFocusPitch (double *pitch)

Parameters:
pitch pointer to variable receiving pitch value

Return value:
Error flag (FALSE on failure)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 136

oapiGetBank
Returns a vessel’s bank angle w.r.t. the local horizon.

Synopsis:
BOOL oapiGetBank (OBJHANDLE hVessel, double *bank)

Parameters:
hVessel vessel handle
bank pointer to variable receiving bank value

Return value:
Error flag (FALSE on failure)

Notes:
• Unit is radian [rad]
• Returns bank angle w.r.t. closest planet
• The local horizon is the plane whose normal is defined by the distance

vector from the planet centre to the vessel.
• The handle passed to the function must refer to a vessel.

oapiGetFocusBank
Returns the bank angle of the current focus vessel w.r.t. the local horizon.

Synopsis:
BOOL oapiGetFocusBank (double *bank)

Parameters:
bank pointer to variable receiving bank angle [rad]

Return value:
Error flag (FALSE on failure)

oapiGetHeading
Returns a vessel’s heading (against geometric north) calculated for the local horizon
plane.

Synopsis:
BOOL oapiGetHeading (OBJHANDLE hVessel, double *heading)

Parameters:
hVessel vessel handle
heading pointer to variable receiving heading value [rad]

Return value:
Error flag (FALSE on failure)

Notes:
• Unit is radian [rad] 0=north, π/2=east, etc.
• The handle passed to the function must refer to a vessel.

oapiGetFocusHeading
Returns the heading (against geometric north) of the current focus vessel calculated for
the local horizon plane.

Synopsis:
BOOL oapiGetFocusHeading (double *heading)

Parameters:
heading pointer to variable receiving heading value [rad]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 137

Return value:
Error flag (FALSE on failure)

oapiGetEquPos
Returns a vessel’s spherical equatorial coordinates (longitude, latitude and radius) with
respect to the closest planet or moon.

Synopsis:
BOOL oapiGetEquPos (

OBJHANDLE hVessel,
double *longitude,
double *latitude,
double *radius)

Parameters:
hVessel vessel handle
longitude pointer to variable receiving longitude value [rad]
latitude pointer to variable receiving latitude value [rad]
radius pointer to variable receiving radius value [m]

Return value:
Error flag (FALSE on failure)

Notes:
• The handle passed to the function must refer to a vessel.

oapiGetFocusEquPos
Returns the current focus vessel’s spherical equatorial coordinates (longitude, latitude
and radius) with respect to the closest planet or moon.

Synopsis:
BOOL oapiGetFocusEquPos (

double *longitude,
double *latitude,
double *radius)

Parameters:
longitude pointer to variable receiving longitude value [rad]
latitude pointer to variable receiving latitude value [rad]
radius pointer to variable receiving radius value [m]

Return value:
Error flag (FALSE on failure)

17.7 Aerodynamics

oapiGetAirspeed
Returns a vessel’s airspeed w.r.t. the closest planet or moon.

Synopsis:
BOOL oapiGetAirspeed (OBJHANDLE hVessel, double *airspeed)

Parameters:
hVessel vessel handle
airspeed pointer to variable receiving airspeed value [m/s]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 138

Return value
Error flag (FALSE on failure)

Notes:
• This function works even for planets or moons without atmosphere. It returns

an “airspeed-equivalent” value.

oapiGetFocusAirspeed
Returns the current focus vessel’s airspeed w.r.t. the closest planet or moon.

Synopsis:
BOOL oapiGetFocusAirspeed (double *airspeed)

Parameters:
airspeed pointer to variable receiving airspeed value [m/s]

Return value:
Error flag (FALSE on failure)

oapiGetAirspeedVector
Returns a vessel’s airspeed vector w.r.t. the closest planet or moon in the local
horizon’s frame of reference.

Synopsis:
BOOL oapiGetAirspeedVector (

OBJHANDLE hVessel,
VECTOR3 *speedvec)

Parameters:
hVessel vessel handle
speedvec pointer to variable receiving airspeed vector [m/s in x,y,z]

Return value:
Error flag (FALSE on failure)

Notes:
• This function returns the airspeed vector with respect to the local horizon

reference frame. To get the vector with respect to the local vessel
coordinates, use oapiGetShipAirspeedVector.

oapiGetFocusAirspeedVector
Returns the current focus vessel’s airspeed vector w.r.t. the closest planet or moon in
the local horizon’s frame of reference.

Synopsis:
BOOL oapiGetFocusAirspeedVector (VECTOR3 *speedvec)

Parameters:
speedvec pointer to variable receiving airspeed vector [m/s in x,y,z]

Return value:
Error flag (FALSE on failure)

oapiGetShipAirspeedVector
Returns a vessel’s airspeed vector w.r.t. the closest planet or moon in the vessel’s local
frame of reference.

Synopsis:
BOOL oapiGetShipAirspeedVector (

OBJHANDLE hVessel,

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 139

VECTOR3 *speedvec)

Parameters:
hVessel vessel handle
speedvec pointer to variable receiving airspeed vector [m/s in x,y,z]

Return value:
Error flag (FALSE on failure)

Notes:
• This function returns the airspeed vector with respect to the vessel’s frame of

reference. The get the vector with respect to the local horizon’s frame of
reference, use oapiGetAirspeedVector.

oapiGetFocusShipAirspeedVector
Returns the current focus vessel’s airspeed vector w.r.t. closest planet or moon in the
vessel’s local frame of reference.

Synopsis:
BOOL oapiGetFocusShipAirspeedVector (VECTOR3 *speedvec)

Parameters:
speedvec pointer to variable receiving airspeed vector [m/s in x,y,z]

Return value:
Error flag (FALSE on failure)

oapiGetAtmPressureDensity
Returns the atmospheric pressure and density caused by a planetary atmosphere at
the current vessel position.

Synopsis:
void oapiGetAtmPressureDensity (

OBJHANDLE hVessel,
double *pressure,
double *density)

Parameters:
hVessel vessel handle
pressure pointer to variable receiving pressure value [Pa]
density pointer to variable receiving density value [kg/m3]

Notes:
• Pressure and density are calculated using an exponential barometric

equation, without accounting for local variations.

oapiGetFocusAtmPressureDensity
Returns the atmospheric pressure and density caused by a planetary atmosphere at
the current focus vessel’s position.

Synopsis:
void oapiGetFocusAtmPressureDensity (

double *pressure,
double *density)

Parameters:
pressure pointer to variable receiving pressure value [Pa]
density pointer to variable receiving density value [kg/m3]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 140

oapiGetInducedDrag
This is a helper function which is useful when implementing the callback function
calculating the aerodynamics coefficients for an airfoil (see VESSEL::CreateAirfoil). It
computes the lift-induced component cD,i of the drag coefficient as a function of lift
coefficient cL, wing aspect ratio A, and wing efficiency factor e, as

Ae

c
c L

iD π

2

, =

Synopsis:
double oapiGetInducedDrag (double cl, double A, double e)

Parameters:
cl lift coefficient
A wing aspect ratio
e wing efficiency factor

Return value:
Induced drag coefficient cD,i

Notes:
• The full drag coefficient required by the airfoil callback function consists of

several components: profile drag cD,e, induced drag cD,i and wave drag cD,w

wDiDeDD cccc ,,, ++=
where cD,e is caused by skin friction and pressure components, and cD,w is a
result of the shock wave and flow separation in transonic and supersonic
flight.

• The wing aspect ratio is defined as b2/S, where b is the wing span, and S is
the wing area.

• The efficiency factor depends on the wing shape. The most efficient wings
are elliptical, with e = 1. For all other shapes, e < 1.

• This function can be interpreted slightly differently by moving the angle of
attack-dependency of the profile drag into the induced drag component:

wDiDDD cccc ,,0, +′+=
where cD,0 is the zero-lift component of the profile drag, and c’ D,i is a modified
induced drag obtained by replacing the shape factor e with the Oswald
efficiency factor. See Programmer’s Guide for more details.

oapiGetWaveDrag
This is a helper function which is useful when implementing the callback function
calculating the aerodynamics coefficients for an airfoil (see VESSEL::CreateAirfoil). It
uses a simple model to compute the wave drag component of the drag coefficient, cD,w.
Wave drag significantly affects the vessel drag around Mach 1, and falls off towards
lower and higher airspeeds.
This function uses the following model:

�
�
�
�
�

�

�
�
�
�
�

�

�

>
−
−

<<

<<
−
−

<

=

32/12

2/12
3

32

21
12

1

1

,

 if
)1(

)1(

 if

 if

 if0

MM
M

M
c

MMMc

MMM
MM

MM
c

MM

c

m

m

m

wD

where 0 < M1 < M2 < 1 < M3 are characteristic Mach numbers, and cm is the maximum
wave drag coefficient at transonic speeds.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 141

Synopsis:
double oapiGetWaveDrag (

double M,
double M1, double M2, double M3,
double cmax)

Parameters:
M current Mach number
M1, M2, M3 characteristic Mach numbers
cmax maximum wave drag coefficient

Return value:
Wave drag coefficient cD,w

Notes:
• The model underlying this function assumes a piecewise linear wave drag

profile for M < M3, and a decay with (M2-1)-1/2 for M > M3. If this profile is not
suitable for a given airfoil, the programmer must implement wave drag
manually.

17.8 Engine status

oapiGetEngineStatus
Retrieve the status of main, retro and hover thrusters for a vessel.

Synopsis:
void oapiGetEngineStatus (

OBJHANDLE hVessel,
ENGINESTATUS *es)

Parameters:
hVessel vessel handle
es pointer to an ENGINESTATUS structure which will receive the

engine level parameters

Notes:
The main/retro engine level has a range of [-1,+1]. A positive value indicates
engaged main/disengaged retro thrusters, a negative value indicates engaged
retro/disengaged main thrusters. Main and retro thrusters cannot be engaged
simultaneously. For vessels without retro thrusters the valid range is [0,+1]. The
valid range for hover thrusters is [0,+1].

oapiGetFocusEngineStatus
Retrieve the engine status for the focus vessel.

Synopsis:
void oapiGetFocusEngineStatus (ENGINESTATUS *es)

Parameters:
es pointer to an ENGINESTATUS structure which will receive the

engine level parameters

Notes:
See oapiGetEngineStatus

oapiSetEngineLevel
Engage the specified engines.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 142

Synopsis:
void oapiSetEngineLevel (

OBJHANDLE hVessel,
ENGINETYPE engine,
double level)

Parameters:
hVessel vessel handle
engine identifies the engine to be set
level engine thrust level [0,1]

Notes:
• Not all vessels support all types of engines.
• Setting main thrusters >0 implies setting retro thrusters to 0 and vice versa.
• Setting main thrusters to –level is equivalent to setting retro thrusters to

+level and vice versa.

oapiGetAttitudeMode
Returns a vessel’s current attitude thruster mode.

Synopsis:
int oapiGetAttitudeMode (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
Current attitude mode (0=disabled or not available, 1=rotational, 2=linear)

Notes:
• The handle must refer to a vessel. This function does not support other

object types.

oapiToggleAttitudeMode
Flip a vessel’s attitude thruster mode between rotational and linear.

Synopsis:
int oapiToggleAttitudeMode (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
The new attitude mode (1=rotational, 2=linear, 0=unchanged disabled)

Notes:
• The handle must refer to a vessel. This function does not support other

object types.
• This function flips between linear and rotational, but has no effect if attitude

thrusters were disabled.

oapiSetAttitudeMode
Set a vessel’s attitude thruster mode.

Synopsis:
bool oapiSetAttitudeMode (OBJHANDLE hVessel, int mode)

Parameters:
hVessel vessel handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 143

mode attitude mode (0=disable, 1=rotational, 2=linear)

Return value:
Error flag; false indicates failure (requested mode not available)

Notes:
• The handle must refer to a vessel. This function does not support other

object types.

oapiGetFocusAttitudeMode
Returns the current focus vessel’s attitude thruster mode (rotational or linear)

Synopsis:
int oapiGetFocusAttitudeMode ()

Return value:
Current attitude mode (0=disabled or not available, 1=rotational, 2=linear)

oapiToggleFocusAttitudeMode
Flip the current focus vessel’s attitude thruster mode between rotational and linear.

