ORBITER
APl Reference Manual

Copyright (c) 2000-2006 Martin Schweiger 29 September 2006
Orbiter home: orbit. medphys.ucl.ac.uk/ or www.orbitersim.com

ORBITER .

SPACEPLIGHT SIMULATOR ™"

1 INTRODUGCTION L.ttt e et s e e e e e e e et s e e e e e e e eataa s s e eaeaeasstannaaeaaaeenes 3
2 REQUIREMENTS ..ottt ettt sttt ettt ettt et e e st e e e st e e e s anta e e e e snbbe e e e snbeeeeenntaeeeennens 3
3 PREPARATION ...ttt ettt ettt ettt ettt e e st e e e st e e e s anbae e e e anbee e e e anbbeeesanbaeeeennens 3
4 S 3 S o 0 PP 3
5 COMPATIBILITY ISSUES.......ttiii ittt ettt sttt ettt e et e e e st ee e sbbeeessnbaeeaean 4
6 L0 0]I = PP 4
7 SAMPLE MODULESottt ettt sttt e ettt e e e sttt e e e st e e e sbbe e e e staeeeean 5
8 DATA TYPES . ottt ettt e e e st e e e e bt e e e snbb e e e e anbre e e e anbeeeeennees 5
9 L0101 S I A 15 TSP 11
10 VESSEL MODULES. ...ttt ettt et a st e e nbee e e e nnees 11
11 CLASS VESSEL ...t e et e e e et et e e e e e e aaaraans 22
I R @0 0 153 (B o3 1T Vo == 14 [0 o RS 22
11.2 Vessel parameters and capabilitieS ... 23
11.3 CUIMENT VESSEI STALUS ..eeeieiiiiiiii ittt e e e et e e e e s e s nnbneeeeeeeas 36
] £ (Y =T o (o] = PP PP PPPPPPPP 44
B W= I g =T =T =T 0 = o PP 47
0 G I 1 €W (=T 0 = = o = . 1= o | P 52
00 B To Tor (T T I oo g =V =T [T 0 = o PP 73
11.8 Attachment ManNAgEMENT..........cvvviiiiiiiiiiiee ettt e et et e e e e e e e et e e e aaeaees 77
11.9 OrDital €IEMENTS......eiiiiiiiee et e e e et e e e e e eeaaa s 81
11.10 Surface-relative ParamMeLErSiiiiiiiie e 84
I O I = Vg o . = LT LRSS 86
11.12 AtMOSPNEIIC PAFAMELEIS. .. .eiiiiiiiiiee ettt e e e e e aeee 90
11,13 ACTOUYNAMICSveeteiieeete ettt ettt ettt e ettt e e et e e e et e e et b et e e anb et e e e nb et e e e nbe e e e enbeeeeennnee 91
I S [= Tt o = Vol o =Y =T 1= = 100
11.15 Communications/radio INTEITACEceeiiiiiii i 101
11.16 Visual ManipUIBtiON..........coiiiiiiiieie e e e e e e e e e e e s e anrae e e e e e e e s e nnnneees 104
11,17 PaArtiCle SYSIEIMS.....uuiiiiiiie i ittt e e e e e s r e e e e e s s st e e e e e e s s s nnbaeeeeaeeesannnneees 116
11.18 Light beacon ManagemeENntceeeiiiiiiiiiieee e e e e e e e e e e nnnneees 118
12 VESSEL CLASS EXTENSIONS ...ttt 119
121 ClASS VESSELZ ...ttt ettt ettt ettt e e et e e s st e e e e nnbae e e e eneee 119
13 CLASS MED ... ittt ettt e e e e e et e e e e st e e e et e e e e atae e e e nnrae e e et 133
13.1 CONSITUCHON/CIEALIONceeii ittt ettt e e e e et e e e e e e s et e e e e e e e s e nnnnneees 133

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 1

13.2 DISPIAY FEPAUNTeeiiiiiiie ettt ettt et e e et e e e e neee 134

R TRC T [o] o1 | SO PP PP PPRPPR PPN 136
R B A 0T To 1S V) - = PR 137
14 CLASS GRAPHMEDccco ittt ettt e e e e e et e e e e e e s et e e e e e e e s e nnnnneees 138
2 R @ 153 { B o3 T Vo == L4 [o PR 138
14.2 Graph/plot MANAGEMENTccoiiuiiii et 139
15 CLASS EXTERNMED ...ttt e e 141
15.1 CoNStrUCHON/AESIIUCTHIONeeetiiiiiie ettt e e e e e 141
16 CLASS LAUNCHPADITEM ..ottt et a e e e e e e e s et e e e e e e s nnnnneees 143
17 PLUGIN CALLBACK FUNCTION REFERENCEccccotiiiiiiiiieee e 146
18 PLANET MODULES ...ttt 149
18.1 InitialiSation fUNCHIONS.......coiiiiieie e 149
18.2 The CELBODY ClASS ...ciiiiiiiiiiiiiitie ettt ettt e e e e et e e e e e e e e nnnnees 150
18.3 Orbital PAramMEtErScooovviiiiiiieeeeeeeeee e 153
S S o)Y (o= Tl o =Y = T =3 =] =P 155
19 APIFUNCTION REFERENCEccoiiiitiiiiiie et 155
19.1 GeNEral FUNCHIONSuuiiiiie ittt e e e et e e e e e e s et e e e e e e e e e e nnneeees 155
19.2 Obtaining 0bjeCt hANAIEScocvvviieieeeeeeeee e 156
e RS I e 1=t =T ol o] o [=Tod o T= T = 1o 4[] (=T £ PP 163
19.4 Vessel fuel ManagemMeENtcouvviiiiiiiiiiiiiiececeeeeeeeee et 163
S I @ o] [Tt B = L (ST =Tox (o | PP 165
19.6 Surface-relative PAramMELErSooi i 168
19.7 ACTOUYNAMICS ...eteieeiiiiee ettt ettt ettt e s e e e et e e e st et e e e st bt e e e aabe e e e e anbb e e e e anbeeeeeneee 170
19.8 ENQING STALUSeeiiiiiiiiiee ittt ettt ettt e et e e s st e e e e bb e e e e aabb e e e e anbre e e e nene 174
19.9 Functions for planetary DOAIES.c.ueviiiiiiiii 177
19.10 Surface base fUNCHIONScc.uuiiiiiii e e e e e s 181
19.11 Navigation radio transmitter fUNCLONScccvvviiiiiiiiiiiieeeee e, 183
19.12 SIMUIALION TIMIE ...t e e e e e e e e e e s e bbb e e e e e e e annnnees 185
19.13 CameEra FUNCLIONSeeiiiie ittt e e e e e s e e e e e e s e bbb b e e e e e e e e e e nnnnnees 188
S =) Y/ o To Y= 1o N oL | PP 192
19.15 Mesh and texture ManagemMENT...........cvvvvviiiiiiiieiiiieee e e e e e e e eeeeees 192
19.16 Particle stream ManagEMENT.........ccuviiiiiiiiiiiiiiiiiieeieieeeee ettt e e e e e e eeees 197
19.17 HUD, panel, virtual cockpit and MFD managementccoovvveeeiniieeeeniieee e 197
19.18 CUSIOM MFD MOUEBS ...ceiieiiiiiiiiiiiee ettt e e et e e e e e e e e ettt e e e e e e s e e nnteeeeaaeeeeaannneees 213
19.19 ONSCreeN ANNOTALIONSciiiiitiiiieee e e ettt e e e e e e ettt e e e e e e e s et ee e e e e e e e s e anneeeeeeaeeesaannneeees 215
19.20 File MANAGEMENTeiiiiiiiie ettt et e e et e e st e e e anbre e e aeee 216
19.21 User input @nd di@lOgSceeeiiiiieiiiiiee e 220
19.22 ULIIEY FUNCHIONSeeiiiiiiee ettt e 226
LS 2 T 9 1= o 10 T T 11 T PP 226
20 CUSTOM DIALOG CONTROLS ..ottt e s 227
P40 I R 7= T8 o [o0]] 1 o | PRSP PRRR 227
21 STANDARD ORBITER MODULES ...t 230
A I V£ To] o AT PP PP PP PP PPPPPPPPOP 230
202 IMIOON ..ttt sttt bbb n et e bnbnbne e 230
22 INDEX .ttt e e e e e e e b e et e e e e e b r e e e e e e e s aanannees 230

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 2

1 Introduction

This reference document contains the specification for the Orbiter Programming Interface. It is
not required for running Orbiter.

The programming interface allows the development of third party modules to enhance the
functionality of the Orbiter core. Examples for modules are:

» Additional instruments, simulation monitoring devices, and spacecraft controls
e Custom flight models

e Custom instrument panels

* Multiplayer modules

» Custom calculation of planetary positions

2 Requirements
The following components are required to build an addon module:

* The latest Orbiter package

* The Orbiter SDK libraries and include files (contained in the Orbiter SDK package)

e A C++ compiler running under Windows (the SDK was developed with VC++, the use of
other compilers may be possible, if they conform to the MS stack calling convention.)

3 Preparation

» Install the Orbiter package, if you haven’t already done so.

Install the Orbiter SDK package. This will generate the OrbiterSDK subdirectory
containing the header files and libraries required for building plugins.

Create a project for your plugin DLL (the method depends on the compiler used). Make
sure you use thread-safe system libraries (“Multithread DLL"). Add OrbiterSDK\include to
the include search path, and add OrbiterSDK\lib\Orbiter.lib and
OrbiterSDK\lib\Orbitersdk.lib to the link stage.

Write the code for your plugin, compile and link it, and move the resulting DLL to the
Orbiter\Modules\Plugin folder.

Run Orbiter, go to the Modules tab in the launchpad dialog, and activate your new plugin.

4 SDK files
The following files are contained in the Orbiter development Kkit:
Orbitersdk\doc* SDK documentation
Orbitersdk\include
Orbitersdk.h The interface header file
OrbiterAPl.h General interface functions
VesselAPl.h Vessel interface

Orbitersdk\lib

Orbitersdk.lib The DLL auxiliary library

Orbiter.lib The Orbiter API library
Orbitersdk\tools* Tools for model and texture generation
Orbitersdk\samples* Sample source code

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

w

A\

5 Compatibility issues

Orbiter will change its addon compatibility strategy beginning with the next release. In the
future, each Orbiter release will run only addons which have been compiled with the SDK of
that release. To migrate an addon to a new Orbiter release will therefore require a
recompilation with the new SDK. This should help to keep addons up to date and reduce
compatibilty problems. At the same time, this will allow me to purge obsolete API functions.

Latest release

* The latest release introduces a new more realistic atmospheric flight model. As a result,
some aerodynamics-related vessel functions have become obsolete and are retained for
backward compatibility only.

SetWingAspect
GetWingAspect
SetWingEffectiveness
GetWingEffectiveness
SetLiftCoeffFunc

The old atmospheric flight model will be dropped in a future version, so developers should
migrate to the new model if they want to compile vessel addons against future API
versions.

Definition of terms used in this document:

Module
A module is a dynamic link library (DLL) which extends or replaces functionality of the
core Orbiter program. Modules interact with Orbiter via callback functions conforming to
the public interface defined below.

Plugin
Plugins are generic modules not linked to any particular object. They may include
popup windows for displaying or manipulating general simulation information,
multiplayer interfaces, etc. Plugins can be activated or deactivated by the user via the
Modules tab in the Orbiter Launchpad dialog.

Planet module
Planet modules are linked to planets or moons and are used specifically for updating
planetary position and velocity data. Planet modules are referenced via the
planet/moon’s configuration file.

Vessel module
Vessel modules are linked to specific spacecraft, to allow customisation of the vessel's
behaviour. Vessel modules are referenced via the vessel class configuration file.

In all active modules, Orbiter executes callback functions corresponding to certain simulation
conditions. For example, whenever the simulation window is opened after the user presses
the Orbiter button in the launchpad dialog, Orbiter calls the opcOpenRenderViewport callback
function in all plugins to allow initialisation routines to be performed. A plugin doesn’t need to
implement all callback functions defined in the interface. However, the programmer is
responsible for implementing callback functions in a consistent way. For example, if the plugin
allocates memory for data in opcOpenRenderViewport, then this memory should be
deallocated in opcCloseRenderViewport. The SDK allows access to core parts of the Orbiter
simulator, and bugs in active plugins may cause the program to crash.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 4

All callback functions use a C stack frame, so they need to be defined as extern “C” for
compilation with a C++ compiler. For convenience the DLLCLBK macro is provided in
Orbitersdk.h to use as madifier for callback function definitions.

The code for the callback functions may contain calls to the Orbiter API functions, to obtain
and set simulation parameters such as object positions and speed, simulation time, etc. API
functions use an oapi (“orbiter API”) prefix. API functions use a C++ stack frame.

7 Sample modules

The Orbitersdk\samples folder contains a few projects which can be used as a starting point

for creating your own plugins. To compile a sample using VC++:

* Load the project file (*.dsw) into VC++.

e Build the project.

e Copy the DLL from the Debug or Release subdirectory into the Orbiter\Modules\Plugin
directory (plugins) or into the Orbiter\Modules directory (planet and vessel modules).

» To activate new plugins, run Orbiter, activate the plugin under the Modules tab, and
launch the simulation.

* New planet or vessel modules are used automatically if they are referenced by the
relevant definition files.

DialogTemplate
A trivial example demonstrating the use of Windows-style dialog boxes and custom functions
in Orbiter.

Rcontrol
A more sophisticated dialog example. This plugin opens a dialog which allows to switch
between spacecraft and remotely control the engines.

FlightData
Opens a dialog which allows to monitor vessel flight data.

CustomMFD
An example for an MFD plugin. This implements the Ascent profile MFD.

Deltaglider
Orbiter’s standard implementation of the vessel module for the Delta-glider.

Atlantis
The complete code for Orbiter’s reference implementation of the Atlantis (Space Shuttle)
module, including modules for post-separation SRBs (solid rocket boosters) and main tank.

8 Data types

OBJHANDLE
A handle for a logical object. Objects can be vessels, spaceports, planets, moons or
suns.

VISHANDLE
A handle for a visual object. These are representations for logical objects for the
purpose of rendering. Visuals exist only if the object is within visual range of the
camera, and are created and deleted as needed.

MESHHANDLE
A handle for object meshes.

SURFHANDLE
A handle for a bitmap surface. Surfaces are currently used for drawing instrument
panel areas.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 5

THRUSTER_HANDLE
Handle for (logical) thruster definitions.

THGROUP_HANDLE
Handle for thruster groups.

PROPELLANT_HANDLE
Handle for propellant resources.

NAVHANDLE
Handle for a navigation radio transmitter (VOR, ILS, IDS, XPDR)

VECTOR3
Double precision vector 0 R®

Synopsis:
t ypedef union {

doubl e data[3];
struct { double x, y, z; };
} VECTOR3;

MATRIX3
Double precision matrix 0 R*®

Synopsis:
t ypedef union {

doubl e data[9];

struct { double nll1, ml2, ml3,
n21l, nR2, n23,
n81, nB2, nB3; };

} MATRI X3;
ELEMENTS
Keplerian orbital elements.
Synopsis:
typedef struct {
doubl e a; semi-major axis [m]
doubl e e; eccentricity
doubl e i; inclination [rad]
doubl e thet a; longitude of ascending node [rad]
doubl e onegab; longitude of periapsis [rad]
doubl e L; mean longitude at epoch
} ELEMENTS;
ORBITPARAM

Additional 2-body orbital parameters derived from the primary elements.

Synopsis:
typedef struct {

doubl e SM; semi-minor axis
doubl e PeD; periapsis distance
doubl e ApD; apoapsis distance
doubl e MA; mean anomaly
doubl e TrA; true anomaly
doubl e WnL; mean longitude
doubl e TrL; true longitude
doubl e EcA; eccentric anomaly

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

doubl e Lec; linear eccentricity

doubl e T; orbit period
doubl e PeT; time to next periapsis passage
doubl e ApT; time to next apoapsis passage

} ORBI TPARAM

ATMPARAM
Atmospheric parameters.

Synopsis:
typedef struct {
doubl e T; temperature [K]
doubl e p; pressure [Pa]
doubl e rho; density [kg/m”3]
} ATMPARAM

ENGINESTATUS
Defines the thruster status for a spacecraft

Synopsis:
struct {
doubl e nai n; main/retro thruster level [-1,+1]
doubl e hover; hover thruster level [0,+1]
i nt attnode; attitude thruster mode [O=rot, 1=lin]

} ENG NESTATUS;

ENGINETYPE
Enumerates thruster types

Synopsis:
typedef enum {

ENG NE_MAI N,

ENG NE_RETRO,

ENG NE_HOVER,

ENG NE_ATTI TUDE
} ENG NETYPE;

EXHAUSTTYPE
Enumerates engine groups for exhaust rendering.

Synopsis:
typedef enum {

EXHAUST _MAI N,

EXHAUST _RETRO,

EXHAUST _HOVER,

EXHAUST _CUSTOM
} EXHAUSTTYPE;

PARTICLESTREAMSPEC
Defines the parameters of a particle stream.

Synopsis:

typedef struct {
DWORD f | ags;
doubl e srcsi ze;
doubl e srcrate;
doubl e vO;
doubl e srcspread;
double lifetine;

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

doubl e growt hrat e;
doubl e at nsl owdown;
enum LTYPE { EM SSI VE, DI FFUSE } |type;
enum LEVELMAP { LVL_FLAT, LVL_LIN, LVL_SQRT,
LVL_PLIN, LVL_PSQRT } |evel map;
double I mn, | max;
enum ATVSMAP { ATM FLAT, ATM PLIN } atnsmap;
doubl e anmi n, anax;
SURFHANDLE t ex;
} PARTI CLESTREAMSPEC,

flags currently not used

srcsize particle size at creation [m]

srcrate average particle generation rate [Hz]

vO average particle emission velocity [m/s]

srcspread emission velocity distribution randomisation

lifetime average particle lifetime [s]

growthrate particle growth rate [m/s]

atmslowdown deceleration rate Bin atmosphere, defined as v = v, 6™

Itype lighting type (EMISSIVE or DIFFUSE)

levelmap mapping between level parameter and particle opacity.

Imin, Imax minimum and maximum levels for alpha mapping.

atmsmap mapping between atmospheric parameters and particle opacity.
amin, amax minimum and maximum atmospheric values for alpha mapping.

See the Programmer’s Guide for more details on these parameters.

VESSELSTATUS
Defines vessel status parameters at a given time. This is version 1 of the vessel status
interface. It is retained for backward compatibility, but new modules should use
VESSELSTATUS?2 instead to exploit the latest vessel capabilities such as individual
thruster and propellant resource settings.

Synopsis:
typedef struct {

VECTORS r pos;
VECTOR3 rvel ;
VECTOR3 vrot;
VECTOR3 ar ot ;
doubl e fuel;
doubl e eng_rmmai n;
doubl e eng_hovr;
OBJHANDLE r body;
OBJHANDLE base;
int port;
i nt status;
VECTOR3 vdat a[10] ;
doubl e fdata[10];
DWORD f | ag[10]

} VESSELSTATUS;

Fields:

r pos position relative to reference body in ecliptic frame [m]

rvel velocity relative to reference body in ecliptic frame [m/s]

Vr ot rotation velocity about principal axes in ecliptic frame [rad/s]
ar ot vessel orientation against ecliptic frame

fuel fuel level [0...1]

eng_main main/retro engine setting [-1...1]

eng_hovr hover engine setting [0...1]

r body handle of reference body

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 8

base handle of docking or landing target

port index of designated docking or landing port

st at us O=freeflight, 1=landed, 2=taxiing, 3=docked, 99=undefined

vdat a vector buffer for future extensions. Currently used:
vdata[0] contains landing parameters if status==1:
vdata[0].x = longitude [rad], vdata[0].y = latitude [rad] of landing site,
vdata[0].z = orientation of vessel [rad].

fdata Not currently used.

flag[0] & 0: ignore eng_nmi n and eng_hovr entries, do not change thruster
settings
1: set THGROUP_MAI N and THGROUP_RETROthruster groups from
eng_mai n, and THGROUP_HOVER from eng_hovr .

fl ag[0] & 0: ignore fuel entry, do not change fuel levels

1: set fuel level of first propellant resource from f uel .

flag[1l]-flag[9]

Not currently used.

VESSELSTATUS2

Version 2 of the vessel status interface. This interface has been introduced in post-

020419 versions.

Synopsis:
typedef struct {

DWORD ver si on;
DWORD f | ag;
OBJHANDLE r body;
OBJHANDLE base;
int port;
i nt status;
VECTORS3 r pos;
VECTOR3 rvel ;
VECTOR3 vrot ;
VECTOR3 ar ot ;
doubl e surf _Ing;
doubl e surf_|at;
doubl e surf_hdg;
DWORD nf uel ;
struct FUELSPEC {
DWORD i dx;
doubl e | evel ;
} *fuel;
DWORD nt hrust er;
struct THRUSTSPEC {
DWORD i dx;
doubl e | evel ;
} *thruster;
DWORD ndocki nf o;
struct DOCKI NFOSPEC {
DWORD i dx;
DWORD ri dx;
OBJHANDLE rvessel ;
} *docki nf o;

DWORD xpdr ;
} VESSELSTATUS2;
Fields:
version interface version (2)
flag bitflags (see below)
r body handle of reference body
base handle of docking or landing target

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

port designated docking or landing port

status O=active, 1=landed (inactive)
r pos position relative to reference body (rbody) in ecliptic frame [m]
rvel velocity relative to reference body in ecliptic frame [m/s]
vr ot rotation velocity about principal axes in ecliptic frame [rad/s]
ar ot vessel orientation against ecliptic frame
surf I ng longitude: vessel position in equatorial coordinates of rbody [rad]
surf | at latitude: vessel position in equatorial coordinates of rbody [rad]
surf_hdg heading: vessel orientation on the ground
nf uel number of entries in the f uel list
fuel propellant resource list
fuel[i].idx propellant resource index (0 < i < nfuel)
fuel[i].level propellant resource level [0..1]
nt hr ust er number of entries in the t hr ust er list
t hruster thruster definition list
thruster[i].idx thruster index (0 < i < nthruster)
thruster[i].level thruster level [0..1]
ndocki nfo number of entries in the dockinfo list
dockinfol[i].idx dock index (0 < i < ndockinfo)
dockinfo[i].ridx dock index of docked vessel
docki nfo[i].rvessel handle of docked vessel
xpdr transponder channel setting (in steps of 0.05MHz from
108.00MHz)

The meaning of the bitflags in f | ag depends on whether the VESSELSTATUS2
structure is used to get (GetStatus) or set (SetStatus) a vessel status. The
following flags are currently defined:

* VS _FUELRESET
Get — not used
Set — reset all fuel levels to zero, independent of the f uel list.
e VS FUELLI ST
Get —request a list of current fuel levels in f uel . The module is responsible
for deleting the list after use.
Set — set fuel levels for all resources listed in f uel .
e VS THRUSTRESET
Get — not used
Set — reset all thruster levels to zero, independent of the t hr ust er list
e VS THRUSTLI ST
Get —request a list of current thrust levels in t hr ust er . The module is
responsible for deleting the list after use.
Set — set thrust levels for all thrusters listed int hr ust er .
* VS _DOCKI NFCLI ST
Get — request a docking port status list in docki nf 0. The module is
responsible for deleting the list after use.
Set — initialise docking status for all docking ports in docki nf o.