Synopsis:
int oapiToggleFocusAttitudeMode ()

Return value:
The new attitude mode (1=rotational, 2=linear, 0=unchanged disabled)

Notes:
• This function flips between linear and rotational, but has no effect if attitude

thrusters were disabled.

oapiSetFocusAttitudeMode
Set the current focus vessel’s attitude thruster mode.

Synopsis:
bool oapiSetFocusAttitudeMode (int mode)

Parameters:
mode attitude mode (0=disable, 1=rotational, 2=linear)

Return value:
Error flag; false indicates error (requested mode not available)

oapiRegisterExhaustTexture
Request a custom texture for vessel exhaust rendering.

Synopsis:
SURFHANDLE oapiRegisterExhaustTexture (char *name)

Parameters:
name exhaust texture file name (without path and extension)

Return value:
texture handle

Notes:
• The exhaust texture must be stored in DDS format in Orbiter’s default texture

directory.
• If the texture is not found the function returns NULL.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 144

• The texture can be used to define custom textures in VESSEL::AddExhaust.

See also:
VESSEL::AddExhaust

oapiRegisterReentryTexture
Request a custom texture for vessel reentry flame rendering.

Synopsis:
SURFHANDLE oapiRegisterReentryTexture (char *name)

Parameters:
name reentry texture file name (without path and extension)

Return value:
texture handle

Notes:
• The exhaust texture must be stored in DDS format in Orbiter’s default texture

directory.
• If the texture is not found the function returns NULL.
• The texture can be used to define custom textures in

VESSEL::SetReentryTexture.

See also:
VESSEL::SetReentryTexture

17.9 Functions for planetary bodies
All OBJHANDLE function parameters used in this section must refer to planetary bodies
(planets, moons, astereoids, etc.) unless stated otherwise. Invalid handles may lead to
crashes.
Currently, the orientation of planetary rotation axes is assumed time-invariant. Precession,
nutation and similar effects are not currently simulated.

oapiGetPlanetPeriod
Returns the rotation period (the length of a siderial day) of a planet.

Synopsis:
double oapiGetPlanetPeriod (OBJHANDLE hPlanet)

Parameters:
hPlanet planet handle

Return value:
planet rotation period [seconds]

oapiGetPlanetObliquity
Returns the obliquity of the planet’s rotation axis (the angle between the rotation axis
and the ecliptic zenith).

Synopsis:
double oapiGetPlanetObliquity (OBJHANDLE hPlanet)

Parameters:
hPlanet planet handle

Return value:
obliquity [rad]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 145

Notes:
• In Orbiter, the ecliptic zenith (at epoch J2000) is the positive y-axis of the

global frame of reference.

oapiGetPlanetTheta
Returns the longitude of the ascending node of the equatorial plane (denoted by θ),
that is, the angle between the vernal equinox and the ascending node of the equator
w.r.t. the ecliptic.

Synopsis:
double oapiGetPlanetTheta (OBJHANDLE hPlanet)

Parameters:
hPlanet planet handle

Return value:
longitude of ascending node of the equator [rad]

Notes:
• For Earth, this function will return 0. (The ascending node of Earth’s

equatorial plane is the definition of the vernal equinox).

oapiGetPlanetObliquityMatrix
Returns a rotation matrix which performs the transformation from the planet’s tilted
coordinates into global coordinates.

Synopsis:
void oapiGetPlanetObliquityMatrix (

OBJHANDLE hPlanet,
MATRIX3 *mat)

Parameters:
hPlanet planet handle
mat pointer to a matrix receiving the rotation data

Notes:
• The returned matrix is given by

�
�
�

�

�

�
�
�

�

�

−
�
�
�

�

�

�
�
�

�

� −
=

ϕϕ
ϕϕ

θθ

θθ

cossin0

sincos0

001

cos0sin

010

sin0cos

AR

where θ is the longitude of the ascending node of the equator, as returned by
oapiGetPlanetTheta, and ϕ is the obliquity as returned by
oapiGetPlanetObliquity.

• RA does not include the current rotation of the planet around its axis. RA is
therefore time-independent.

oapiGetPlanetCurrentRotation
Returns the current rotation angle of the planet around its axis.

Synopsis:
double oapiGetPlanetCurrentRotation (OBJHANDLE hPlanet)

Parameters:
hPlanet planet handle

Return value:
Rotation angle [rad]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 146

Notes:
• The complete rotation matrix from planet local to global (ecliptic) coordinates

is given by

�
�
�

�

�

�
�
�

�

� −
=

ωω

ωω

cos0sin

010

sin0cos

ARR

where RA is the obliquity matrix as returned by oapiGetPlanetObliquityMatrix,
and ω is the rotation angle returned by oapiGetPlanetCurrentRotation.

oapiPlanetHasAtmosphere
Test for existence of planetary atmosphere.

Synopsis:
double oapiPlanetHasAtmosphere (OBJHANDLE hPlanet)

Parameters:
hPlanet planet handle

Return value:
true if an atmosphere has been defined for the planet, false otherwise.

oapiGetPlanetAtmConstants
Returns atmospheric constants for a planet.

Synopsis:
const ATMCONST *oapiGetPlanetAtmConstants (

OBJHANDLE hPlanet)

Parameters:
hPlanet planet handle

Return value:
pointer to ATMCONST structure containing atmospheric coefficients for the
planet (see notes)

Notes:
• ATMCONST has the following components:

typedef struct {
 double p0; // pressure at mean radius ('sea level') [Pa]
 double rho0; // density at mean radius [kg/m3]
 double R; // specific gas constant [J/(K kg)]
 double gamma; // ratio of specific heats, c_p/c_v
 double C; // exponent for pressure equation (temporary)
 double O2pp; // partial pressure of oxygen
 double altlimit; // atmosphere altitude limit [m]
 double radlimit; // radius limit (altlimit + mean radius)
 double horizonalt; // horizon rendering altitude
 VECTOR3 color0; // sky colour at sea level during daytime
} ATMCONST;

• If the specified planet does not have an atmosphere, return value is NULL.

oapiGetPlanetAtmParams
Returns atmospheric parameters as a function of distance from the planet centre.

Synopsis:
void oapiGetPlanetAtmParams (

OBJHANDLE hPlanet,
double rad,
ATMPARAM *prm)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 147

Parameters:
hPlanet planet handle
rad radius from planet centre [m]
prm pointer to ATMPARAM structure receiving parameters

Notes:
• See section 8 for definition of ATMPARAM structure.
• If the planet has no atmosphere, or if the defined radius is beyond the

defined upper atmosphere limit, all parameters are set to 0.

oapiGetPlanetJCoeffCount
Returns the number of perturbation coefficients defined for a planet to describe the
latitude-dependent perturbation of its gaviational potential. A return value of 0 indicates
that the planet is considered to have a spherically symmetric gravity field.

Synopsis:

DWORD oapiGetPlanetJCoeffCount (OBJHANDLE hPlanet)

Parameters:
hPlanet planet handle

Return value:
Number of perturbation coefficients.

Notes:
• Even if a planet defines perturbation coefficients, its gravity perturbation may

be ignored, if the user disabled nonspherical gravity sources, or if orbit
stabilisation is active at a given time step. Use the
VESSEL::NonsphericalGravityEnabled function to check if a vessel uses the
perturbation terms in the update of its state vectors.

• Depending on the distance to the planet, Orbiter may use fewer perturbation
terms than defined, if their contribution is negligible:

If)2(, ≥<	

�
�

�
n

r

R
J

n

n ε , ignore all terms ≥ n,

where R is the planet radius, r is the distance from the planet, and Jn is the n-
2nd perturbation term defined for the planet. Orbiter uses ε = 10-10.

oapiGetPlanetJCoeff
Returns a perturbation coefficient for the calculation of a planet’s gravitational potential.

Synopsis:
double oapiGetPlanetJCoeff (OBJHANDLE hPlanet, DWORD n)

Parameters:
hPlanet planet handle
n coefficient index

Return value:
Perturbation coefficient Jn+2.

Notes:
• Valid indices n are 0 to oapiGetPlanetJCoeffCount()-1.
• Orbiter calculates the planet’s gravitational potential U for a given distance r

and latitude φ by

�
�
�

�

�
�
�

�
	

�
�

�−= �
=

N

n
nn P

r

R
J

r

GM
rU

2

2

)(sin1),(φφ

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 148

where R is the planet’s equatorial radius, M is its mass, G is the gravitational
constant, and Pn is the Legendre polynomial of order n.

• Orbiter currently considers perturbations to be only a function of latitude
(polar), not of longitude.

• The first coefficient, n = 0, returns J2, which accounts for the ellipsoid shape
of a planet (flattening). Higher perturbation terms are usually small compared
to J2 (and not known for most planets).

17.10 Surface base functions
oapiGetBaseEquPos

Returns the equatorial coordinates (longitude, latitude and radius) of the location of a
surface base.

Synopsis:
void oapiGetBaseEquPos (

OBJHANDLE hBase,
double *lng,
double *lat,
double *rad = 0)

Parameters:
hBase surface base handle
lng pointer to variable to receive longitude value [rad]
lat pointer to variable to receive latitude value [rad]
rad pointer to variable to receive radius value [m]

Notes:
• hBase must be a valid base handle (e.g. from oapiGetBaseByName)
• The radius pointer can be omitted if not required.
• Currently, rad will always return the planet mean radius.

oapiGetBasePadCount
Returns the number of VTOL landing pads owned by the base.

Synopsis:
DWORD oapiGetBasePadCount (OBJHANDLE hBase)

Parameters:
hBase surface base handle

Return value:
Number of landing pads

Notes:
• hBase must be a valid base handle (e.g. from oapiGetBaseByName)
• This function only counts VTOL pads, not runways.

oapiGetBasePadEquPos
Returns the equatorial coordinates (longitude, latitude and radius) of the location of a
VTOL landing pad.

Synopsis:
bool oapiGetBasePadEquPos (

OBJHANDLE hBase,
DWORD pad,
double *lng,
double *lat,
double *rad = 0)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 149

Parameters:
hBase surface base handle
pad pad index
lng pointer to variable to receive longitude value [rad]
lat pointer to variable to receive latitude value [rad]
rad pointer to variable to receive radius value [m]

Return value:
false indicates failure (pad index out of range). In that case, the return values are
undefined.

Notes:
• hBase must be a valid base handle (e.g. from oapiGetBaseByName)
• 0 � pad < oapiGetBasePadCount() is required.
• The radius pointer can be omitted if not required.

oapiGetBasePadStatus
Returns the status of a VTOL landing pad (free, occupied or cleared).

Synopsis:
bool oapiGetBasePadStatus (

OBJHANDLE hBase,
DWORD pad,
int *status)

Parameters:
hBase surface base handle
pad pad index
status pointer to variable to receive pad status

Return value:
false indicates failure (pad index out of range)

Notes:
• hBase must be a valid base handle (e.g. from oapiGetBaseByName)
• 0 � pad < oapiGetBasePadCount() is required.
• status can be one of the following:

0 = pad is free
1 = pad is occupied
2 = pad is cleared for an incoming vessel

oapiGetBasePadNav
Returns a handle to the ILS transmitter of a VTOL landing pad, if available.

Synopsis:
NAVHANDLE oapiGetBasePadNav (OBJHANDLE hBase, DWORD pad)

Parameters:
hBase surface base handle
pad pad index

Return value:
Handle of a ILS transmitter, or NULL if the pad index is out of range or the pad
has no ILS.

Notes:
• hBase must be a valid base handle (e.g. from oapiGetBaseByName)
• 0 � pad < oapiGetBasePadCount() is required.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 150

17.11 Navigation radio transmitter functions
oapiGetNavPos

Returns the current position of a NAV transmitter (in global coordinates, i.e. heliocentric
ecliptic).

Synopsis:
void oapiGetNavPos (NAVHANDLE hNav, VECTOR3 *gpos)

Parameters:
hNav NAV transmitter handle
gpos pointer to variable to receive global position

oapiGetNavChannel
Returns the channel number of a NAV transmitter.

Synopsis:
DWORD oapiGetNavChannel (NAVHANDLE hNav)

Parameters:
hNav NAV transmitter handle

Return value:
channel number

Notes:
• Channel numbers range from 0 to 639.
• To convert a channel number ch into a frequency, use

f = (108.0 + 0.05 ch) kHz

oapiGetNavFreq
Returns the frequency of a NAV transmitter.