Notes:

* The ver si on specification is an input parameter for all function calls
(including GetStatus) and must be set by the user to tell Orbiter which
interface to use.

« surf_Ing,surf_lat and surf_hdg are currently only defined if the
vessel is landed (status=1)

» arot=(a,B,y) contains angles of rotation [rad] around x,y,z axes in ecliptic
frame to produce this rotation matrix R for mapping from the vessel’s local
frame of reference to the global frame of reference:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 10

1 0 0O |cosp O —-sngf| cosy sny O

R=|0 cosa sna| 0 1 0 -siny cosy O
0 -sina cosa|snpf 0O cosp 0 0 1
such that

M gobal = R Tios TP

where p is the vessel’s global position.

9 Constants

Navmode constants
NAVMODE_KI LLROT engage attitude thrusters to kill rotation
NAVMODE_HL EVEL engage attitude thrusters to keep level with horizon
NAVMODE _PROGRADE engage attitude thrusters to turn prograde
NAVMODE _RETROGRADE engage attitude thrusters to turn retrograde
NAVMODE _NORMAL engage attitude thrusters to turn orbit-normal
NAVMODE_ANTI NORMAL engage attitude thrusters to turn orbit-antinormal
NAVMODE_HOLDALT engage hover thrusters to maintain altitude

HUD mode constants
HUD_NONE
HUD ORBI T
HUD_ SURFACE
HUD_DOCKI NG

MFD mode constants
MFD_NONE
MFD ORBI T
MFD_SURFACE
MFD_NMAP
MFD_HSI
MFD_LANDI NG
M-D_DOCKI NG
MFD_OPLANEALI GN
MFD_OSYNC
MFD_TRANSFER
MFD_USERTYPE

MFD identifier constants
M-D_LEFT
MFD_RI GHT
MFD_USER1
MFD_USER2
M-D_USER3

10 Vessel modules

Vessel modules are dynamic link libraries (DLL) which contain the code to manage a vessel
class. Orbiter loads a vessel library if the class configuration file of a vessel loaded during the
simulation contains a MODULE entry. Only one instance of the library is loaded for each ves-
sel class, even if multiple vessels of that class are present in the simulation. However, the li-
brary callback functions are called for each vessel. This means that global and static variables
should not be used for vessel-specific parameters, to avoid conflicts between vessels. In-
stead, all vessel-specific data should be stored in the derived VESSEL instance (see below).

In general, a vessel module will create an instance of a vessel class derived from the base

VESSEL class (see Section 11) during the vessel instance initialisation (ovclinit). All further
interaction will then be performed through this class instance, either by Orbiter invoking

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 11

callback functions to notify the vessel of various events, or by the module setting and query-
ing vessel parameters.

In previous versions of the API, Orbiter communicated with the vessel module via nonmember
callback functions (ovcXXX). In the current version, these have been replaced by virtual
VESSEL2 member functions (VESSELZ2::clbkXXX) which can be overloaded by the derived
class to invoke non-default actions. The only nonmember callback functions that should still
be used are the instance entry and exit points (ovclnit and ovcExit), to create and delete the
VESSEL class instance.

Vessel modules should link the Orbiter API libraries (orbiter.lib and orbitersdk.lib). The main
source file should contain the

#def i ne ORBI TER_MODULE
directive.

The following list contains the callback functions used by Orbiter to communicate with the
module. Many of these have become obsolete with the latest API interface and may not be
supported in future versions. Developers should migrate to VESSEL2 member callback func-
tions to ensure future compatibility.

For a sample vessel module implementation, see for example
Orbitersdk\samples\DeltaGlider.

Vessel module nonmember callback functions

InitModule
This is the module entry point. It is called once when the module is loaded, even if
multiple vessels of this class are present. It can be used for global (vessel instance-
independent) initialisations such as GDI resource allocation.

Synopsis:
DLLCLBK voi d InitMdul e (H NSTANCE hMdul e)

Parameters:
hModule DLL instance handle

Notes:

» This function will only be called if the ORBI TER_MODULE preprocessor
directive has been defined in the source code, and orbitersdk.lib has been
linked.

ExitModule

Module exit point. This is called once before the module is removed from memory
(usually at the end of a simulation run). It can be used to free resources allocated
during InitModule.

Synopsis:
DLLCLBK voi d ExitMdul e (H NSTANCE hMbdul e)

Parameters:
hModule DLL instance handle

Notes:
» This function will only be called if the ORBI TER_MODULE preprocessor
directive has been defined in the source code, and orbitersdk.lib has been
linked.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 12

ovclnit
Called during vessel creation. A vessel module must define this function in order to
create an instance of the VESSEL interface or a derived class.

Synopsis:
DLLCLBK VESSEL *ovclnit (

OBJHANDLE hVessel ,
int flightnodel)

Parameters:
hVessel handle identfying the newly created vessel.
flightmodel level of flight model realism (O=simple, 1=complex)

Return value:
Module-generated instance of VESSEL or a derived class.

Notes:
* The flightmodel value depends on user selection in the launchpad dialog.
The module can use this parameter to define two different sets of vessel
parameters — a simplified one for novice users, and a realistic one for
advanced users.
« Atypical implementation will look like this:

class MyVessel : public VESSEL
{

}

DLLCLBK VESSEL *ovclnit (OBJHANDLE hVessel, int flightnodel)
{

}

return new MyVessel (hVessel, flightnodel);

ovcExit
Called before killing the vessel. Should be used for cleanup operations (memory
deallocation etc.) and for deallocating the VESSEL interface.

Synopsis:

DLLCLBK void ovcExit (VESSEL *vessel)
Parameters:

vessel vessel interface

ovcSetClassCaps
PIEE. Use VESSEL2::clbkSetClassCaps instead.
Called during vessel initialisation. This allows the module to define vessel class
capabilities, such as mass, size, aerodynamic specs, thruster ratings, etc.

Synopsis:
DLLCLBK voi d ovcSet O assCaps (
VESSEL *vessel,
FI LEHANDLE cf g)

Parameters:

vessel vessel interface

cfg handle for the vessel class configuration file.
Notes:

e This function should only set general parameters (like maximum fuel mass),
not the current state parameters for a specific ship (like current fuel mass).

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 13

* Generic parameters directly defined in the vessel class cfg file (e.g.
MaxFuel) override values set in ovcSetClassCaps. This allows to manipulate
values without need to recompile the module.

* The cfg file handle allows to read nonstandard parameters from the class
file.

ovcSetState

O e EIs. Use VESSEL2::clbkSetStateEx instead.
Called at vessel creation to allow initialisation of the initial state.

Synopsis:
DLLCLBK voi d ovcSetState (

VESSEL *vessel ,
const VESSELSTATUS *st at us)

Parameters:

vessel vessel interface

status vessel state parameters
Notes:

» This function is called after ovcSetClassCaps.

» If this function is not defined, Orbiter will perform default state initialisations.

» To perform Orbiter's default initialisation from within ovcSetState, call
vessel->DefSetState (status)

ovcSetStateEx

PIIET. Use VESSEL2::clbkSetStateEx instead.

This callback function is invoked by Orbiter when a vessel is created during the
simulation with a call to oapiCreateVesselEx. It allows the vessel to initialise its state
according to the provided VESSELSTATUSKX interface (version x = 2). To allow default
initialisation, the status can be passed to VESSEL.::DefSetStateEx.

Synopsis:
DLLCLBK voi d ovcSet St at eEx (

VESSEL *vessel,
const void *status)

Parameters:

vessel vessel interface

status pointer to a VESSELSTATUSKX structure
Notes:

* This callback function receives the VESSELSTATUSKX structure passed to
oapiCreateVesselEx. It must therefore be able to process the interface
version used by those functions.

» This function remains valid even if future versions of Orbiter introduce new
VESSELSTATUSX interfaces.

» Atypical implementation may look like this:

DLLCLBK voi d ovcSet St at eEx (VESSEL *vessel, const void *status)
{

/'l specialised vessel initialisations
...

[/ default initialisation:
vessel - >Def Set St at eEx (status);

ovclLoadState

@] f{e][Eifs. Use VESSEL2::clbkLoadStateEx instead.
Called when the vessel must read its initial status from a scenario file. New modules
should use ovclLoadStateEXx instead.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 14

DLLCLBK voi d ovclLoadState (

VESSEL *vessel,
FI LEHANDLE scn,
VESSELSTATUS *def vs)

Parameters:

vessel vessel interface

scn scenario file handle

def vs set of generic vessel parameters
Notes:

» This callback function is provided to allow the module to read non-standard
parameters from the scenario file.

» The function should define a loop which parses lines from the scenario file
via oapiReadScenario_nextline.

* Any lines which the module parser does not recognise should be forwarded
to Orbiter’s default scenario parser via VESSEL::ParseScenarioLine, to allow
the processing of generic options.

» Alternatively, the module parser may intercept generic parameters and
directly write values into the generic set def_vs (dangerous!)

See also:
ovcLoadStateEx

ovcLoadStateEx
@Yo Eifs. Use VESSEL2::clbkLoadStateEXx instead.
Called when the vessel must read its initial status from a scenario file.

Synopsis:
DLLCLBK voi d ovcLoadSt at eEx (

VESSEL *vessel,
FI LEHANDLE scn,

voi d *vs)
Parameters:
vessel vessel interface
scn scenario file handle
VS pointer to a VESSELSTATUSKX struct (x = 2)

Notes:

» This callback function allows to read module-specific status parameters from
a scenario file.

» The function should define a loop which parses lines from the scenario file
via oapiReadScenario_nextline.

e Any lines which the module parser does not recognise should be forwarded
to Orbiter’s default scenario parser via VESSEL::ParseScenarioLineEx, to
allow the processing of generic options.

e Orbiter will always pass the latest supported VESSELSTATUSX version to
ovcLoadStateEx. This is currently VESSELSTATUS2, but may change in
future versions. To maintain compatibility, vs should therefore not be used
other than to pass it on to ParseScenarioLineEx.

» Atypical parser implementation may look like this:

DLLCLBK voi d ovcLoadSt at eEx (VESSEL *vessel, FILEHANDLE scn,
void *vs)
{

char *line;
int ny_val ue;

whi | e (oapi ReadScenari o_nextline (scn, line)) {

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 15

if (!strnic (line, “nmy_option”, 9)) {
sscanf ?Pine+9, “od”, &ny_valueg
} elseif (...) { // nore itens

1

} else { // anything not recognised is passed on to Orbiter
vessel - >Par seScenari oLi neEx (line, vs);
}

See also:
VESSEL::ParseScenarioLineEx

ovcSaveState

O]of{e]Eifs. Use VESSEL2::clbkSaveState instead.
Called when a vessel needs to save its current status to a scenario file.

Synopsis:
DLLCLBK voi d ovcSaveState (

VESSEL *vessel ,
FI LEHANDLE scn)

Parameters:
vessel vessel interface
scn scenario file handle
Notes:

* This function only needs to be implemented if the vessel must save non-
standard parameters. Otherwise Orbiter invokes a default parameter save.

» To allow Orbiter to save its default vessel parameters, use
VESSEL::SaveDefaultState.

* To write custom parameters to the scenario file, use the oapiWriteLine
method.

ovcPostCreation

@Yol Eifs. Use VESSEL2::clbkPostCreation instead.
Called after a vessel has been created and its state has been set.

DLLCLBK voi d ovcPost Creation (VESSEL *vessel)
Parameters:

vessel vessel interface
Notes:

» This function can be used to perform the final setup steps for the vessel,
such as animation states and instrument panel states. When this function is
called, the vessel state (e.g. position, thruster levels, etc.) have been
defined.

ovcFocusChanged

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

IR, Use VESSEL2::clbkFocusChanged instead.
Called after a vessel gained or lost input focus.

Synopsis:
DLLCLBK voi d ovcFocusChanged (

VESSEL *vessel,

bool getfocus,
OBJHANDLE hNewVessel ,
OBJHANDLE hd dVessel)

Parameters:

16

vessel vessel interface

getfocus true if vessel gained focus, false if it lost focus
hNewVessel handle of vessel gaining focus

hOldVessel handle of vessel losing focus

Notes:
» If getfocus is true, then vessel is the interface to hNewVessel, otherwise it is
the interface to hOldVessel.
» This is also called at the beginning of the simulation to the initial focus
object. In this case hOldVessel is NULL.

ovcVisualCreated
O EJEIE. Use VESSEL2::clbkVisualCreated instead.
Called after a visual representation of a vessel has been created.

Synopsis:
DLLCLBK voi d ovcVi sual Created (

VESSEL *vessel,
VI SHANDLE vi s,
int refcount)

Parameters:
vessel vessel interface
vis handle for the newly created visual

refcount visual reference count

Notes:

* The logical interface to a vessel exists as long as the vessel is present in the
simulation. However, the visual interface exists only when the vessel is
within visual range of the camera. Orbiter creates and destroys visuals as
required. This enhances simulation performance in the presence of a large
number of objects in the simulation.

* Whenever Orbiter creates a vessel’s visual it reverts to its initial configuration
(e.g. as defined in the mesh file). The module can use this function to update
the visual to the current state, wherever dynamic changes are required.

* More than one visual representation of an object may exist. The refcount
parameter defines how many visual interfaces to the object exist.

ovcVisualDestroyed
EIEIET. Use VESSEL2::clbkVisualDestroyed instead.
Called before the visual representation of a vessel is destroyed.

Synopsis:
DLLCLBK voi d ovcVi sual Destroyed (

VESSEL *vessel,
VI SHANDLE vi s,
int refcount)

Parameters:
vessel vessel interface
vis handle for the visual to be destroyed

refcount visual reference count

Notes:

» Orhiter calls this function before it destroys the vessel’s visual
representation, e.g. when it moves out of the visual range of the current
camera.

* The (logical) vessel may still exist, but it is no longer rendered.

ovcTimestep

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 17

B, Use VESSEL2::clbkPreStep or VESSEL2::clbkPostStep instead.
Called at each simulation time step after the vessel has updated its position and
velocity for the current simulation time.

Synopsis:

DLLCLBK voi d ovcTi mestep (VESSEL *vessel, double sim)
Parameters:

vessel vessel interface

simt simulation up time (seconds since simulation start)
Notes:

» This function, if implemented, is called at each frame for each instance of
this vessel class, and is therefore time-critical. Avoid any unnecessary
calculations here which may degrade performance.

ovcRCSmode
O FEIE. Use VESSEL2::clbkRCSMode instead.
Called when the RCS (reaction control system) mode changes.

Synopsis:

DLLCLBK voi d ovcRCSnpode (VESSEL *vessel, int node)
Parameters:

vessel vessel interface

mode new RCS mode: O=disabled, 1=rotational, 2=linear
Notes:

» This callback function is invoked when the user switches RCS mode via the
keyboard (“/" or “Ctrl-/” on numerical keypad) or after a call to
VESSEL::SetAttitudeMode or VESSEL::ToggleAttitudeMode.

ovcADCtrimode
B, Use VESSEL2::clbkADCtrIMode instead.
Called when user input mode for aerodynamic control surfaces (elevator, rudder,
aileron) changes.

Synopsis:

DLLCLBK void ovcADCtrl node (VESSEL *vessel, DWORD node)
Parameters:

vessel vessel interface

mode control mode
Notes:

* The returned control mode contains bit flags as follows:
bit 0: elevator enabled/disabled
bit 1: rudder enabled/disabled
bit 2: ailerons enabled/disabled
Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates
fully enabled.

ovcNavmode
IR, Use VESSEL2::clbkNavMode instead.
Called at activation/deactivation of a navmode (see also VESSEL ::ActivateNavmode)

Synopsis:
DLLCLBK voi d ovcNavnode (

VESSEL *vessel ,
i nt node,

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 18

bool active)

Parameters:
vessel vessel interface
mode navmode constant (see section 9)
active true for activation, false for deactivation.
ovcHUDmode

O EIE. Use VESSEL2::clbkHUDMode instead.
Called after a change of the vessel's HUD (head up display) mode.

Synopsis:

DLLCLBK voi d ovcHUDnode (VESSEL *vessel, int node)
Parameters:

vessel vessel interface

mode new HUD mode
Notes:

* For currently supported HUD modes see HUD_xxx constants in section 9.
 mode HUD_NONE indicates that the HUD has been turned off.

ovcMFDmode
OlsfYel5(s. Use VESSEL2::clbkMFDMode instead.
Called after the display mode of one of the MFDs (multifunctional displays) has
changed.

Synopsis:
DLLCLBK voi d ovcMFDnpde (VESSEL *vessel, int nfd, int node)

Parameters:
vessel vessel interface
mfd MFD identifier (see Section 9).
mode new MFD mode (see Section 9).

ovcDockEvent
O EIE. Use VESSEL?2::clbkDockEvent instead.
Called after a docking or undocking event at one of the vessel's docking ports.

Synopsis:
voi d ovcDockEvent (

VESSEL *vessel,
i nt dock,
OBJHANDLE connect ed)

Parameters:
vessel vessel interface
dock docking port index

connected handle to docked vessel, or NULL for undocking event

ovcAnimate
. Use VESSEL2::clbkAnimate instead.
Called at each simulation time step if the module has registered an animation request
and if the vessel's visual exists.

Synopsis:

DLLCLBK voi d ovcAni mate (VESSEL *vessel, double sint)
Parameters:

vessel vessel interface

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 19

simt simulation up time (seconds since simulation start)

Notes:

» This callback allows the module to animate the vessel’s visual representation
(moving undercarriage, cargo bay doors, etc.)

« ltis only called as long as the vessel has registered an animation (between
matching VESSEL.::RegisterAnimation and VESSEL::UnregisterAnimation
calls) and if the vessel’s visual exists.

* The UnregisterAnimation call should not be placed within the body of
ovcAnimate, since it would be lost if the vessel's visual doesn't exist. This
should rather be placed in ovcTimestep.

ovcConsumeKey

Ol el5(=. Use VESSEL2::clbkConsumeDirectKey instead.
Keyboard handler. Called at each simulation time step. This callback function allows
the installation of a custom keyboard interface for the vessel.

DLLCLBK i nt ovcConsuneKey (

VESSEL *vessel,
char *keystate)

Parameters:
vessel vessel interface
keystate keyboard state

Return value:
A nonzero return value will completely disable default processing of the key state
for the current time step. To disable the default processing of selected keys only,
use the RESETKEY macro (see orbitersdk.h) and return 0.

Notes:
« The keystate contains the current keyboard state. Use the KEYDOWN
macro in combination with the key identifiers as defined in orbitersdk.h
(OAPI_KEY_xxx) to check for particular keys being pressed. Example:

if (KEYDOMW (keystate, OAPI_KEY_F10)) {
/1 performaction
RESETKEY (keystate, QAPI _KEY_F10);
/1 optional: prevent default processing of the key

}

» This function should be used where a key state, rather than a key event is
required, for example when engaging thrusters or similar. To test for key
events (key pressed, key released) use ovcConsumeBufferedKey instead.

ovcConsumeBufferedKey
IR, Use VESSEL2::clbkConsumeBufferedKey instead.
This callback function notifies the module of a buffered key event (key pressed or key
released).

Synopsis:
DLLCLBK i nt ovcConsuneBufferedKey (

VESSEL *vessel ,
DWORD key,

bool down,

char *kstate)

Parameters:
vessel vessel interface
key key scan code (see OAPI_KEY_xxx constants in orbitersdk.h)
down true if key was pressed, false if key was released
kstate current keyboard state

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 20

Return value:

The function should return 1 if Orbiter’s default processing of the key should be
skipped, 0 otherwise.

Notes:
» The key state (kstate) can be used to test for key modifiers (Shift, Ctrl, etc.).
The KEYMOD_xxx macros defined in orbitersdk.h are useful for this
purpose.
» This function may be called repeatedly during a single frame, if multiple key
events have occurred in the last time step.

ovcLoadPanel
O EJEIs. Use VESSEL2::clbkLoadPanel instead.
Called when Orbiter needs to load a custom instrument panel from the module.

Synopsis:

DLLCLBK bool ovclLoadPanel (VESSEL *vessel, int id)
Parameters:

vessel vessel interface

id panel identifier

Return value:
false indicates failure.

Notes:

* Inthe body of this function the module should define the panel background
bitmap, and panel capabilities, e.g. the position of MFDs and other
instruments, active areas (mouse hotspots) etc.

» Avessel which implements panels must at least support panel id 0 (the main
panel. If any panels register neighbour panels (see
oapiSetPanelNeighbours), all the neighbours must be supported, too.

See also:
oapiRegisterPanelBackground, oapiRegisterPanelArea, oapiRegisterMFD.

ovcPanelMouseEvent
O EIE. Use VESSEL2::clbkPanelMouseEvent instead.
Called when a previously registered panel area receives a mouse button event.