Synopsis:
float oapiGetNavFreq (NAVHANDLE hNav)

Parameters:
hNav NAV transmitter handle

Return value:
Transmitter frequency [kHz]

Notes:
• In Orbiter, NAV transmitter frequencies range from 108.0 to 139.95 kHz and

are incremented in 0.05 kHz steps.

oapiGetNavRange
Returns the range of a NAV transmitter.

Synopsis:
float oapiGetNavRange (NAVHANDLE hNav)

Parameters:
hNav NAV transmitter handle

Return value:
Transmitter range [m]

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 151

Notes:
• A NAV receiver will only receive a signal when within the range of a

transmitter.
• Variable receiver sensitivity is not currently implemented.
• Shadowing of a transmitter by obstacles between transmitter and receiver is

not currently implemented.

oapiNavInRange
Determines whether a given global coordinate is within the range of a NAV transmitter.

Synopsis:
bool oapiNavInRange (NAVHANDLE hNav, const VECTOR3 &gpos)

Parameters:
hNav NAV transmitter handle
gpos Global coordinates [m,m,m] of a point (cartesian heliocentric

ecliptic)

Return value:
true if the point is within range of the transmitter.

17.12 Simulation time

oapiGetSimTime
Retrieve simulation time (in seconds) since simulation start.

Synopsis:
double oapiGetSimTime ()

Return value:
Simulation up time (seconds)

Notes:
Since the simulation up time depends on the simulation start time, this parameter
is useful mainly for time differences. To get an absolute time parameter, use
oapiGetSimMJD.

oapiGetSimStep
Retrieve length of last simulation time step (from previous to current frame) in seconds.

Synopsis:
double oapiGetSimStep ()

Return value:
Simulation time step (seconds)

Notes:
This parameter is useful for numerical (finite difference) calculation of time
derivatives.

oapiGetSysTime
Retrieve system (real) time since simulation start.

Synopsis:
double oapiGetSysTime ()

Return value:
Real-time simulation up time (seconds)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 152

Notes:
• This function measures the real time elapsed since the simulation was

started. Unlike oapiGetSimTime, it doesn’t take into account time
acceleration.

oapiGetSysStep
Retrieve length of last system time step in seconds.

Synopsis:
OAPIFUNC double oapiGetSysStep ()

Return value:
System time step (seconds)

Notes:
• Unlike oapiGetSimStep, this function does not include the time compression

factor. It is useful to control actions which do not depend on the simulation
time acceleration.

oapiGetSimMJD
Retrieve absolute time measure (Modified Julian Date) for current simulation state.

Synopsis:
double oapiGetSimMJD ()

Return value:
Current Modified Julian Date (days)

Notes:
Orbiter defines the Modified Julian Date (MJD) as JD – 240 0000.5, where JD is
the Julian Date. JD is the interval of time in mean solar days elapsed since 4713
BC January 1 at Greenwich mean noon.

oapiTime2MJD
Convert a simulation up time value into a Modified Julian Date.

Synopsis:
double oapiTime2MJD (double simt)

Parameters:
simt simulation time (seconds)

Return value:
Modified Julian Date (MJD) corresponding to simt.

oapiGetTimeAcceleration
Returns simulation time acceleration factor.

Synopsis:
double oapiGetTimeAcceleration (void)

Return value:
time acceleration factor

Notes:
This function will not return 0 when the simulation is paused. Instead it will return
the acceleration factor at which the simulation will resume when unpaused.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 153

oapiSetTimeAcceleration
Set the simulation time acceleration factor

Synopsis:
void oapiSetTimeAcceleration (double warp)

Parameters:
warp new time acceleration factor

Notes:
Warp factors will be clamped to the valid range [1,1000]. If the new warp factor is
different from the previous one, all DLLs (including the one that called
oapiSetTimeAcceleration) will be sent a opcTimeAccChanged message.

oapiGetFrameRate
Returns current simulation frame rate (frames/sec).

Synopsis:
double oapiGetFrameRate (void)

Return value:
Current frame rate (fps)

17.13 Camera functions
oapiCameraInternal

Returns flag to indicate internal/external camera mode.

Synopsis:
bool oapiCameraInternal (void)

Return value:
true indicates an internal camera mode, i.e. the camera is located inside a vessel
cockpit. In this case, the camera target is always the current focus object.
false indicates an external camera mode, i.e. the camera points toward an object
from outside. The camera target may be a vessel, planet, spaceport, etc.

oapiCameraMode
Returns the current camera view mode.

Synopsis:
int oapiCameraMode ()

Return value:
CAM_COCKPIT cockpit (internal) mode
CAM_TARGETRELATIVE tracking mode (relative direction)
CAM_ABSDIRECTION tracking mode (absolute direction)
CAM_GLOBALFRAME tracking mode (global frame)
CAM_TARGETTOOBJECT tracking mode (target to object)
CAM_TARGETFROMOBJECT tracking mode (object to target)
CAM_GROUNDOBSERVER ground observer mode

oapiCockpitMode
Returns the current cockpit display mode.

Synopsis:
int oapiCockpitMode ()

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 154

Return value:
COCKPIT_GENERIC (generic cockpit mode: left+right MFD and HUD)
COCKPIT_PANELS (2D panel mode)
COCKPIT_VIRTUAL (virtual cockpit mode)

Notes:
• This function also works if the camera is not currently in cockpit mode.

oapiCameraTarget
Returns a handle to the current camera target.

Synopsis:
OBJHANDLE oapiCameraTarget (void)

Return value:
Handle to the current camera target (i.e. the object the camera is pointing at in
external mode, or the handle of the vessel in cockpit mode)

Notes:
• The camera target is not necessarily a vessel, and if it is a vessel, it is not

necessarily the focus object (the vessel receiving user input).

oapiCameraGlobalPos
Returns current camera position in global coordinates.

Synopsis:
void oapiCameraGlobalPos (VECTOR3 *gpos)

Parameters:
gpos pointer to vector to receive global camera coordinates

Notes:
• The global coordinate system is the heliocentric ecliptic frame at epoch

J2000.0.

oapiCameraGlobalDir
Returns current camera direction in global coordinates.

Synopsis:
void oapiCameraGlobalDir (VECTOR3 *gdir)

Parameters:
gdir pointer to vector to receive global camera direction

oapiCameraTargetDist
Returns the distance between the camera and its target [m].

Synopsis:
double oapiCameraTargetDist (void)

Return value:
Distance between camera and camera target [m].

oapiCameraAzimuth
Returns the current camera azimuth angle with respect to the target.

Synopsis:
double oapiCameraAzimuth ()

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 155

Return value:
Camera azimuth angle [rad]. Value 0 indicates that the camera is behind the
target.

Notes:
• This function is useful only in external camera mode. In internal mode, it will

always return 0.

oapiCameraPolar
Returns the current camera polar angle with respect to the target.

Synopsis:
double oapiCameraPolar ()

Return value:
Camera polar angle [rad]. Value 0 indicates that the camera is at the same
elevation as the target.

Notes:
• This function is useful only in external camera mode. In internal mode, it will

always return 0.

oapiCameraAperture
Returns the current camera aperture (the field of view) in rad.

Synopsis:
double oapiCameraAperture (void)

Return value:
camera aperture [rad]

Notes:
• Orbiter defines the the aperture as ½ of the vertical field of view, between

the viewport centre and the top edge of the viewport.

oapiCameraSetAperture
Change the camera aperture (field of view).

Synopsis:
void oapiCameraSetAperture (double aperture)

Parameters:
aperture new aperture [rad]

Notes:
• Orbiter restricts the aperture to the range from RAD*5 to RAD*80 (i. e. field

of view between 10° and 160°. Very wide angles (> 90°) should only be used
to implement specific optical devices, e.g. wide-angle cameras, not for
standard observer views.

• The Orbiter user interface does not accept fields of view > 90°. As soon as
the user manipulates the aperture manually, it will be clamped back to the
range from 10° to 90°.

oapiCameraScaleDist
Moves the camera closer to the target or further away.

Synopsis:
void oapiCameraScaleDist (double dscale)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 156

Parameters:
dscale distance scaling factor

Notes:
• Setting dscale < 1 will move the camera closer to its target. dscale > 1 will

move it further away.
• This function is ignored if the camera is in internal mode.

oapiCameraRotAzimuth
Rotate the camera around the target (azimuth angle).

Synopsis:
void oapiCameraRotAzimuth (double dazimuth)

Parameters:
dazimuth change in azimuth angle [rad]

Notes:
• This function is ignored if the camera is in internal mode.

oapiCameraRotPolar
Rotate the camera around the target (polar angle).

Synopsis:
void oapiCameraRotPolar (double dpolar)

Parameters:
dpolar change in polar angle [rad]

Notes:
• This function is ignored if the camera is in internal mode.

oapiCameraSetCockpitDir
Set the camera direction in cockpit mode.

Synopsis:
void oapiCameraSetCockpitDir (

double polar,
double azimuth,
bool transition = false)

Parameters:
polar polar angle [rad]
azimuth azimuth angle [rad]
transition transition flag (see notes)

Notes:
• This function is ignored if the camera is not currently in cockpit mode.
• The polar and azimuth angles are relative to the default view direction (see

VESSEL::SetCameraDefaultDirection)
• The requested direction should be within the current rotation ranges (see

VESSEL::SetCameraRotationRange), otherwise the result is undefined.
• If transition==false, the new direction is set instantaneously; otherwise the

camera swings from the current to the new direction (not yet implemented).

oapiCameraAttach
Attach the camera to a new target, or switch between internal and external camera
mode.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 157

Synopsis:
void oapiCameraAttach (OBJHANDLE hObj, int mode)

Parameters:
hObj handle of the new camera target
mode camera mode (0=internal, 1=external, 2=don’t change)

Notes:
• If the new target is not a vessel, the camera mode is always set to external,

regardless of the value of mode.

17.14 Keyboard input
oapiAcceptDelayedKey

Obsolete. This function is should no longer be used. See ovcConsumeBufferedKey for
handling buffered key events. May be removed in a future version.

17.15 Mesh management
oapiLoadMesh

Loads a mesh from file and returns a handle to it.

Synopsis:
MESHHANDLE oapiLoadMesh (const char *fname)

Parameters:
fname mesh file name

Return value:
Handle to the loaded mesh. (NULL indicates load error)

Notes:
• The file name should not contain a path or file extension. Orbiter appends

extension .msh and searches in the default mesh directory.
• Meshes should be deallocated with oapiDeleteMesh when no longer

needed.

See also:
oapiDeleteMesh, VESSEL::AddMesh

oapiLoadMeshGlobal
Retrieves a mesh handle from the global mesh manager. When called for the first time
for any given file name, the mesh is loaded from file and stored as a system resource.
Every further request of the same mesh directly returns a handle to the stored mesh
without further file I/O.

Synopsis:
const MESHHANDLE oapiLoadMeshGlobal (const char *fname)

Parameters:
fname mesh file name

Return value:
mesh handle

Notes:
• Once a mesh is globally loaded it remains in memory until the user closes

the simulation window.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 158

• This function can be used to pre-load meshes to avoid load delays during
the simulation. For example, parent objects may pre-load meshes for any
child objects they may create later.

• Do NOT delete any meshes obtained by this function with oapiDeleteMesh!
Orbiter takes care of deleting globally managed meshes.

oapiDeleteMesh
Removes a mesh from memory.

Synopsis:
void oapiDeleteMesh (MESHHANDLE hMesh)

Parameters:
hMesh mesh handle

oapiMeshGroupCount
Returns the number of mesh groups defined in a mesh.

Synopsis:
DWORD oapiMeshGroupCount (MESHHANDLE hMesh)

Parameters:
hMesh mesh handle

Return value:
number of mesh groups defined in the mesh

Notes:
• Each mesh is subdivided into mesh groups, defining a part of the 3-D object

represented by the mesh.
• A group consists of a list of vertex coordinates and vertex indices,

representing its geometry, and optionally a material and a texture reference.
• See 3DModel document for details of the mesh format.

oapiMeshGroup
Returns a pointer to the group specification of a mesh group.

Synopsis:
MESHGROUP *oapiMeshGroup (MESHHANDLE hMesh, DWORD idx)

Parameters:
hMesh mesh handle
idx group index (≥ 0)

Return value:
pointer to mesh group specification (or NULL if idx out of range)

Notes:
• MESHGROUP is a structure defined as follows:

typedef struct { // mesh group definition
 NTVERTEX *Vtx; // vertex list
 WORD *Idx; // index list
 DWORD nVtx; // vertex count
 DWORD nIdx; // index count
 DWORD MtrlIdx; // material index (>= 1, 0=none)
 DWORD TexIdx; // texture index (>= 1, 0=none)
 DWORD UsrFlag; // user-defined flag
 WORD zBias; // z bias
 WORD Flags; // internal flags
} MESHGROUP;

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 159

where NVERTEX defines a vertex with normals and texture coordinates:
typedef struct { // vertex definition including normals and texture coordinates
 float x, y, z; // position
 float nx, ny, nz; // normal
 float tu, tv; // texture coordinates
} NTVERTEX;

• This method can be used to edit the a mesh group directly (for geometry
animation, texture animation, etc.)

oapiGetTextureHandle
Retrieve a surface handle for a mesh texture.

Synopsis:
OAPIFUNC SURFHANDLE oapiGetTextureHandle (

MESHHANDLE hMesh,
DWORD texidx)

Parameters:
hMesh mesh handle
texidx texture index (≥ 1)

Return value:
surface handle

Notes:
• This function can be used for dynamically updating textures during the

simulation.
• the texture index is given by the order in which the textures appear in the

texture list at the end of the mesh file.
• Important: Any textures which are to be dynamically modified should be

listed with the ‘D’ flag (“dynamic”) in the mesh file. This causes Orbiter to
decompress the texture when it is loaded. Blitting operations to compressed
surfaces is very inefficient on most graphics hardware.

17.16 Particle stream management
oapiParticleSetLevelRef

Reset the reference pointer used by the particle stream to calculate the intensity
(opacity) of the generated particles.

Synopsis:
void oapiParticleSetLevelRef (

PSTREAM_HANDLE ph,
double *lvl)

Parameters:
ph particle stream handle
lvl pointer to variable defining particle intensity

Notes:
• The variable pointed to by lvl should be set to values between 0 (lowest

intensity) and 1 (highest intensity).
• By default, exhaust streams are linked to the thrust level setting of the

thruster they are associated with. Reentry streams are set to a fixed level of
1 by default.

• This function allows to customise the appearance of the particle streams
directly by the module.

• Other parameters besides the intensity level, such as atmospheric density
can also have an effect on the particle intensity.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 160

17.17 HUD, panel, virtual cockpit and MFD management

oapiSetHUDMode
Set HUD (head up display) mode.

Synopsis:
bool oapiSetHUDMode (int mode)

Parameters:
mode new HUD mode

Return value:
true if mode has changed, false otherwise.

Notes:
• Mode HUD_NONE will turn off the HUD display.
• See constants HUD_xxx (section 9) for currently supported HUD modes.

oapiGetHUDMode
Query current HUD (head up display) mode.

Synopsis:
int oapiGetHUDMode (void)

Return value:
Current HUD mode

oapiToggleHUDColour
Switch the HUD display to a different colour.

Synopsis:
void oapiToggleHUDColour (void)

Notes:
• Orbiter currently defines 3 HUD colours: green, red, white. Calls to

oapiToggleHUDColour will cycle through these.

oapiIncHUDIntensity
Increase the brightness of the HUD display.

Synopsis:
void oapiIncHUDIntensity (void)

Notes:
• Calling this function will increase the intensity (in virtual cockpit modes) or

brightness (in other modes) of the HUD display up to a maximum value.
• This function should be called repeatedly (e.g. while the user presses a key).

oapiDecHUDIntensity
Decrease the brightness of the HUD display.

Synopsis:
void oapiDecHUDIntensity (void)

Notes:
• Calling this function will decrease the intensity (in virtual cockpit modes) or

brightness (in other modes) of the HUD display down to a minimum value.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 161

• This function should be called repeatedly (e.g. while the user presses a key).

oapiOpenMFD
Set an MFD (multifunctional display) to a specific mode.

Synopsis:
void oapiOpenMFD (int mode, int id)

Parameters:
mode MFD mode (see Section 9)
id MFD identifier (see Section 9)

Notes:
• mode MFD_NONE will turn off the MFD.
• For the on-screen instruments, only MFD_LEFT and MFD_RIGHT are

supported. Custom panels may support (up to 3) additional MFDs.

oapiGetMFDMode
Get the current mode of the specified MFD.

Synopsis:
int oapiGetMFDMode (int id)

Parameters:
id MFD identifier (see Section 9)

Return value:
MFD mode (see Section 9)

oapiSendMFDKey
Sends a keystroke to an MFD.

Synopsis:
int oapiSendMFDKey (int id, DWORD key)

Parameters:
id MFD identifier (see Section 9)
key key code (see OAPI_KEY_xxx constants in orbitersdk.h)

Return value:
nonzero if the MFD understood and processed the key.

Notes:
• This function can be used to interact with the MFD as if the user had pressed

Shift-key, for example to select a different MFD mode, to select a target
body, etc.

oapiProcessMFDButton
Requests a default action as a result of a MFD button event.

Synopsis:
virtual bool ProcessMFDButton (

int mfd,
int bt,
int event) const

Parameters:
mfd MFD identifier (see Section 9)
bt button number (≥ 0)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 162

event mouse event (a combination of PANEL_MOUSE_xxx flags)

Return value:
Returns true if the button was processed, false if no action was assigned to the
button.

Notes:
• Orbiter assigns default button actions for the various MFD modes. For

example, in Orbit mode the action assigned to button 0 is Select reference.
Calling oapiProcessMFDButton (for example as a reaction to a mouse button
event) will execute this action.

oapiMFDButtonLabel
Retrieves a default label for an MFD button.

Synopsis:
const char *oapiMFDButtonLabel (int mfd, int bt)

Parameters:
mfd MFD identifier (see Section 9)
bt button number (≥ 0)

Return value:
pointer to static string containing the label, or NULL if the button is not assigned.

Notes:
• Labels contain 1 to 3 characters.
• This function can be used to paint the labels on the MFD buttons of a custom

panel.
• The labels correspond to the default button actions executed by

VESSEL::ProcessMFDButton.

oapiRegisterMFD
Registers an MFD position for a custom panel.

Synopsis:
void oapiRegisterMFD (int id, const MFDSPEC &spec)

Parameters:
id MFD identifier (see Section 9)
spec MFD parameters (see below)

Notes:
• Should be called in the body of ovcLoadPanel for panels which define MFDs.
• Defining more than 2 or 3 MFDs per panel can degrade performance.
• MFDSPEC is a struct with the following fields:

typedef struct {
 RECT pos; // position of MFD in panel (pixel)
 int nbt_left; // number of buttons on left side of MFD display
 int nbt_right; // number of buttons on right side of MFD display
 int bt_yofs; // y-offset of top button from top display edge (pixel)
 int bt_ydist; // y-distance between buttons (pixel)
} MFDSPEC;

oapiRegisterPanelBackground
Register the background bitmap for a custom panel.

Synopsis:
void oapiRegisterPanelBackground (

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 163

HBITMAP hBmp,
DWORD flag = PANEL_ATTACH_BOTTOM|PANEL_MOVEOUT_BOTTOM,
DWORD ck = (DWORD)-1)

Parameters:
hBmp bitmap handle
flag property bit flags (see notes)
ck transparency colour key

Notes:
• This function will normally be called in the body of ovcLoadPanel.
• Typically the bitmap will be stored as a resource in the DLL and obtained by

a call to the Windows function LoadBitmap(...).
• flag defines panel properties and can be a combination of the following

bitmasks:
PANEL_ATTACH_{LEFT/RIGHT/TOP/BOTTOM}
PANEL_MOVOUT_{LEFT/RIGHT/TOP/BOTTOM}
where PANEL_ATTACH_BOTTOM means that the bottom edge of the panel
cannot be scrolled above the bottom edge of the screen (other directions
work equivalently) and PANEL_MOVEOUT_BOTTOM means that the panel
can be scrolled downwards out of the screen (other directions work
equivalently)

• The colour key, if defined, specifies a colour which will appear transparent
when displaying the panel. The key is in (hex) 0xRRGGBB format. If no key
is specified, the panel will be opaque. It is best to use black (0x000000) or
white (0xffffff) as colour keys, since other values may cause problems in
16bit screen modes. Of course, care must be taken that the keyed colour
does not appear anywhere in the opaque part of the panel.

oapiRegisterPanelArea
Defines a rectangular area within a panel to receive mouse or redraw notifications.

Synopsis:
void oapiRegisterPanelArea (

int aid,
const RECT &pos,
int draw_event = PANEL_REDRAW_NEVER,
int mouse_event = PANEL_MOUSE_IGNORE,
int bkmode = PANEL_MAP_NONE)

Parameters:
aid area identifier
pos bounding box of the marked area
draw_event defines redraw events
mouse_event defines mouse events
bkmode redraw background mode

Notes:
• Each panel area must be defined with an identifier aid which is unique within

the panel.
• draw_event can have the following values:

PANEL_REDRAW_NEVER: do not generate redraw events.
PANEL_REDRAW_ALWAYS: generate a redraw event at every time step.
PANEL_REDRAW_MOUSE: mouse events trigger redraw events.

• For possible values of mouse_event see orbitersdk.h.
PANEL_MOUSE_IGNORE prevents mouse events from being triggered.

• bkmode defines the bitmap handed to the redraw callback:
PANEL_MAP_NONE: provides an undefined bitmap. Should be used if the
whole area is repainted.
PANEL_MAP_CURRENT: provides a copy of the current area.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 164

PANEL_MAP_BACKGROUND: provides a copy of the panel background (as
defined by oapiRegisterPanelBackground).
PANEL_MAP_BGONREQUEST: like PANEL_MAP_BACKGROUND, this
stores the area background, but the user must request it explicitly with a call
to oapiBltPanelAreaBackground. This can improve performance if the area
does not need to be updated at each call of the repaint callback function.

oapiSetPanelNeighbours
Defines the neighbour panels of the current panels. These are the panels the user can
switch to via Ctrl-Arrow keys.

Synopsis:
void oapiSetPanelNeighbours (

int left,
int right,
int top,
int bottom)

Parameters:
left panel id of left neighbour (or –1 if none)
right panel id of right neighbour (or –1 if none)
top panel id of top neighbour (or –1 if none)
bottom panel id of bottom neighbour (or –1 if none)

Notes:
• This function should be called during panel registration (in ovcLoadPanel) to

define the neighbours of the registered panel.
• Every panel (except panel 0) must be listed as a neighbour by at least one

other panel, otherwise it is inaccessible.

oapiTriggerPanelRedrawArea
Triggers a redraw notification for a panel area.

Synopsis:
void oapiTriggerPanelRedrawArea (int panel_id, int area_id)

Parameters:
panel_id panel identifier (≥0)
area_id area identifier (≥0)

Notes:
• The redraw notification is ignored if the requested panel is not currently

displayed.

oapiBltPanelAreaBackground
Copies the stored background of a panel area into the provided surface. This function
should only be called from within the repaint callback function of an area registered with
the PANEL_MAP_BGONREQUEST flag.

Synopsis:
bool oapiBltPanelAreaBackground (

int aid,
SURFHANDLE surf)

Parameters:
aid area identifier
surf surface handle

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 165

Notes:
• Areas defined with the PANEL_MAP_BGONREQUEST receive a surface

with undefined contents when their repaint callback is called. They can use
oapiBltPanelAreaBackground to copy the area background into the surface.

• For areas not registered with the PANEL_MAP_BGONREQUEST, this
function will do nothing.

• Using PANEL_MAP_BGONREQUEST is more efficient than
PANEL_MAP_BACKGROUND if the area doesn’t need to be repainted at
each call of the callback function, because it delays blitting the background
until the module requests the background. This is particularly significant for
areas which are updated at each time step.

oapiSwitchPanel
Switch to a neighbour instrument panel in 2-D panel cockpit mode.

Synopsis:
int oapiSwitchPanel (int direction)

Parameters:
direction neighbour direction (see notes)

Return value:
Identifier of the newly selected panel (≥ 0) or -1 if the requested panel does not
exist.

Notes:
• direction can be one of the following:

PANEL_LEFT (switch to panel left of current)
PANEL_RIGHT (switch to panel right of current)
PANEL_UP (switch to panel up from current)
PANEL_DOWN (switch to panel down from current)

• The neighbourhood status between panels is established by the
oapiSetPanelNeighbours function.