Synopsis:
DLLCLBK bool ovcPanel MouseEvent (

VESSEL *vessel ,

int id,
i nt event,
i nt nx,
int ny)
Parameters:
vessel vessel interface
id panel area identifier
event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)
mx, my relative mouse position in area at event

Return value:
The function should return true if it processes the event, false otherwise.

Notes:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 21

* Mouse events are only sent for areas which requested notification during
definition (see oapiRegisterPanelArea).

ovcPanelRedrawEvent
O EIE. Use VESSEL2::clbkPanelRedrawEvent instead.
Called when a panel area receives a redraw event.

DLLCLBK bool ovcPanel RedrawEvent (

VESSEL *vessel ,
int id,

int event,
SURFHANDLE surf)

Parameters:
vessel vessel interface
id panel area identifier
event redraw event (see PANEL_REDRAW _xxx constants in orbitersdk.h)
surf area surface handle.

Return value:
The function should return true if it processes the event, false otherwise.

Notes:

* This callback function is only called for areas which were not registered with
the PANEL_REDRAW_NEVER flag.

» All redrawable panel areas receive a PANEL_REDRAW _INIT redraw
notification when the panel is created, in addition to any registered redraw
notification events.

» The surface handle surf contains either the current area state, or the area
background, depending on the flags passed during area registration.

» The surface handle may be used for blitting operations, or to receive a
Windows device context (DC) for Windows-style redrawing operations.

See also:

oapiGetDC, oapiReleaseDC, oapiTriggerPanelRedrawArea

11 Class VESSEL

This class constitutes the interface with Orbiter’s internal vessel implementation, and provides
access to the various status parameters and methods of individual spacecraft. Typically, an
instance of VESSEL or a derived class will be constructed in each vessel module. Examples
for various applications of the VESSEL class can be found in the sample vessel module im-
plementations in the Orbitersdk\samples folder.

Public member functions

11.1 Construction/creation

VESSEL
Constructor. Creates a vessel interface instance from a vessel handle.

Synopsis:

VESSEL (OBJHANDLE hVessel, int flightnodel)
Parameters:

hVessel vessel handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 22

flightmodel level of realism requested. (O=simple, 1=realistic)

Notes:

This function creates an interface to an existing vessel. It does not create a
new vessel. New vessels are created with the oapiCreateVessel and
oapiCreateVesselEx functions.

The VESSEL constructor (or the constructor of a derived specialised vessel

class) will normally be invoked in the ovclnit callback function of a vessel
module:

cl ass MyVessel : public VESSEL

Il MyVessel interface definition

H
DLLCLBK VESSEL *ovclnit (OBJHANDLE hvessel, int flightnodel)
{
return new MyVessel (hvessel, flightnodel);
}

DLLCLBK voi d ovcExit (VESSEL *vessel)

del ete (MyVessel *)vessel ;

» The VESSEL interface instance created in ovclnit should be deleted in
ovcExit.

See also:
oapiCreateVessel, oapiCreateVesselEx, ovclnit

Create

IR, This function has been replaced by oapiCreateVessel and
oapiCreateVesselEx.

GetHandle
Returns a handle to the vessel object.

Synopsis:
const OBJHANDLE GCet Handl e (void) const

Return value:
vessel handle, as passed to the VESSEL constructor.

Notes:

The handle is useful for various vessel-related API function calls.

11.2 Vessel parameters and capabilities

GetName
Returns the vessel’s name.

Synopsis:
char *Get Name (void) const

Return value:
Pointer to vessel's name.

GetClassName
Returns the vessel’s class name.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 23

Synopsis:
char *CGet Cl assNane (void) const

Return value:
Pointer to vessel’s class name.

GetFlightModel
Returns the user-requested realism level for the flight model.

Synopsis:
int GetFlightModel (void) const

Return value:
Flight model realism level. These values are currently supported:
0 = simple
1 = realistic

Notes:

» The returned value corresponds to that passed to the VESSEL constructor.
This will normally be the same as the argument of the ovclnit callback
function.

* The module can use this method to implement different flavours of the flight
model (e.g. simplified and realistic), by defining separate sets of parameters
(possibly higher fuel-specific impulse and higher thrust ratings in the
simplified model, less severe damage limits, etc.)

See also:
ovclnit

GetDamageModel
Returns the current user setting for damage and systems failure simulation.

Synopsis:
i nt Get DamageMbdel (void) const

Return value:
Damage modelling flags. The following settings are currently supported:
0 = no damage or failures
1 = simulate vessel damage and system failures

Notes:

* The return value depends on the user parameter selection in the Launchpad
dialog. It does not change during a simulation session and will be the same
for all vessels.

» Future versions may support more differentiated bit flags to indicate different
types of damage and failure simulation.

» Avessel implementation should query the damage flag to decide whether to
simulate failures.

GetEnableFocus
Returns true if the vessel can receive the input focus, false otherwise.

Synopsis:
bool Get Enabl eFocus (void) const

Return value:
Focus enabled status.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 24

Notes:

» The vessel can be allowed or prohibited to receive the input focus by using
the SetEnableFocus method.

» The initial state is defined by the EnableFocus setting in the vessel's
configuration file. If the entry is missing, the default is true.

* Focus-enabled vessels can be selected by the user vial the jump vessel
dialog (F3).

» Once a vessel has received the input focus, all user input via keyboard,
mouse and joystick is directed to this vessel.

» For some object types, such as jettisoned rocket stages, enabling input
focus may not be useful.

GetSize
Returns the vessel's mean radius.

Synopsis:
doubl e Get Size (voi d) const

Return value:
Vessel mean radius [m].

GetClipRadius
Returns the radius of the vessel's circumscribing sphere.

Synopsis:
doubl e Getd i pRadi us (void) const

Return value:
Radius of the circumscribing sphere of the vessel's visual representation [m].

Notes:

* This parameter describes the radius of the sphere around the vessel that is
protected from clipping at the observer camera's near clipping plane. (The
near clipping plane defines an area around the view camera within which no
objects are rendered. The distance of the near clipping plane cannot be
made arbitrarily small for technical reasons.)

» By default, the clip radius is identical to the vessel's "Size" parameter.
However, the size parameter is correlated to physical vessel properties and
may therefore be smaller than the sphere that contains the vessel's complete
visual representation. In that case, defining a clip radius that is larger than
the size parameter can avoid visual artefacts.

* The view camera's near clip plane distance is adjusted so that it does not
intersect any nearby vessel's clip radius. However, there is a minimum near
clip distance of 2.5m. This means that if the camera approaches a vessel to
less than clip radius + 2.5, clipping may still occur.

» Visual cockpit meshes are rendered in a separate pass and are not affected
by the general near clip distance (they have a separate near clip distance of
10cm).

GetEmptyMass

Returns vessel's empty mass excluding fuel. Equivalent to the oapiGetEmptyMass API
function.

Synopsis:
doubl e Get EnptyMass (void) const

Return value:
Vessel empty mass [kg].

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 25

GetCOG_elev
Returns the altitude of the vessel's centre of gravity over ground level when landed [m].

Synopsis:
doubl e Get COG el ev (voi d) const

Return value:
elevation of vessel’s centre of mass [m].

GetTouchdownPoints
Returns 3 reference points defining the vessel’s surface contact points when touched

down on a planetary surface (e.g. landing gear).

Synopsis:
voi d Get TouchdownPoi nts (
VECTOR3 &pt 1,
VECTOR3 é&pt 2,
VECTOR3 &pt 3) const
Parameters:
ptl touchdown point of nose wheel (or equivalent)
pt2 touchdown point of left wheel (or equivalent)
pt3 touchdown point of right wheel (or equivalent)
Notes:

* The points are the positions at which the vessel’s undercarriage (or
equivalent) touches the surface, specified in local vessel coordinates.

» This function returns the points previously defined with
SetTouchdownPoints.

GetCrossSections
Returns the vessel’s cross sections projected in the direction of the vessel’s principal

axes [m?]
Synopsis:
voi d CGet CrossSections (VECTOR3 &cs) const
Parameters:
cs vector receiving the cross sections of the vessel’s projection into the
y-z, X-z, and x-y planes, respectively [mz]
GetPMI

Returns principal moments of inertia, mass-normalised [mz]

Synopsis:

void GetPM (VECTOR3 &pmi) const
Parameters:

pmi Diagonal elements of the inertia tensor
Notes:

For the meaning of the pmi vector, see SetPMI.

GetGravityGradientDamping
Returns the vessel's damping coefficient for gravity field gradient-induced torque.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 26

Synopsis:
doubl e Get GravityG adi ent Danpi ng (voi d) const

Return value:
Torque damping coefficient (= 0)

Notes:

» A nonspherical object in an inhomogeneous gravitational field experiences a
torque. Orbiter calculates this torque as

3
M :R—’u;n(ROXLRO)

where /= GM, G is the gravity constant, M is the reference body mass, mis
the vessel mass, Ris the distance of the vessel from the reference body
centre, Rq is the unit vector towards the reference body, and L is the mass-
normalised inertia tensor (assumed diagonal).

* This generates an undamped attitude oscillation in the vessel orbiting the
reference body.

» Damping may occur due to tidal deformation of the vessel, movement of
liquids (fuel) etc. Orbiter allows to introduce a damping term of the form
Mp =—awg
where « is the angular velocity, a = dmr, with damping coefficient d, vessel
mass mand vessel radius r.

» If extended vessel masses have been disabled in the launchpad dialog, this
function always returns O.

GetPitchMomentScale
Returns the magnitude of the moment that tries to reduce the vessel’'s pitch angle by
rotating the vessel’s longitudinal axis back towards the airspeed vector.

Synopsis:
doubl e Get Pi t chMbnent Scal e (voi d) const

Return value:
scale factor for pitch moment

Notes:

» This value is only used with the old aerodynamic flight model, i.e. if no
airfoils have been defined.

GetBankMomentScale
Returns the magnitude of the moment that tries to reduce the vessel's slip angle by
rotating the vessel’'s longitudinal axis back towards the airspeed vector.

Synopsis:
doubl e Get BankMbrent Scal e (voi d) const

Return value:
scale factor for slip angle moment

Notes:
e This value is only used with the old aerodynamic flight model, i.e. if no
airfoils have been defined.

GetTrimScale
Returns the scaling factor for the pitch trim control.

Synopsis:
doubl e Get Tri nScal e (void) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 27

Return value:
pitch trim scale factor.

Notes:
» This function returns the value previously set with SetTrimScale.
« ltis only used with the old atmospheric flight model (if no airfoils have been
defined).

GetCameraOffset
Returns the camera position for internal (cockpit) view.

Synopsis:
voi d CGet CaneraO fset (VECTOR3 &ofs) const
Parameters:
ofs camera offset in the vessel’s local frame of reference [m,m,m]

GetCameraDefaultDirection
Returns the default camera direction for internal (cockpit) view.

Synopsis:

voi d Get CaneraDefaul tDirecti on (VECTOR3 &dir0) const
Parameters:

dir0 default camera direction in vessel coordinates
Notes:

» The default camera direction may change when the user selects a different
instrument panel or virtual cockpit position.
* The returned direction vector is normalised to length 1.