• This function has no effect if the current view is not in 2-D panel cockpit
mode.

oapiSetPanel
Switch to a different instrument panel in 2-D panel cockpit mode.

Synopsis:
int oapiSetPanel (int panel_id)

Parameters:
panel_id panel identifier (≥ 0)

Return value:
panel_id if the panel was set successfully, or -1 if failed (camera not in 2-D panel
cockpit mode, or requested panel does not exist for the current vessel)

Notes:
• This function has no effect if the current view is not in 2-D panel cockpit

mode.

oapiVCRegisterHUD
Define a render target for the head-up display (HUD) in a virtual cockpit.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 166

Synopsis:
void oapiVCRegisterHUD (const VCHUDSPEC *spec)

Parameters:
spec hud specification (see notes)

Notes:
• This function should be placed in the body of the ovcLoadVC vessel module

callback function.
• VCHUDSPEC is a structure defined as

struct VCHUDSPEC {
 DWORD nmesh; // mesh index
 DWORD ngroup; // group index
 VECTOR3 hudcnt; // HUD centre in vessel frame
 double size; // physical size of the HUD [m]
};

• The mesh group specified by nmesh and ngroup should be a square panel in
front of the camera position in the virtual cockpit. This group is rendered
separately from the rest of the mesh and should therefore have FLAG 2 set
in the mesh file. The group material and texture can be set to 0.

• The HUD centre position and size are required to allow Orbiter to correctly
scale the display.

• Orbiter renders the HUD with completely transparent background. Rendering
the glass pane, brackets, etc. is up to the vessel designer.

oapiVCRegisterMFD
Define a render target for rendering an MFD display in a virtual cockpit.

Synopsis:
void oapiVCRegisterMFD (int mfd, const VCMFDSPEC *spec)

Parameters:
mfd MFD identifier
spec render target specification (see notes)

Notes:
• The render target specification is defined as a structure:

struct VCMFDSPEC { DWORD nmesh, ngroup };
where nmesh is the mesh index (≥ 0), and ngroup is the group index (≥ 0)
defining the render target.

• This function should be placed in the body of the ovcLoadVC vessel module
callback function.

• The addressed mesh group should define a simple square (4 vertices, 2
triangles). The group materials and textures can be set to 0.

oapiVCRegisterArea (1)
Define an active area in a virtual cockpit. Active areas can be repainted. This function is
similar to oapiRegisterPanelArea.

Synopsis:
void oapiVCRegisterArea (

int aid,
const RECT &tgtrect,
int draw_event,
int mouse_event,
int bkmode,
SURFHANDLE tgt)

Parameters:
aid area identifier

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 167

tgtrect bounding box of the active area in the target texture (pixels)
draw_event redraw condition (see oapiRegisterPanelArea)
mouse_event mouse event (see oapiRegisterPanelArea)
bkmode background mode (see oapiRegisterPanelArea)
tgt target texture to be updated

Notes:
• The target texture can be retrieved from a mesh by using the

oapiGetTextureHandle method. Dynamic textures must be marked with flag
‘D’ in the mesh file.

• Redraw events can be used not only to update mesh textures dynamically,
but also to animate mesh groups, or edit mesh vertices or texture
coordinates.

• If no dynamic texture repaints are required during redraw events, use the
alternative version of oapiVCRegisterArea instead.

• To define a mouse-sensitive volume in the virtual cockpit, use one of the
oapiVCSetAreaClickmode_XXX functions.

oapiVCRegisterArea (2)
Define an active area in a virtual cockpit. This version is used when no dynamic texture
update is required during redraw events.

Synopsis:
void oapiVCRegisterArea (

int aid,
int draw_event,
int mouse_event)

Parameters:
aid area identifier
draw_event redraw condition (see oapiRegisterPanelArea)
mouse_event mouse event (see oapiRegisterPanelArea)

Notes:
• This function is equivalent to

oapiVCRegisterArea (aid, _R(0,0,0,0), draw_event,
mouse_event, PANEL_MAP_NONE, NULL)

oapiVCTriggerRedrawArea
Triggers a redraw notification for a virtual cockpit area.

Synopsis:
void oapiVCTriggerRedrawArea (int vc_id, int area_id)

Parameters:
vc_id virtual cockpit identifier
area_id area identifier (as specified during area registration)

Notes:
• This function triggers a call to the ovcVCRedrawEvent callback function in

the vessel module.
• The request is ignored if the specified virtual cockpit is not currently active.

oapiVCSetAreaClickmode_Spherical
Associate a spherical region in the virtual cockpit with a registered area to receive
mouse events.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 168

Synopsis:
void oapiVCSetAreaClickmode_Spherical (

int id,
const VECTOR3 &cnt,
double rad)

Parameters:
id area identifier (as specified during area registration)
cnt centre of active area in the local vessel frame
rad radius of active area [m]

Notes:
• The area identifier must refer to an area which has previously been

registered with a call to oapiVCRegisterArea, with the required mouse event
modes.

• This function can be called repeatedly, to change the mouse-sensitive area.

oapiVCSetAreaClickmode_Quadrilateral
Associate a quadrilateral region in the virtual cockpit with a registered area to receive
mouse events.

Synopsis:
void oapiVCSetAreaClickmode_Quadrilateral (

int id,
const VECTOR3 &p1,
const VECTOR3 &p2,
const VECTOR3 &p3,
const VECTOR3 &p4)

Parameters:
id area identifier (as specified during area registration)
p1 top left corner of region
p2 top right corner
p3 bottom left corner
p4 bottom right corner

Notes:
• This function will trigger mouse events when the user clicks within the

projection of the quadrilateral region on the render window. The mouse
event handler will receive the relative position within the area at which the
mouse event occurred, where the top left corner has coordinates (0,0), and
the bottom right corner has coordinates (1,1). See also
VESSEL2::clbkVCMouseEvent.

• The area can define any flat quadrilateral in space. It is not limited to
rectangles, but all 4 points should be in the same plane.

oapiTriggerRedrawArea
Triggers a redraw notification to either a 2D panel or a virtual cockpit.

Synopsis:
void oapiTriggerRedrawArea (

int panel_id,
int vc_id,
int area_id)

Parameters:
panel_id identifier for the panel to receive the redraw message
vc_id identifier for the virtual cockpit to receive the redraw message
area_id area identifier

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 169

Notes:
• This function can be used to combine the functionality of the

oapiTriggerPanelRedrawArea and oapiVCTriggerRedrawArea methods.
Depending on the current cockpit mode, Orbiter sends the redraw request to
either ovcPanelRedrawEvent or ovcVCRedrawEvent.

• This method can only be used if the panel and virtual cockpit areas share a
common area identifier.

oapiGetDC
Obtain a Windows device context handle (HDC) for a surface.

Synopsis:
HDC oapiGetDC (SURFHANDLE surf)

Parameters:
surf surface handle

Return value:
device context handle for the surface

Notes:
• The device context can be used to perform standard Windows drawing

operations (such as LineTo, Rectangle, TextOut, etc.) on the surface.
• When the context is no longer needed it must be released with a call to

oapiReleaseDC.

oapiReleaseDC
Release a previously acquired device context for a surface.

Synopsis:
void oapiReleaseDC (SURFHANDLE surf, HDC hDC)

Parameters:
surf surface handle
hDC device context to be released

Notes:
• Use this function to release a device context previously acquired with

oapiGetDC.
• Standard Windows device context rules apply. For example, any custom

device objects loaded via SelectObject must be unloaded before calling
oapiReleaseDC.

oapiGetColour
Returns a colour value adapted to the current screen colour depth for given red, green
and blue components.

Synopsis:
DWORD oapiGetColour (DWORD red, DWORD green, DWORD blue)

Parameters:
red red component (0-255)
green green component (0-255)
blue blue component (0-255)

Return value
colour value

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 170

Notes:
• Colour values are required for some surface functions like oapiClearSurface

or oapiSetSurfaceColourKey. The colour key for a given RGB triplet depends
on the screen colour depth. This function returns the colour value for the
closest colour match which can be displayed in the current screen mode.

• In 24 and 32 bit modes the requested colour can always be matched. The
colour value in that case is (red << 16) + (green << 8) + blue.

• For 16 bit displays the colour value is calculated as
((red*31)/255) << 11 + ((green*63)/255 << 5 + (blue*31)/255
assuming a “565” colour mode (5 bits for red, 6, for green, 5 for blue). This
means that a requested colour may not be perfectly matched.

• These colour values should not be used for Windows (GDI) drawing
functions where a COLORREF value is expected.

oapiCreateSurface (1)
Create a surface of the specified dimensions.

Synopsis:
SURFHANDLE oapiCreateSurface (int width, int height)

Parameters:
width width of surface bitmap (pixels)
height height of surface bitmap (pixels)

Return value
Handle to the new surface.

Notes:
• The bitmap contents are undefined after creation, so the surface must be

repainted fully before mapping it to the screen.
• If you want to use the surface as a texture, use oapiCreateTextureSurface

instead.
• Surfaces should be destroyed by calling oapiDestroySurface when they are

no longer needed.

See also:
oapiDestroySurface()

oapiCreateSurface (2)
Create a surface from a bitmap. Bitmap surfaces are typically used for blitting
operations during instrument panel redraws.

Synopsis:
SURFHANDLE oapiCreateSurface (

HBITMAP hBmp,
bool release_bmp = true)

Parameters:
hBmp bitmap handle
release_bmp flag for bitmap release

Return value:
Handle to the new surface.

Notes:
• The easiest way to access bitmaps is by storing them as resources in the

module, and loading them via a call to LoadBitmap.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 171

• Do not use this function with a bitmap generated by CreateBitmap. To create
a surface of specified dimensions, use oapiCreateSurface (width, height)
instead.

• If release_bmp == true, then oapiCreateSurface will destroy the bitmap after
creating a surface from it (i.e. the hBmp handle will be invalid after the
function returns), otherwise the module is responsible for destroying the
bitmap by a call to DestroyObject when it is no longer needed.

• Surfaces should be destroyed by calling oapiDestroySurface when they are
no longer needed.

oapiCreateTextureSurface
Create a surface that can be used as a texture for a 3-D object.

Synopsis:
SURFHANDLE oapiCreateTextureSurface (

int width,
int height)

Parameters:
width width of surface bitmap (pixels)
height height of surface bitmap (pixels)

Return value:
handle of new texture surface

Notes:
• Use this function instead of oapiCreateSurface if you want the surface to be

used as a surface texture for a 3-D object, for example via a call to
oapiSetTexture.

• For maximum compatibility, the surface should be square, and dimensions
powers of 2, for example 64x64, 128x128, 256x256, etc. Note that older
video cards may not support textures larger than 256x256.

• Surfaces should be destroyed by calling oapiDestroySurface when they are
no longer needed.

oapiDestroySurface
Destroy a surface previously created with oapiCreateSurface.

Synopsis:
void oapiDestroySurface (SURFHANDLE surf)

Parameters:
surf surface handle

oapiSetSurfaceColourKey
Define a colour key for a surface to allow transparent blitting.

Synopsis:
void oapiSetSurfaceColourKey (SURFHANDLE surf, DWORD ck)

Parameters:
surf surface handle
ck colour key (0xRRGGBB)

Notes:
• Defining a colour key and subsequently calling oapiBlt with the

SURF_PREDEF_CK flag is slightly more efficient than passing the colour
key explicitly to oapiBlt each time, if the same colour key is used repeatedly.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 172

See also:
oapiClearSurfaceColourKey(), oapiBlt()

oapiClearSurfaceColourKey
Clear a previously defined colour key.

Synopsis:
void oapiClearSurfaceColourKey (SURFHANDLE surf)

Parameters:
surf surface handle

See also:
oapiSetSurfaceColourKey(), oapiBlt()

oapiBlt
Copy a surface into another surface.

Synopsis:
void oapiBlt (

SURFHANDLE tgt, SURFHANDLE src,
int tgtx, int tgty,
int srcx, int srcy,
int w, int h,
DWORD ck = SURF_NO_CK)

Parameters:
tgt target surface
src source surface
tgtx, tgty coordinates of upper left corner of copied area in target bitmap.
srcx, srcy coordinates of upper left corner of copied area in source bitmap.
w, h width, height of copied rectangle (pixel)
ck colour key (see notes)

Notes:
• Typically, this function is used to update panel instruments during processing

of ovcPanelRedrawEvent.
• This function must not be used while a device context is acquired for the

target surface (i.e. between oapiGetDC and oapiReleaseDC calls).
• If a blitting operation is necessary between oapiGetDC and oapiReleaseDC,

you may use the standard Windows BitBlt function. However this does not
use hardware acceleration and should therefore be avoided.

• Transparent blitting can be performed by specifying a colour key in ck. The
transparent colour can either be passed explicitly in ck, or ck can be set to
SURF_PREDEF_CK to use the key previously defined with
oapiSetSurfaceColourKey().

See also:
oapiSetSurfaceColourKey()

oapiColourFill
Fill an area of the target surface with a uniform colour.

Synopsis:
void oapiColourFill (

SURFHANDLE tgt,
DWORD fillcolor,
int tgtx = 0, int tgty = 0,
int w = 0, int h = 0)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 173

Parameters:
tgt target surface
tgtx, tgty coordinates of upper left corner of area to fill.
w, h width, height, of area to fill.

Notes:
• The fill colour should be acquired with oapiGetColour(), to ensure

compatibility with 16-bit colour modes.
• This function must not be used while a device context is acquired for the

target surface (i.e. between oapiGetDC and oapiReleaseDC calls).
• If w and h are zero (the default) the whole surface is filled. The tgtx and tgty

values are ignored in that case and can be omitted.

17.18 Custom MFD modes
oapiRegisterMFDMode

Register a custom MFD mode.

Synopsis:
int oapiRegisterMFDMode (MFDMODESPEC &spec)

Parameters:
spec MFD specs (see notes below)

Return value:
MFD mode identifier

Notes:
• This function registers a custom MFD mode with Orbiter. There are two

types of custom MFDs: generic and vessel class-specific. Generic MFD
modes are available to all vessel types, while specific modes are only
available for a single vessel class. Generic modes should be registered in
the opcDLLInit callback function of a plugin module. Vessel class specific
modes are not implemented yet.

• MFDMODESPEC is a struct defining the parameters of the new mode:
typedef struct {
 char *name; // points to the name of the new mode
 int (*msgproc)(UINT,UINT,WPARAM,LPARAM);

// address of MFD message parser
} MFDMODESPEC;

• See orbitersdk\samples\CustomMFD for a sample MFD mode
implementation.

oapiUnregisterMFDMode
Unregister a previously registered custom MFD mode.

Synopsis:
bool oapiUnregisterMFDMode (int mode)

Parameters:
mode mode identifier, as returned by RegisterMFDMode

Return value:
true on success (mode could be unregistered).

oapiDisableMFDMode
Disable an MFD mode.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 174

Synopsis:
void oapiDisableMFDMode (int mode)

Parameters:
mode MFD mode to be disabled.

Notes:
• The list of disabled MFDs is cleared whenever the focus switches to a new

vessel. To disable MFD modes permanently for a particular vessel type,
oapiDisableMFDMode should be called from within the ovcFocusChanged
callback function.

• For builtin MFD modes, mode can be any of the MFD_xxx constants. For
MFD modes defined in plugin modules, the mode id must be obtained by a
call to oapiGetMFDModeSpec.

oapiGetMFDModeSpec
Returns the mode identifier and spec for an MFD mode defined by its name.

Synopsis:
int oapiGetMFDModeSpec (

char *name,
MFDMODESPEC **spec = NULL)

Parameters:
name MFD name (as defined in MFDMODESPEC::name during

oapiRegisterMFDMode)
spec If defined, this will return a pointer to the MFDMODESPEC structure

for the mode.

Return value:
MFD mode identifier.

Notes:
• This function returns the same value as oapiRegisterMFDMode for the given

mode.
• The mode identifiers for custom MFD modes can not be assumed to persist

across simulation runs, since they will change if the user loads or unloads
MFD plugins.

• This function can also be used for built-in MFD modes, which are defined as
follows:
Name Mode identifier
Orbit MFD_ORBIT
Surface MFD_SURFACE
Map MFD_MAP
HSI MFD_HSI
VOR/VTOL MFD_LANDING
Docking MFD_DOCKING
Align Planes MFD_OPLANEALIGN
Sync Orbit MFD_OSYNC
Transfer MFD_TRANSFER
COM/NAV MFD_COMMS

17.19 File management
oapiWriteLine

Writes a line to a file.

Synopsis:
void oapiWriteLine (FILEHANDLE file, char *line)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 175

Parameters:
file file handle
line line to be written (zero-terminated)

oapiWriteScenario_string
Writes a string-valued item to a scenario file.

Synopsis:
void oapiWriteScenario_string (

FILEHANDLE scn,
char *item,
char *string)

Parameters:
scn file handle
item item id
string string to be written (zero-terminated)

oapiWriteScenario_int
Writes an integer-valued item to a scenario file.

Synopsis:
void oapiWriteScenario_int (

FILEHANDLE scn,
char *item,
int i)

Parameters:
scn file handle
item item id
i integer value to be written

oapiWriteScenario_float
Writes a floating point-valued item to a scenario file.

Synopsis:
void oapiWriteScenario_float (

FILEHANDLE scn,
char *item,
double d)

Parameters:
scn file handle
item item id
d floating point value to be written

oapiWriteScenario_vec
Writes a vector-valued item to a scenario file.

Synopsis:
void oapiWriteScenario_vec (

FILEHANDLE scn,
char *item,
const VECTOR3 &vec)

Parameters:
scn file handle
item item id
vec vector to be written

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 176

oapiReadScenario_nextline
Reads an item from a scenario file.

Synopsis:
bool oapiReadScenario_nextline (

FILEHANDLE scn,
char *&line)

Parameters:
scn file handle
line pointer to the scanned line

Notes:
• The function returns true as long as an item for the current block could be

read. It returns false at EOF, or when an “END” token is read.
• Leading and trailing whitespace, and trailing comments (from “;” to EOL) are

automatically removed.
• “line” points to an internal static character buffer.

17.20 User input
oapiOpenDialog

Open a dialog box defined as a Windows resource.

Synopsis:
HWND oapiOpenDialog (

HINSTANCE hDLLInst,
int resourceId,
DLGPROC msgProc,
void *context = 0)

Parameters:
hDLLInst module instance handle (as obtained from opcDLLInit)
resourceId dialog resource identifier
msgProc pointer to Windows message handler
context optional user-defined pointer

Return value:
handle of the new dialog box, or NULL if the dialog was open already.

Notes:
• Use oapiOpenDialog instead of standard Windows methods such as

CreateWindow or DialogBox, to make sure the dialog works in fullscreen
mode.

• Only one instance of a dialog box can be open at a time. A second call to
oapiOpenDialog with the same dialog id will fail and return NULL.

• The interface of the message handler is as follows:
BOOL CALLBACK MsgProc (

HWND hDlg, UINT uMsg,
WPARAM wParam, LPARAM lParam)

See standard Windows documentation for usage of the dialog message
handler.

• The context pointer can be set to user-defined data which can be retrieved
via the oapiGetDialogContext function. This allows to pass data into the
message handler.

• Note that oapiGetDialogContext can not be used when processing the
WM_INITDIALOG message. In this case, the context pointer can be acessed
via lParam instead.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 177

oapiFindDialog
Returns the window handle of an open dialog box, or NULL if the specified dialog box is
not open.

Synopsis:
HWND oapiFindDialog (HINSTANCE hDLLInst, int resourceId)

Parameters:
hDLLInst module instance handle (as obtained from opcDLLInit)
resourceId dialog resource identifier

Return value:
Window handle of dialog box, or NULL if the dialog was not found.

oapiCloseDialog
Close a dialog box.

Synopsis:
void oapiCloseDialog (HWND hDlg)

Parameters:
hDlg dialog window handle (as obtained by oapiOpenDialog)

Notes:
• This function should be called in response to an IDCANCEL message in the

dialog message handler to close a dialog which was opened by
oapiOpenDialog.

oapiGetDialogContext
Retrieves the context pointer of a dialog box which has been defined during the call to
oapiOpenDialog.

Synopsis:
void *oapiGetDialogContext (HWND hDlg)

Parameters:
hDlg dialog window handle

Notes:
• This function returns NULL if no context pointer was specified in

oapiOpenDialog.

oapiDefDialogProc
Default Orbiter dialog message handler. This function should be called from the
message handler of all dialogs created with oapiOpenDialog to perform default actions
for any messages not processed in the handler.

Synopsis:
BOOL oapiDefDialogProc (

HWND hDlg,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)

Parameters:
The parameters passed to the message handler.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 178

Return value:
The value returned by oapiDefDialogProc should be returned by the message
handler.

Notes:
• Typical usage:

BOOL CALLBACK MsgProc (HWND hDlg, UINT uMsg,
 WPARAM wParam, LPARAM lParam)
{
 switch (uMsg) {
 case WM_COMMAND:
 switch (LOWORD (wParam)) {
 case IDCANCEL: // dialog closed by user
 CloseDlg (hDlg);
 return TRUE;
 }
 break;
 // add more messages to be processed here
 }
 return oapiDefDialogProc (hDlg, uMsg, wParam, lParam);
}

• oapiDefDialogProc currently only processes the WM_SETCURSOR message,
and always returns FALSE.

oapiRegisterCustomCmd
Register a custom function. Custom functions can be accessed in Orbiter by pressing
Ctrl-F4. A common use for custom functions is opening plugin dialog boxes.

Synopsis:
DWORD oapiRegisterCustomCmd (

char *label,
char *desc,
CustomFunc func,
void *context)

Parameters:
label label to appear in the custom function list.
desc a short description of the function
func pointer to the function to be executed
context pointer to custom data which will be passed to func

Return value:
function identifier

Notes:
• The interface of the custom function is defined as follows:

typedef void (*CustomFunc)(void *context)
where context is the pointer passed to oapiRegisterCustomCmd.

oapiUnregisterCustomCmd
Unregister a previously defined custom function.

Synopsis:
bool oapiUnregisterCustomCmd (int cmdId)

Parameters:
cmdId custom function identifier (as returned by oapiRegisterCustomCmd)

Return value:
false indicates failure (cmdId not recognised)

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 179

oapiOpenInputBox
Opens a modal input box requesting a string from the user.

Synopsis:
void oapiOpenInputBox (

char *title,
bool (*Clbk)(void*,char*,void*),
char *buf = 0,
int vislen = 20,
void *usrdata = 0)

Parameters:
title input box title
Clbk callback function receiving the result of the user input (see notes)
buf initial state of the input string
vislen number of characters visible in input box
usrdata user-defined data passed to the callback function

Notes:
• Format for callback function:

bool InputCallback (void *id, char *str, void *usrdata)
where id identifies the input box, str contains the user-supplied string, and
usrdata contains the data specified in the call to oapiOpenInputBox.
The callback function should return true if it accepts the string, false
otherwise (the box will not be closed if the callback function returns false).

• The box can be closed by the user by pressing Enter (“OK”) or Esc
(“Cancel”). The callback function is only called in the first case.

• The input box is modal, i.e. all keyboard input is redirected into the dialog
box. Normal key functions resume after the box is closed.

17.21 Debugging
oapiDebugString

Returns a pointer to a string which will be displayed in the lower left corner of the
viewport.

Synopsis:
char *oapiDebugString ()

Return value:
Pointer to debugging string.

Notes:
• This function should only be used for debugging purposes. Do not use it in

published modules!
• The returned pointer refers to a global char[256] in the Orbiter core. It is the

responsibility of the module to ensure that no overflow occurs.
• If the string is written to more than once per time step (either within a single

module or by multiple modules) the last state before rendering will be
displayed.

• A typical use would be:
sprintf (oapiDebugString(), ”my value is %f”, myvalue);

18 Custom dialog controls
Orbiter defines custom dialog control classes which may come useful when defining dialog
box interfaces. To make use of the controls, you must include the Orbitersdk\include\DlgCtrl.h
header in your plugin code, and link with Orbitersdk\lib\DlgCtrl.lib.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 180

In order to use Orbiter custom dialog controls, your code must call the
oapiRegisterCustomControls function, usually inside the opcDLLInit callback function. During
cleanup (e.g. in opcDLLExit) you must call oapiUnregisterCustomControls.

oapiRegisterCustomControls
This allows to use Orbiter’s custom controls in dialog boxes. See section 18.

Synopsis:
#include “DlgCtrl.h”
void oapiRegisterCustomControls (HINSTANCE hInst)

Parameters:
hInst module instance handle

Notes:
The module should call oapiUnregisterCustomControls before exiting.

oapiUnregisterCustomControls
Unregister Orbiter custom dialog controls.