SetEnableFocus
Set the vessel's ability to receive the input focus.

voi d Set Enabl eFocus (bool enabl e) const

Parameters:
enable focus enabled status

Notes:
» The default focus status before the first call to SetEnableFocus is true,
unless overridden by the config file.

SetSize
Sets the vessel's mean radius [m].

Synopsis:

voi d SetSize (double size) const
Parameters:

size vessel mean radius [m]
Notes:

* This value is used for visibility calculations, but normally has no influence on
the actual visual representation of the object (which is defined by the mesh)
unless the module performs mesh scaling operations.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 28

SetVisibilityLimit
Defines the vessel’s range of visibility.

Synopsis:

voi

d SetVisibilityLimt (
double vislint,
doubl e spotlimt = -1) const

Parameters:
vislimit apparent size limit for vessel visibility
spotlimit apparent size limit for vessel “spot” representation

Notes:

SetClipRadius

This function can be used to define the distance up to which a vessel is
visible, independent of screen resolution.

The vislimit value is the limiting apparent size (as a fraction of the render
window vertical) up to which the vessel is regarded visible. Thus, the vessel
is visible if the following condition is satisfied:

> vidimit

dtana

where Sis the vessel size, d is its camera distance, and a is the camera
aperture.

If the defined visibility limit exceeds the distance at which the vessel can be
rendered as a mesh at the given screen resolution, it will simply be
represented by a circular spot whose size is reduced linearly (to reach zero
at the limiting distance).

If the vessel is to be visible beyond its geometric size (e.g. due to light
beacons etc.) then the spotlimit value can be used to define the limiting
distance due to the vessel's geometry, while vislimit defines the total visibility
range including all enhancing factors such as beacons.

spotlimit < vislimit is required. If spotlimit < 0 (default) then spotlimit = vislimit
is assumed.

If SetVisibilityLimit is not called, then the default value is vislimit = spotlimit =
le-3.

Set the radius of the vessel's circumscribing sphere.

Synopsis:
void Setd i pRadi us (doubl e rad) const
Parameters:
rad radius of the circumscribing sphere of the vessel’s visual
representation [m].
Notes:

SetAlbedoRGB

See GetClipRadius for a definitioin of the clip radius.
Setting rad = 0 reverts to the default behaviour of using the vessel's "Size"
parameter to determine the clip radius.

Set the average colour distribution (red/green/blue) reflected by the vessel.

Synopsis:

voi d Set Al bedoRGB (const VECTOR3 &al bedo) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 29

Parameters:

albedo average vessel colour (red, green, blue), each in range 0-1
Notes:

» The colour passed to this function is currently used to define the “spot”
colour with which the vessel is rendered at long distances. It should
represent an average colour and brightness of the vessel surface when fully
lit.

* The values for each of the RGB components should be in the range 0-1.

» The default vessel albedo is bright white (1,1,1).

* The albedo can be overridden by the AlbedoRGB entry in the vessel’s config
file.

SetEmptyMass
Sets the vessel's empty mass excluding fuel. Equivalent to the oapiSetEmptyMass API
function.
Synopsis:
voi d Set Enpt yMass (double m const
Parameters:
m vessel empty mass [kg]
SetCOG_elev
OlsfYel[H(=. Sets the altitude of the vessel's centre of gravity over ground level when
landed [m].
Synopsis:
voi d Set COG el ev (doubl e h) const
Parameters:
h elevation of the vessel's centre of gravity above the surface plane
when landed [m].
Notes:

» This function is obsolete and has been replaced by SetTouchdownPoints.

SetTouchdownPoints
This defines 3 surface contact points for ground contact calculations (e.g. the points
where the landing gear touches the ground).

voi d Set TouchdownPoi nts (

const VECTOR3 é&pt1,
const VECTOR3 é&pt 2,
const VECTOR3 &pt 3) const

Parameters:
ptl touchdown point of nhose wheel (or equivalent)
pt2 touchdown point of left wheel (or equivalent)
pt3 touchdown point of right wheel (or equivalent)
Notes:

* The points are the positions at which the vessel’'s undercarriage (or
equivalent) touches the surface, specified in local vessel coordinates.

» The points should be specified such that the cross product pt3-ptl x pt2-ptl
defines the horizon UP direction for the landed vessel (given a left-handed
coordinate system).

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 30

* Modifying the touchdown points during the simulation while the vessel is on
the ground can result in jumps due to instantaneous position changes
(infinite acceleration). To avoid this, the touchdown points should be
modified gradually by small amounts over time (proportional to simulation
time steps AT).

SetSurfaceFrictionCoeff
Sets the coefficients of surface friction which define the deceleration forces during
taxiing. mu_Ing is the coefficient acting in longitudinal (forward) direction, mu_lat the
coefficient acting in lateral (sideways) direction. The friction forces are proportional to
the coefficient and the weight of the vessel:

F friction = #G

Synopsis:
voi d Set SurfaceFrictionCoeff (

doubl e mu_I ng,
doubl e mu_l at) const

Parameters:
mu_Ing friction coefficient in longitudinal direction
mu_lat friction coefficient in lateral direction
Notes:

* The higher the coefficient, the faster the vessel will come to a halt.

» Typical parameters for a spacecraft equipped with landing wheels would be
mu_Ing = 0.1 and mu_lat = 0.5. If the vessel hasn’t got wheels, mu_Ing =
0.5.

» The coefficients should be adjusted for belly landings when the landing gear
is retracted.

* The longitudinal and lateral directions are defined by the touchdown points:

- R ~ .
SIng = Po _E(pl-'- pz)v Sa = P2~ P

See also:
SetTouchdownPoints

SetCrossSections
Defines the vessel's cross-sectional areas, projected in the directions of the vessel's
principal axes.

Synopsis:
voi d Set CrossSections (const VECTOR3 &cs) const
Parameters:
cs vector of cross-sectional areas of the vessel’s projection along the x-axis
into the yz plane, along the y-axis into the xz plane, and along the z-axis
into the xy plane, respectively [m?]
Notes:

e You can use the shipedit tool included in the Orbiter SDK package to
calculate cross section values from an existing mesh.

SetPitchMomentScale

Sets the magnitude of the moment acting on the vessel's pitch angle which rotates the
vessel's longitudinal axis back towards the airspeed vector.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 31

Synopsis:
voi d SetPitchMnent Scal e (doubl e scal e) const

Parameters:
scale scale factor for pitch moment

Notes:
» This value is only used with the old aerodynamic flight model, i.e. if no
airfoils have been defined.
e The default value is 0.

SetBankMomentScale
Sets the magnitude of the moment acting on the vessel's bank angle which rotates the
vessel’s longitudinal direction towards the airspeed vector.

Synopsis:
voi d Set BankMonent Scal e (doubl e scal e) const
Parameters:
scale scale factor for bank moment
SetPMI

Sets principal moments of inertia, mass-normalised [m?].

void SetPM (const VECTOR3 &pnmi) const
Parameters:

pmi Principal moments of inertia
Notes:

* The principal moments are the diagonal elements of the inertia tensor in a
frame of reference where the off-diagonal elements are zero.
* The elements of pmi should be calculated as follows:

pmi, == [P} +12)ar
pmi, =L [p(r)(r? +r2)c

. 1
pmi; = [p(r)(r +r))dr

where M is the total vessel mass, pis the density, and the integration is
performed over the vessel volume. The reference frame is chosen so that
the off-diagonal elements of the tensor vanish.

e The shi pedi t utility allows to calculate the inertia tensor from a mesh,
assuming a homogeneous mass distribution.

SetGravityGradientDamping
Sets the vessel's damping coefficient for gravity field gradient-induced torque.

Synopsis:

bool Set GravityG adi ent Danpi ng (doubl e danp) const
Parameters:

damp torque damping coefficient

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 32

Return value:

true if damping coefficient was applied, false if extended vessel masses are
disabled.

Notes:

* A nonspherical object in an inhomogeneous gravitational field experiences a
torque. Orbiter calculates this torque as

3
M :R—’u;n(ROXLRO)

where ¢ =GM, G is the gravity constant, M is the reference body mass, mis
the vessel mass, Ris the distance of the vessel from the reference body
centre, Rq is the unit vector towards the reference body, and L is the mass-
normalised inertia tensor (assumed diagonal).

» This generates an undamped attitude oscillation in the vessel orbiting the
reference body.

» Damping may occur due to tidal deformation of the vessel, movement of
liquids (fuel) etc. Orbiter allows to introduce a damping term of the form
Mp =—awg
where « is the angular velocity, a = dmr, with damping coefficient d, vessel
mass mand vessel radius r.

» If extended vessel masses have been disabled in the launchpad dialog, this
function returns false and has no other effect.

SetTrimScale
Sets the max. magnitude of the pitch trim control.

Synopsis:

voi d SetTrinBScal e (doubl e scal e) const
Parameters:

scale pitch trim scaling factor
Notes:

* This method is used only in combination with the old flight model, that is, if
the vessel doesn’t define any airfoils. In the new flight model, this has been
replaced by CreateControlSurface (AIRCTRL_ELEVATORTRIM, ...).

» If scale is set to zero (default) the vessel does not have a pitch trim control.

SetCameraOffset
Sets the camera position for internal (cockpit) view.

Synopsis:
voi d Set CameraOf fset (const VECTOR3 &ofs) const
Parameters:
ofs camera offset in the vessel’s local frame of reference [m]
Notes:
* The camera offset can be used to define the pilot’'s eye position in the
spacecraft.

» Often this function may be used when responding to changes in the cockpit
camera mode (switching to a different instrument panel or virtual cockpit).

SetCameraDefaultDirection (1)
Sets the default camera direction for internal (cockpit) view.

Synopsis:
voi d Set CaneraDefaul tDirection (const VECTOR3 &cd) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 33

Parameters:
cd new camera direction in vessel coordinates

Notes:

» By default, the default direction is (0,0,1), i.e. forward.

* The supplied direction vector must be normalised to length 1.

« Calling this function automatically sets the current actual view direction to the
default direction.

» This function can either be called during VESSELZ2::clbkSetClassCaps, to
define the default camera direction globally for the vessel, or during
VESSEL2::clbkLoadGenericCockpit, VESSEL2::clbkLoadPanel and
VESSEL2::clbkLoadVC, to define different default directions for different
instrument panels or virtual cockpit positions.

* In Orbiter, the user can return to the default direction by pressing the “Home”
key on the cursor key pad.

SetCameraDefaultDirection (2)
Sets the default camera direction and tilt angle for internal (cockpit) view.

Synopsis:
voi d Set CaneraDefaul tDirection (

const VECTOR3 é&cd,
double tilt) const

Parameters:
cd new camera direction in vessel coordinates
tilt camera tilt angle around the default direction [rad]
Notes:
» This function allows to set the camera tilt angle in addition to the default
direction.
» By default, the default direction is (0,0,1), i.e. forward, and the tilt angle is O
(upright).

* The supplied direction vector must be normalised to length 1.

» The tilt angle should be in the range [-T1,+T7

» Calling this function automatically sets the current actual view direction to the
default direction.

SetCameraRotationRange
Sets the range over which the cockpit camera can be rotated from its default direction.