Synopsis:
void oapiUnregisterCustomControls (HINSTANCE hInst)

Parameters:
hInst module instance handle

18.1 Gauge control
This is similar to a standard scrollbar control. It consists of a horizontal or vertical bar with a
level indicator and arrow buttons on either end. The user can manipulate the control by either
pressing the arrow buttons, or by clicking and dragging the level indicator.

Unlike standard Windows scroll bars, the gauge control does not block the simulation while a
mouse button is pressed over the control. You should always use the gauge control in
preference to scroll bars to avoid jumps in the simulation.

The Rcontrol code in the SDK sample directory demonstrates the use of gauge controls.

Defining a gauge control in the dialog template
Place a custom control in the dialog window and sets its class to OrbiterCtrl_Gauge. The
control can be horizontal or vertical.

Addressing gauge controls from the module code

oapiSetGaugeParams
Initialises a gauge control once the dialog box has been opened (e.g. with
oapiOpenDialog).

Synopsis:
void oapiSetGaugeParams (

HWND hCtrl,
GAUGEPARAM *gp,
bool redraw = true)

Parameters:
hCtrl window handle of the control
gp parameter list (see notes)
redraw if true, the gauge is redrawn to reflect the parameter changes

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 181

Notes:
• The GAUGEPARAM struct has the following entries:

int rangemin, rangemax
min. and max. gauge values

enum GAUGEBASE { LEFT, RIGHT, TOP, BOTTOM } base
gauge orientation: LEFT: left to right, RIGHT: right to left, etc.

enum GAUGECOLOR { BLACK, RED } color
gauge indicator colour

oapiSetGaugeRange
Set minimum and maximum gauge values.

Synopsis:
void oapiSetGaugeRange (

HWND hCtrl,
int rmin, int rmax,
bool redraw)

Parameters:
hCtrl window handle of the control
rmin minimum gauge value
rmax maximum gauge value
redraw if true, the gauge is redrawn to reflect the range change

oapiSetGaugePos
Set the current gauge value.

Synopsis:
int oapiSetGaugePos (

HWND hCtrl,
int pos,
bool redraw = true)

Parameters:
hCtrl window handle of control
pos new gauge value
redraw if true, the gauge is redrawn to reflect the value change

Return value:
The new gauge value, clamped to the gauge range.

oapiIncGaugePos
Increment/decrement the current gauge value.

Synopsis:
int oapiIncGaugePos (

HWND hCtrl,
int dpos,
bool redraw = true)

Parameters:
hCtrl window handle of control
dpos value change
redraw if true, the gauge is redrawn to reflect the value change

Return value:
The new gauge value, clamped to the gauge range.

oapiGetGaugePos
Returns the current gauge value.

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 182

Synopsis:
int oapiGetGaugePos (HWND hCtrl)

Parameters:
hCtrl window handle of control

Return value:
Current gauge value.

Control messages
Gauge controls send the following messages to the message queue of the owning dialog box:

WM_HSCROLL
Scrolling notification. This is sent while the user left-clicks and drags the gauge
indicator, or continuously (at a rate of 100Hz) while the left mouse button is held down
on one of the arrow buttons. Both horizontal and vertical gauges send the
WM_HSCROLL message to simplify message handling.

Message parameters:
LOWORD(wParam) event type
HIWORD(wParam) gauge value
(HWND)lParam window handle of control

Notes:
The event type can be one of the following:

SB_LINELEFT: The user has pressed an arrow button to decrement
the gauge value.

SB_LINERIGHT: The user has pressed an arrow button to increment the
gauge value.

SB_THUMBTRACK:
The user is dragging the gauge indicator with the
mouse.

19 Standard ORBITER modules

19.1 Vsop87
Vsop87.dll is a full implementation of the VSOP87 planetary solutions for Mercury to Nep-
tune.1 Orbiter uses the VSOP87 “B” series which computes the heliocentric positions for the
ecliptic and equinox of J2000. Positions and velocities are calculated by a perturbation
method which uses a series of trigonometric perturbation terms. The number of included
terms defines the precision of the result. Therefore the computation time will depend on the
selected precision. Vsop87.dll supports precision settings between 1e-3 and 1e-8.

Vsop87.dll supports the following planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Ura-
nus and Neptune.

According to the VSOP documentation, at full precision (1e-8), the relative error is within 1’’
for
• Mercury, Venus, Earth and Mars over 4000 years before and after J2000
• Jupiter and Saturn over 2000 years before and after J2000.
• Uranus and Neptune over 6000 years before and after J2000.

If you want to replace Vsop87 with your own code:

• Check section 16 for the callback interface.
• The code for different planets doesn’t need to be implemented in a single DLL. You can

replace the calculations for a single planet by writing a module for it, and referencing this

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 183

module from the planet’s cfg file, while keeping the standard Vsop87 module for the other
planets.

19.2 Moon
Moon.dll is Orbiter's driver module for controlling Earth’s moon. It contains a partial
implementation of the Lunar Solution ELP 2000-82B algorithm by M. Chapront-Touze and J.
Chapront2. This is a semi-analytical calculation of lunar ephemerides consisting of
trigonometric and Poisson series, with constants fitted to JPL's ephemerides DE200/LE200.
The original version calculates cartesian geocentric lunar coordinates in the mean dynamical
ecliptic and inertial equinox of J2000. The code has been adapted to Orbiter by additionally
calculating and returning the time derivatives of the coordinates. Moon.dll requires data file
ELP82.dat containing a table of perturbation terms to be present in the Config\Moon\Data
directory.
The number of terms used by Orbiter can be controlled by setting the ErrorLimit parameter in
Moon.cfg. Valid range is 1e-2 to 1e-8 (default 1e-5). The current error limit and number of
terms can be found in Orbiter.log under entry ELP82.
The current version does not include tidal, relativistic or solar eccentricity perturbation terms,
to avoid inconsistencies with Orbiter's dynamic model.

20 Index

<

<Planet>_AtmPrm...................................... 123
<Planet>_Ephemeris 122
<Planet>_FastEphemeris............................ 123
<Planet>_SetPrecision................................ 121

A

AirfoilCoeffFunc .. 78
Atlantis ... 5

C

CELBODY ... 119
bEphemeris... 119
clbkAtmParam.. 121
clbkEphemeris .. 119
clbkFastEphemeris 120
clbkInit.. 119

D

Deltaglider .. 5

E

ELEMENTS ... 6
ENGINESTATUS.. 6
ENGINETYPE ... 7
EXHAUSTTYPE ... 7
ExitModule................................... 12, 115, 118

G

Gauge
custom control .. 180
WM_HSCROLL..................................... 182

GraphMFD
AddGraph ... 112
AddPlot... 112
Constructor ... 112

FindRange...113
Plot..114
SetAutoRange ...113
SetAutoTicks ..114
SetAxisTitle ..113
SetRange ...112

H

HUD
mode constants..10

I

InitInstance..118
InitModule12, 114, 117

M

MATRIX3...6
MESHGROUP_TRANSFORM....................87
MFD

ButtonLabel ..109
ButtonMenu ..109
Constructor..107
ConsumeButton.......................................110
ConsumeKeyBuffered.............................109
ConsumeKeyImmediate..........................110
identifier constants11
InvalidateDisplay107
mode constants..11
ReadStatus ..111
RecallStatus ..111
SelectDefaultFont108
SelectDefaultPen.....................................108
StoreStatus ..111
Title...108
Update...107
WriteStatus..110

Moon...183

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 184

N

Navmode
constants ... 10

O

oapiAcceptDelayedKey.............................. 157
oapiBlt .. 172
oapiBltPanelAreaBackground 164
oapiCameraAperture................................... 155
oapiCameraAttach 156
oapiCameraAzimuth................................... 154
oapiCameraGlobalDir................................. 154
oapiCameraGlobalPos 154
oapiCameraInternal 153
oapiCameraMode 153
oapiCameraPolar .. 155
oapiCameraRotAzimuth 156
oapiCameraRotPolar 156
oapiCameraScaleDist 155
oapiCameraSetAperture 155
oapiCameraSetCockpitDir.......................... 156
oapiCameraTarget 154
oapiCameraTargetDist................................ 154
oapiClearSurfaceColourKey....................... 172
oapiCloseDialog ... 177
oapiCockpitMode 153
oapiColourFill .. 172
oapiCreateSurface (1)................................. 170
oapiCreateSurface (2)................................. 170
oapiCreateTextureSurface 171
oapiCreateVessel .. 128
oapiCreateVesselEx.................................... 129
oapiDebugString... 179
oapiDecHUDIntensity 160
oapiDefDialogProc..................................... 177
oapiDeleteMesh.. 158
oapiDeleteVessel .. 129
oapiDestroySurface 171
oapiDisableMFDMode............................... 173
oapiFindDialog... 177
oapiGetAirspeed... 137
oapiGetAirspeedVector 138
oapiGetAltitude .. 134
oapiGetAtmPressureDensity 139
oapiGetAttitudeMode................................. 142
oapiGetBank... 136
oapiGetBarycentre...................................... 134
oapiGetBaseByIndex.................................. 127
oapiGetBaseByName 126
oapiGetBaseCount...................................... 127
oapiGetBaseEquPos 148
oapiGetBasePadCount................................ 148
oapiGetBasePadEquPos 148
oapiGetBasePadNav................................... 149
oapiGetBasePadStatus................................ 149
oapiGetColour .. 169
oapiGetDC.. 169
oapiGetDialogContext................................ 177
oapiGetEmptyMass 130
oapiGetEngineStatus 141

oapiGetEquPos..137
oapiGetFocusAirspeed................................138
oapiGetFocusAirspeedVector138
oapiGetFocusAltitude135
oapiGetFocusAtmPressureDensity139
oapiGetFocusAttitudeMode........................143
oapiGetFocusBank......................................136
oapiGetFocusEngineStatus141
oapiGetFocusEquPos137
oapiGetFocusGlobalPos..............................132
oapiGetFocusGlobalVel..............................133
oapiGetFocusHeading.................................136
oapiGetFocusInterface128
oapiGetFocusObject....................................127
oapiGetFocusPitch135
oapiGetFocusRelativePos134
oapiGetFocusRelativeVel134
oapiGetFocusShipAirspeedVector..............139
oapiGetFrameRate153
oapiGetFuelMass ..131
oapiGetGaugePos..181
oapiGetGbodyByIndex126
oapiGetGbodyByName...............................126
oapiGetGbodyCount126
oapiGetGlobalPos132
oapiGetGlobalVel132
oapiGetHeading ..136
oapiGetHUDMode......................................160
oapiGetInducedDrag140
oapiGetMass ...130
oapiGetMaxFuelMass131
oapiGetMFDMode......................................161
oapiGetMFDModeSpec174
oapiGetNavChannel150
oapiGetNavFreq..150
oapiGetNavPos ...150
oapiGetNavRange150
oapiGetObjectByIndex124
oapiGetObjectByName124
oapiGetObjectCount125
oapiGetObjectName....................................127
oapiGetOrbiterInstance124
oapiGetPitch..135
oapiGetPlanetAtmConstants146
oapiGetPlanetAtmParams146
oapiGetPlanetCurrentRotation145
oapiGetPlanetJCoeff147
oapiGetPlanetJCoeffCount..........................147
oapiGetPlanetObliquity...............................144
oapiGetPlanetObliquityMatrix....................145
oapiGetPlanetPeriod144
oapiGetPlanetTheta.....................................145
oapiGetPropellantHandle130
oapiGetPropellantMass131
oapiGetPropellantMaxMass........................131
oapiGetRelativePos.....................................133
oapiGetRelativeVel.....................................133
oapiGetShipAirspeedVector138
oapiGetSimMJD ...152
oapiGetSimStep ..151