Synopsis:
voi d Set Carer aRot ati onRange (
doubl e left,
doubl e ri ght,
doubl e up,
doubl e down) const
Parameters:
left rotation range to the left [rad]
right rotation range to the right [rad]
up rotation range up [rad]
down rotation range down [rad]
Notes:

* The meaning of the "left", "right", "up" and "down" directions is given by the
orientation of the local vessel frame. For a default view direction of (0,0,1),

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 34

"left" is a rotation towards the -x axis, "right" is a rotation towards the +x axis,
"up" is a rotation towards the +y axis, and "down" is a rotation towards the -y
axis.

» Allranges must be = 0. The left and right ranges should be < 1t The up and
down ranges should be < 172.

* The default values are 0.81tfor left and right ranges, and 0.47tfor up and
down ranges.

SetCameraShiftRange
Set the linear movement range for the cockpit camera. Defining a linear movement
allows the user to move the head forward or sideways, e.g. to get a better look out of a
window.

Synopsis:
voi d Set Caner aShi ft Range (

const VECTOR3 &f pos,
const VECTOR3 &l pos,
const VECTOR3 &rpos) const

Parameters:
fpos offset vector when leaning forward [m]
Ipos offset vector when leaning left [m]
rpos offset vector when leaning right [m]
Notes:

« If alinear movement range is defined with this function, the user can ‘lean’
forward or sideways using the 'cockpit slew' keys. Supported keys are:

Name default action
CockpitCamDontLean Ctrl +Al t +Down return to default position
CockpitCamLeanForward Crl+Alt+Up lean forward
CockpitCamLeanLeft Crl+Al t+Left lean left
CockpitCamLeanRight Crl +Al t +Ri ght lean right

» The movement vectors are taken relative to the default cockpit position
defined via SetCameraOffset.

» This function should be called when initialising a cockpit mode (e.g. in
clbkLoadPanel or clbkLoadVC). By default, Orbiter resets the linear
movement range to zero whenever the cockpit mode changes.

» In addition to the linear movement, the camera also turns left when leaning
left, turns right when leaning right, and returns to default direction when
leaning forward. For more control over camera rotation at the different
positions, use SetCameraMovement instead.

SetCameraMovement
Set both linear movement range and orientation of the cockpit camera when “leaning”
forward, left and right.

Synopsis:
voi d Set Caner aMovenent (

const VECTOR3 &f pos, double fphi, double ftht,
const VECTOR3 &l pos, double Iphi, double Itht,
const VECTOR3 &rpos, double rphi, double rtht) const

Parameters:
fpos offset vector when leaning forward [m]
fphi camera rotation azimuth angle when leaning forward [rad]
ftht camera rotation polar angle when leaning forward [rad]
Ipos offset vector when leaning left [m]

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 35

Iphi camera rotation azimuth angle when leaning left [rad]

Itht camera rotation polar angle when leaning left [rad]
rpos offset vector when leaning right [m]

rphi camera rotation azimuth angle when leaning right [rad]
rtht camera rotation polar angle when leaning right [rad]

Notes:
» This function is an extended version of SetCameraShiftRange.
* Itis more versatile, because in addition to the linear camera movement
vectors, it also allows to define the camera orientation (via azimuth and polar
angle relative to default view direction). This allows to point the camera to a
particular cockpit window, instrument panel, etc.

ParseScenarioLine
Olefe][E1s. Pass a line read from a scenario file to Orbiter for default processing.

Synopsis:
voi d ParseScenari oLi ne (
char *line,
VESSELSTATUS *st atus) const

Parameters:
line line to be interpreted
status status parameter set
Notes:

e This function is retained for backward compatibility only. New modules
should overload the VESSELZ2::clbkLoadStateEx function and use
ParseScenarioLineEx for default state parsing.

ParseScenarioLineEx
Pass a line read from a scenario file to Orbiter for default processing.

Synopsis:

voi d ParseScenari oLi neEx (char *line, void *status) const
Parameters:

line line to be interpreted

status status parameters (points to a VESSELSTATUSKX variable).

Notes:
e This function should be used within the body of VESSELZ2::clbkLoadStateEx.
* The parser in clbkLoadStateEx should forward all lines not recognised by the
module to Orbiter via ParseScenarioLineEx to allow processing of standard
vessel settings.
e clbkLoadStateEx currently provides a VESSELSTATUS2 status definition.
This may change in future versions, so st at us should not be used within
clbkLoadStateEx other than passing it to ParseScenarioLineEx.
See also:

VESSEL2::clbkLoadStateEx

11.3 Current vessel status

GetStatus
Returns the vessel’s current status parameters in a VESSELSTATUS structure.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 36

Synopsis:
voi d Cet Status (VESSELSTATUS &st atus) const

Parameters:
status structure receiving the current vessel status

Notes:

« The VESSELSTATUS structure provides only limited information.
Applications should normally use GetStatusEx to obtain a VESSELSTATUSX
structure which contains additional parameters.

* For a definition of VESSELSTATUS see Section 8.

GetStatusEx
Returns vessel’s current status parameters in a VESSELSTATUSX structure (version x
> 2).

Synopsis:
void CetStatusEx (void *status) const

Parameters:
status pointer to a VESSELSTATUSKX structure

Notes:

* This method can be used with any VESSELSTATUSKX interface version
supported by Orbiter. Currently only VESSELSTATUS?2 is supported.

* The version field of the VESSELSTATUSKX structure must be set by the caller
prior to calling the method, to tell Orbiter which interface version is required.

* In addition, the caller must set the VS_FUELLIST, VS_THRUSTLIST and
VS_DOCKINFOLIST bits in the flag field, if the corresponding lists are
required. Otherwise Orbiter will not produce these lists.

« If VS_FUELLIST is specified and the fuel field is NULL, Orbiter will allocate
memory for the list. The caller is responsible for deleting the list after use. If
the fuel field is not NULL, Orbiter assumes that a list of sufficient length to
store all propellant resources has been allocated by the caller.

» The same applies to the thruster and dockinfo lists.

See also:
DefSetStateEx, VESSELSTATUS2

DefSetState
Invokes Orbiter’'s vessel state initialisation with the specified standard status
parameters.

Synopsis:
voi d Def Set State (const VESSELSTATUS *status) const

Parameters:
status structure containing vessel status parameters.

Notes:
e The VESSELSTATUS structure contains only a limited set of parameters.
Applications should normally use DefSetStateEx in combination with an
extended VESSELSTATUSKX structure.

See also:
DefSetStateEx, VESSELSTATUS

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 37

DefSetStateEx
Invokes Orbiter’'s vessel state initialisation with the standard status parameters
provided in a VESSELSTATUSKX structure.

Synopsis:
voi d Def Set St at eEx (const void *status) const

Parameters:
status pointer to a VESSELSTATUSKX structure (x 2 2).

Notes:

e status must point to a VESSELSTATUSX structure. Currently only
VESSELSTATUS?2 is supported, but future Orbiter versions may introduce
new interfaces.

» Typically, this function will be called in the body of an overloaded
VESSEL2::clbkSetStateEx to enable default state initialisation.

GetFlightStatus
Returns a bit flag defining the vessel’s current flight status.

Synopsis:
DWORD Get Fl i ght St atus (voi d) const

Return value:
vessel status flags (see notes)

Notes:
* The following flags are currently defined:

0 1
bit 0 vessel is active (in flight) vessel is inactive (landed)
bit 1 vessel is not docked to vessel is docked to a
anything superstructure

SaveDefaultState
PR, Use a call to the base class VESSEL2::clbkSaveState from within the
overloaded callback function instead.
Causes Orbiter to write default vessel parameters to a scenario file.

Synopsis:

voi d SaveDefaul t State (FILEHANDLE scn) const
Parameters:

scn scenario file handle
Notes:

* This method should normally only be invoked from within an overloaded
VESSELZ2::clbkSaveState, to allow Orbiter to save its default vessel status
parameters.

» If VESSELZ2::clbkSaveState is overloaded but does not call
SaveDefaultState, no default parameters are written to the scenario.

GetMass
Returns current (total) vessel mass. Equivalent to the oapiGetMass API function.

Synopsis:
doubl e Get Mass (void) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

Return value:
Current vessel mass [kg].

GetWeightVector
Returns gravitational force vector in local vessel coordinates.

Synopsis:

bool Get Wi ght Vector (VECTOR3 &5 const
Parameters:

G returned gravitational force vector [N]

Return value:
Currently always returns true.

Notes:

* When the vessel status is updated dynamically, G is composed of all gravity
sources currently used for the vessel propagation (excluding sources with
contributions below threshold).

» During orbit stabilisation, only the contribution from the primary source is
returned.

See also:
GetForceVector, GetThrustVector, GetLiftVector, GetDragVector
GetThrustVector

Returns thrust force vector in local vessel coordinates.

Synopsis:

bool GetThrustVector (VECTOR3 &T) const
Parameters:

T returned thrust vector [N]

Return value:
false indicates zero thrust. In that case, the returned vector is (0,0,0).

Notes:

* Onreturn, T contains the vector sum of thrust components from all engines.
» This function provides information about the linear thrust force, but not about
the angular moment (torque) induced.

See also:
GetForceVector, GetWeightVector, GetLiftVector, GetDragVector

GetLiftVector
Returns aerodynamic lift force vector in local vessel coordinates.

Synopsis:

bool GetLiftVector (VECTOR3 &L) const
Parameters:

L returned lift vector [N]

Return value:
false indicates zero lift. In that case, the returned vector is (0,0,0).

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 39

Notes:
e Onreturn, L contains the sum of lift components from all airfoils.

» The lift vector is perpendicular to the relative wind (and thus to the drag
vector) and has zero x-component.

See also:
GetLift, GetForceVector, GetWeightVector, GetDragVector, GetThrustVector

GetLift
Returns magnitude of aerodynamic lift force vector.

Synopsis:
doubl e GetLift (void) const

Return value:
Magnitude of lift force vector [N].

Notes:
* Return value is the sum of lift components from all airfoils.

See also:
GetLiftVector

GetDragVector
Returns aerodynamic drag force vector in local vessel coordinates.

Synopsis:
bool GetDragVector (VECTOR3 &D) const

Parameters:
D returned drag vector [N]

Return value:
false indicates zero drag. In that case, the returned vector is (0,0,0).

Notes:
* Onreturn, D contains the sum of drag components from all airfoils.
* The drag vector is parallel to the relative wind (direction of air flow).

See also:
GetDrag, GetForceVector, GetWeightVector, GetLiftVector, GetThrustVector

GetDrag
Returns magnitude of aerodynamic drag force vector.

Synopsis:
doubl e GetDrag (void) const

Return value:
Magnitude of drag force vector [N].

Notes:
* Return value is the sum of drag components from all airfoils.

See also:
GetDragVector

GetForceVector
Returns total force vector acting on the vessel in local vessel coordinates.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 40

Synopsis:
bool Get ForceVector (VECTOR3 &F) const

Parameters:
F returned total force vector [N]

Return value:
Currently always returns true.