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 185

oapiGetSimTime .. 151
oapiGetSize .. 130
oapiGetStationByIndex 126
oapiGetStationByName.............................. 125
oapiGetStationCount 126
oapiGetSysStep .. 152
oapiGetSysTime ... 151
oapiGetTextureHandle 159
oapiGetTimeAcceleration........................... 152
oapiGetVesselByIndex 125
oapiGetVesselByName............................... 125
oapiGetVesselCount 125
oapiGetVesselInterface............................... 128
oapiGetWaveDrag 140
oapiIncGaugePos.. 181
oapiIncHUDIntensity 160
oapiLoadMesh .. 157
oapiLoadMeshGlobal 157
oapiMeshGroup .. 158
oapiMeshGroupCount 158
oapiMFDButtonLabel................................. 162
oapiNavInRange... 151
oapiOpenDialog.. 176
oapiOpenInputBox 179
oapiOpenMFD.. 161
oapiParticleSetLevelRef 159
oapiPlanetHasAtmosphere 146
oapiProcessMFDButton 161
oapiReadScenario_nextline 176
oapiRegisterCustomCmd............................ 178
oapiRegisterCustomControls...................... 180
oapiRegisterExhaustTexture....................... 143
oapiRegisterMFD 162
oapiRegisterMFDMode.............................. 173
oapiRegisterPanelArea 163
oapiRegisterPanelBackground.................... 162
oapiRegisterReentryTexture....................... 144
oapiReleaseDC ... 169
oapiSendMFDKey...................................... 161
oapiSetAttitudeMode.................................. 142
oapiSetEmptyMass 132
oapiSetEngineLevel.................................... 141
oapiSetFocusAttitudeMode 143
oapiSetFocusObject.................................... 128
oapiSetGaugeParams.................................. 180
oapiSetGaugePos.. 181
oapiSetGaugeRange 181
oapiSetHUDMode 160
oapiSetPanel ... 165
oapiSetPanelNeighbours............................. 164
oapiSetSurfaceColourKey 171
oapiSetTimeAcceleration 153
oapiSwitchPanel ... 165
oapiTime2MJD... 152
oapiToggleAttitudeMode 142
oapiToggleFocusAttitudeMode.................. 143
oapiToggleHUDColour 160
oapiTriggerPanelRedrawArea 164
oapiTriggerRedrawArea 168
oapiUnregisterCustomCmd 178

oapiUnregisterCustomControls...................180
oapiUnregisterMFDMode...........................173
oapiVCRegisterArea (1)166
oapiVCRegisterArea (2)167
oapiVCRegisterHUD165
oapiVCRegisterMFD166
oapiVCSetAreaClickmode_Quadrilateral...168
oapiVCSetAreaClickmode_Spherical.........167
oapiVCTriggerRedrawArea167
oapiWriteLine ...174
oapiWriteScenario_float175
oapiWriteScenario_int175
oapiWriteScenario_string............................175
oapiWriteScenario_vec175
OBJHANDLE...5
opcCloseRenderViewport115
opcDLLExit ..115
opcDLLInit ...115
opcFocusChanged117
opcOpenRenderViewport115
opcPostStep...116
opcPreStep ..116
opcTimeAccChanged..................................117
opcTimestep..116
ovcADCtrlmode..18
ovcAnimate...19
ovcConsumeBufferedKey.............................20
ovcConsumeKey...19
ovcDockEvent...19
ovcExit ..13
ovcFocusChanged ...16
ovcHUDmode ...18
ovcInit ...12
ovcLoadPanel..20
ovcLoadState ..14
ovcLoadStateEx ..15
ovcMFDmode ...19
ovcNavmode ...18
ovcPanelMouseEvent....................................21
ovcPanelRedrawEvent21
ovcPostCreation ..16
ovcRCSmode ..17
ovcSaveState ...15
ovcSetClassCaps ...13
ovcSetState..13
ovcSetStateEx ...14
ovcTimestep..17
ovcVisualCreated..16
ovcVisualDestroyed......................................17

P

PARTICLESTREAMSPEC............................7
PROPELLANT_HANDLE.............................6

R

Rcontrol ..5

S

SURFHANDLE ..5

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 186

T

THGROUP_HANDLE................................... 6
THRUSTER_HANDLE................................. 6

V

VECTOR3.. 6
VESSEL ... 22

ActivateNavmode..................................... 35
AddAnimationComponent........................ 89
AddAnimComp .. 91
AddAttExhaustMode................................ 61
AddAttExhaustRef 60
AddExhaust (1)... 56
AddExhaust (2)... 56
AddExhaustRef... 60
AddExhaustStream (1) 92
AddExhaustStream (2) 93
AddForce .. 36
AddMesh (1)... 85
AddMesh (2)... 85
AddReentryStream 93
AttachChild .. 67
AttachmentCount...................................... 67
ClearAirfoilDefinitions............................. 79
ClearAttExhaustRefs 61
ClearDockDefinitions............................... 62
ClearExhaustRefs 60
ClearMeshes ... 85
ClearPropellantResources......................... 39
ClearThrusterDefinitions 45
ClearVariableDragElements..................... 81
Constructor ... 22
Create ... 23
CreateAirfoil... 77
CreateAirfoil2... 78
CreateAnimation....................................... 88
CreateAttachment 65
CreateControlSurface 79
CreateDock... 61
CreatePropellantResource 38
CreateThruster .. 43
CreateThrusterGroup................................ 51
CreateVariableDragElement..................... 80
DeactivateNavmode 36
DefSetState ... 31
DefSetStateEx .. 31
DelAirfoil ... 78
DelAnimationComponent......................... 90
DelDock.. 62
DelExhaust ... 57
DelExhaustRef.. 60
DelExhaustStream 93
DelPropellantResource 39
DelThruster... 44
DelThrusterGroup (1)............................... 52
DelThrusterGroup (2)............................... 52
DetachChild.. 68
DockCount.. 62
DockingStatus .. 64
EnableTransponder................................... 84

GetADCtrlMode33
GetAirspeed ..70
GetAltitude..70
GetAngularVel..38
GetAOA..71
GetApDist ...69
GetArgPer ...69
GetAtmDensity ...75
GetAtmPressure ..75
GetAtmRef..74
GetAtmTemperature75
GetAttachmentHandle...............................67
GetAttachmentId.......................................66
GetAttachmentIndex67
GetAttachmentParams66
GetAttachmentStatus66
GetAttitudeLinLevel35
GetAttitudeMode33
GetAttitudeRotLevel.................................34
GetBank ..71
GetCameraDefaultDirection25
GetCameraOffset24
GetClassName...23
GetCOG_elev..24
GetControlSurfaceLevel80
GetCrossSections24
GetCW ..76
GetDockHandle...63
GetDockParams ..63
GetDockStatus ..64
GetDynPressure ..75
GetElements..68
GetEmptyMass..24
GetEnableFocus ..23
GetEngineLevel ..59
GetEquPos ..38
GetFlightModel...23
GetFuelMass ...42
GetFuelRate ..42
GetGlobalPos ..37
GetGlobalVel ..37
GetGravityRef...68
GetHandle ...23
GetHorizonAirspeedVector70
GetISP...59
GetMachNumber.......................................75
GetMainThrustModPtr..............................60
GetManualControlLevel55
GetMass ..32
GetMaxFuelMass......................................43
GetMaxThrust ...57
GetMesh..85
GetName ...23
GetNavmodeState36
GetNavRadioFreq84
GetNavRecv..84
GetPeDist ..69
GetPitch ..71
GetPMI ...24
GetPropellantCount...................................40

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 187

GetPropellantEfficiency 41
GetPropellantFlowrate.............................. 42
GetPropellantHandleByIndex................... 39
GetPropellantMass 41
GetPropellantMaxMass 41
GetRelativePos ... 37
GetRelativeVel ... 38
GetRotationMatrix.................................... 72
GetRotDrag .. 77
GetShipAirspeedVector............................ 71
GetSize ... 24
GetSlipAngle .. 71
GetSMi ... 69
GetStatus .. 30
GetStatusEx .. 30
GetSuperstructureCG 72
GetSurfaceRef .. 70
GetThrusterCount 45
GetThrusterDir ... 46
GetThrusterGroupHandle 53
GetThrusterGroupLevel (1)...................... 55
GetThrusterGroupLevel (2)...................... 55
GetThrusterHandleByIndex...................... 45
GetThrusterISP (1) 48
GetThrusterIsp (2) 49
GetThrusterIsp0.. 49
GetThrusterLevel...................................... 50
GetThrusterMax (1).................................. 47
GetThrusterMax (2).................................. 47
GetThrusterMax0 47
GetThrusterMoment 51
GetThrusterRef ... 46
GetTotalPropellantFlowrate 42
GetTotalPropellantMass 42
GetUserThrusterGroupCount 53
GetUserThrusterGroupHandleByIndex.... 53
GetWheelbrakeLevel 83
GetWingaspect ... 81
GetWingEffectiveness 82
Global2Local .. 74
GlobalRot ... 72
GroundContact ... 32
HorizonRot ... 73
IncEngineLevel... 59
IncThrusterGroupLevel (1)....................... 54
IncThrusterGroupLevel (2)....................... 54
IncThrusterLevel_SingleStep 50
InitNavRadios... 83
Local2Global .. 73
Local2Rel ... 74
MeshgroupTransform............................... 87
NonsphericalGravityEnabled.................... 32
OrbitStabilised.. 32
ParseScenarioLine 29
ParseScenarioLineEx................................ 30
RecordEvent ... 92
RegisterAnimation.................................... 88
RegisterAnimSequence 91
SaveDefaultState 31
SetADCtrlMode.. 34

SetAnimation ..91
SetAttachmentParams66
SetAttitudeLinLevel (1)35
SetAttitudeLinLevel (2)35
SetAttitudeMode.......................................33
SetAttitudeRotLevel (1)............................34
SetAttitudeRotLevel (2)............................34
SetBankMomentScale...............................27
SetCameraDefaultDirection28
SetCameraOffset28
SetCameraRotationRange29
SetCameraShiftRange29
SetCOG_elev ..26
SetControlSurfaceLevel80
SetCrossSections.......................................27
SetCW...76
SetDefaultPropellantResource40
SetDockParams (1)62
SetDockParams (2)63
SetEmptyMass ..25
SetEnableFocus...25
SetEngineLevel ...59
SetExhaustScales86
SetFuelMass..43
SetISP ...58
SetLiftCoeffFunc82
SetMaxFuelMass.......................................43
SetMaxThrust..57
SetMaxWheelbrakeForce..........................83
SetMeshVisibilityMode86
SetMeshVisibleInternal.............................86
SetNavRecv ..84
SetPitchMomentScale27
SetPMI ..27
SetPropellantEfficiency40
SetPropellantMass.....................................41
SetPropellantMaxMass40
SetReentryTexture87
SetRotDrag..77
SetSize ..25
SetSurfaceFrictionCoeff......................26, 82
SetThrusterDir...46
SetThrusterGroupLevel (1)54
SetThrusterGroupLevel (2)54
SetThrusterIsp (1)48
SetThrusterIsp (2)48
SetThrusterLevel.......................................49
SetThrusterLevel_SingleStep....................50
SetThrusterMax0.......................................46
SetThrusterRef ..45
SetThrusterResource45
SetTouchdownPoints26
SetTrimScale...28
SetWheelbrakeLevel83
SetWingaspect...81
SetWingEffectiveness81
ShiftCentreOfMass72
ToggleNavmode..36
Undock..64
UnregisterAnimation.................................88

ORBITER API Reference Manual (c) 2001-2005 Martin Schweiger 188

VESSEL2
clbkADCtrlMode...................................... 99
clbkAnimate ... 103
clbkConsumeBufferedKey 102
clbkConsumeDirectKey.......................... 101
clbkDockEvent 102
clbkDrawHUD.. 100
clbkFocusChanged 96
clbkHUDMode 100
clbkLoadGenericCockpit........................ 103
clbkLoadPanel .. 103
clbkLoadStateEx....................................... 94
clbkLoadVC ... 105
clbkMFDMode 100
clbkNavMode ... 100
clbkPanelMouseEvent 104

clbkPanelRedrawEvent104
clbkPlaybackEvent....................................96
clbkPostCreation96
clbkPostStep..98
clbkPreStep ...97
clbkRCSMode...99
clbkSaveState..95
clbkSetClassCaps......................................94
clbkSetStateEx ..96
clbkVCMouseEvent105
clbkVCRedrawEvent106
clbkVisualCreated.....................................98
clbkVisualDestroyed.................................98

VESSELSTATUS...8
VISHANDLE..5
Vsop87..182

1 P. Bretagnon and G. Francou, Bureau des Longitudes, CNRS URA 707, Planetary Solution
VSOP87
2 M. Chapront-Touze and J. Chapront, Bureau des Longitudes, CNRS URA 707, Lunar
Solution ELP 2000-82B