Notes:
* Onreturn, F contains the sum of all forces acting on the vessel.
* This may not be equal to the sum of weight, thrust, lift and drag vectors,

because it also includes surface contact forces, user-defined forces and any
other forces.

See also:
GetWeightVector, GetThrustVector, GetLiftVector, GetDragVector

GroundContact
Returns flag indicating contact with a planetary surface.

Synopsis:
bool G oundContact (void) const

Return value:

true indicates ground contact (at least one of the vessel’'s touchdown reference
points is in contact with a planet surface).

OrbitStabilised
Flag indicating whether orbit stabilisation is used for the vessel at the current time step.

Synopsis:
bool OrbitStabilised (void) const

Return value:
true indicates that the vessel's state is currently updated by using the
stabilisation algorithm, which calculates the osculating elements with respect to
the primary gravitational source, and treats all additional forces as perturbations.

Notes:

» Avessel reverts to orbit stabilisation only if the user has enabled it in the
launchpad dialog, and the user-defined perturbation and time step limits are
currently satisfied.

» Stabilised mode reduces the effect of deteriorating orbits due to
accumulating numerical errors in the state vector propagation, but is limited
in handling multiple gravitational sources.

NonsphericalGravityEnabled
Flag indicating whether the vessel uses perturbations in gravity fields due to
nonspherical planet shapes to update its state vectors for the current time step.

Synopsis:
bool Nonspherical G avi tyEnabl ed (void) const

Return value:

true indicates that gravity perturbations due to nonspherical planet shapes are
taken into account.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 41

Notes:

» This function will always return false if the user has disabled the
“Nonspherical gravity sources” option in the Launchpad dialog.

» If the user has enabled orbit stabilisation in the Launchpad, this function may
sometimes return false during high time compression, even if the
nonspherical option has been selected. In such situations Orbiter can
exclude nonspherical perturbations to avoid numerical instabilities.

GetAttitudeMode
Returns the current RCS (reaction control system) thruster mode.

Synopsis:
int GetAttitudeMode (void) const

Return value:
Current RCS mode: RCS_NONE, RCS_ROT, or RCS_LIN.

Notes:

» The reaction control system consists of a set of small thrusters arranged
around the vessel. They can be fired in pre-defined configurations to provide
either a change in angular velocity (in RCS_ROT mode) or in linear velocity
(in RCS_LIN mode).

* RCS_NONE indicates that the RCS is disabled or not available.

* Currently Orbiter doesn’t allow simultaneous linear and rotational RCS
control via keyboard or joystick. The user has to switch between the two.
However, simultaneous operation is possible via the “RControl” plugin
module.

* Not all vessel classes may define a complete RCS.

SetAttitudeMode

Set the vessel's RCS (reaction control system) thruster mode to linear, rotational or
disabled.

Synopsis:
bool SetAttitudeMdde (int node) const

Parameters:
mode attitude control mode (RCS_NONE, RCS_ROT, or RCS_LIN).

Return value:
Error flag; false indicates error (requested mode not available)

GetADCtrIMode

Returns current input mode for aerodynamic control surfaces (elevator, rudder,
ailerons).

Synopsis:
DWORD Get ADCt r | Mode (voi d) const

Return value:
Bit flags defining the current address mode for aerodynamic control surfaces.

Notes:
e The input mode defines which types of control surfaces can be manually
controlled by the user.

* The returned control mode contains bit flags as follows:
bit 0: elevator enabled/disabled

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 42

bit 1: rudder enabled/disabled
bit 2: ailerons enabled/disabled
Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates
fully enabled.
* Some vessel types may support not all, or not any, types of control surfaces.

SetADCtrIMode
Set input mode for aerodynamic control surfaces.

voi d Set ADCt r| Mode (DWORD npde) const
Parameters:
mode Bit flags defining the address mode for aerodynamic control
surfaces (see notes)
Notes:

* The mode parameter contains bit flags as follows:
bit O: enable/disable elevator
bit 1: enable/disable rudder
bit 2: enable/disable aileron
Therefore, use mode = 0 to disable all control surfaces, mode = 7 to enable
all control surfaces.

ActivateNavmode
Activates one of the automated orbital navigation sequences.

Synopsis:

bool ActivateNavnode (int node)
Parameters:

mode navigation sequence identifier.

Return value:
True if the specified navmode could be activated, false if not available or active
already.

Notes:

» Navmodes are high-level navigation modes which involve e.g. the
simultaneous and timed engagement of multiple attitude thrusters to get the
vessel into a defined state. Some navmodes terminate automatically once
the target state is reached (e.g. killrot), others remain active until explicitly
terminated (hlevel). Navmodes may also terminate if a second conflicting
navmode is activated.

» For navmodes currently defined in Orbiter see the NAVMODE_ xxx
constants.

DeactivateNavmode
Deactivates a navigation sequence.

Synopsis:
bool Deactivat eNavhode (i nt node)
Parameters:
mode navigation sequence identifier to be deactivated.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 43

Return value:
True if the specified navmode could be deactivated, false if not available or if
deactivated already.

ToggleNavmode
Toggles a navigation sequence on/off.

Synopsis:

bool Toggl eNavnode (i nt node)
Parameters:

mode navigation sequence identifier.

Return value:
True if the specified navigation sequence could be changed, false if it remains
unchanged.

GetNavmodeState
Returns current state (active/inactive) of a navigation sequence.

Synopsis:

bool Get NavnodeState (int node)
Parameters:

mode navigation sequence identifier.

Return value:
True if the specified navigation sequence is currently active, false otherwise.

AddForce
Add a custom body force.

Synopsis:

voi d AddForce (const VECTOR3 &F, const VECTOR3 &r) const
Parameters:

F force vector [N]

r force attack point [m]
Notes:

» This function can be used to implement custom forces (braking chutes,
tethers, etc.). It should not be used for standard forces such as engine thrust
or aerodynamic forces which are handled internally (although in theory this
function makes it possible to bypass Orbiter's built-in thrust and
aerodynamics model completely and replace it by a user-defined model).

e The force is applied only for the next time step. AddForce will therefore
usually be used inside the VESSELZ2::clbkPreStep callback function.

11.4 State vectors

GetGlobalPos
Returns vessel’s current position in the global reference frame.

Synopsis:
voi d Get d obal Pos (VECTOR3 &pos) const

Parameters:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 44

pos: vector receiving position

Notes:

* The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.0.
* Units are meters.
* Equivalent to oapiGetGlobalPos(GetHandle(), &pos)

GetGlobalVel
Returns vessel’s current velocity in the global reference frame.

Synopsis:

voi d CGetd obal Vel (VECTOR3 &vel) const
Parameters:

vel vector receiving velocity
Notes:

* The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.0.
e Units are meters/second.
e Equivalent to oapiGetGlobalVel (GetHandle(), &vel)

GetRelativePos
Returns vessel’s current position with respect to another object.

Synopsis:

voi d CetRel ati vePos (OBJHANDLE hRef, VECTOR3 &pos) const
Parameters:

hRef reference object handle

pos vector receiving position
Notes:

* Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.
e Equivalent to oapiGetRelativePos (GetHandle(), hRef, &pos)

GetRelativeVel
Returns vessel’s current velocity relative to another object.

Synopsis:

void CetRel ativeVel (OBJHANDLE hRef, VECTOR3 &pos) const
Parameters:

hRef reference object handle

vel vector receiving relative velocity
Notes:

* Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.
e Equivalent to oapiGetRelativeVel (GetHandle(), hRef, &vel)

GetAngularVel

Returns vessel’'s current angular velocity components around its three principal axes.

Synopsis:
voi d Get Angul ar Vel (VECTOR3 &avel) const

Parameters:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

avel vector receiving angular velocity components [rad/s]

Notes:
» The velocity components ware calculated from angular moments M by
Euler’s equations for rigid body motion:
Jw ~-J,-d)ww, =M,
Jyw,-(J,-J,)w,w =M,
‘szz _(‘]x _‘Jy)wxwy = Mz
where J are the principal moments of inertia (J=PMI*mass). Note that the
differential equations are coupled which leads to a transfer of rotational
energy between the rotation axes.

» Since the angular velocities are coupled by Euler’'s equations, their values
may fluctuate continuously even if no external force is applied.

SetAngularVel
Applies new angular velocity to the vessel, defined by the components around its three
principal axes.

Synopsis:

voi d Set Angul ar Vel (const VECTOR3 &avel) const
Parameters:

avel vector containing the new angular velocity components [rad/s]
Notes:

» The velocity components w, @, « are the angular velocities around the
vessel's x-, y- and z-axis, respectively, i.e. they refer to the rotating vessel
frame.

GetGlobalOrientation
Returns the Euler angles defining the vessel’s orientation with respect to the global
(ecliptic) reference frame.

Synopsis:

void CGetd obal Oientation (VECTOR3 &arot) const
Parameters:

arot vector receiving the three Euler angles [rad]
Notes:

» The components of the returned vector arot = (a,B,y) are the angles of
rotation [rad] around Xx,y,z axes in ecliptic frame to produce this rotation
matrix R for mapping from the vessel’s local frame of reference to the global
frame of reference:

1 0 0 |cosfp O -sng| cosy sny O
R=|0 cosa sna| 0 1 0 -siny cosy O
0 -sinag cosa|snf 0O cosp 0 0 1
SetGlobalOrientation
Set the vessel’s orientation by defining the Euler angles with respect to the global
(ecliptic) reference frame.

Synopsis:
void Setd obal Orientation (const VECTOR3 &arot) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 46

Parameters:
arot vector containing the Euler angles [rad]

Notes:

* Given the global rotation matrix R of the vessel, the corresponding Euler
angles can be obtained in the following way:
a =atan2(Ry, Ry),

B =-asin(Ry),
y=aan2(R,, Ry).

11.5 Fuel management

CreatePropellantResource
Creates a new propellant resource (“tank”) to be used for powering the spacecraft
propulsion system.

Synopsis:
PROPELLANT_HANDLE Cr eat ePropel | ant Resource (
doubl e maxmess,
doubl e mass=-1.0,
doubl e efficiency=1.0) const

Parameters:
maxmass maximum propellant capacity of the resource [kg]
mass initial propellant mass of the resource [kg]

efficiency fuel efficiency factor (> 0)

Return value:
Propellant resource handle.

Notes:

» Orbiter doesn't distinguish between propellant and oxidant. A “propellant
resource” is assumed to be a combination of fuel and oxidant resources.

* The interpretation of a propellant resource (liquid or solid propulsion system,
ion drive, etc.) is up to the vessel developer.

» The rate of fuel consumption depends on the thrust level and Isp (fuel-
specific impulse) of the thrusters attached to the resource.

* The fuel efficiency rating, together with a thruster’s Isp rating, determines
how much fuel is consumed per second to obtain a given thrust:

_ F
elsp

R: fuel rate [kg/s], F: thrust [N], e: efficiency, Isp: fuel-specific impulse [m/s]
* If mass < 0 then mass = maxmass is substituted.

DelPropellantResource
Removes a propellant resource and disable all thrusters which were linked to this
resource.

Synopsis:
voi d Del Propel | ant Resource (PROPELLANT_ HANDLE &ph) const

Parameters:
ph propellant resource handle (NULL on return)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 47

Notes:

» If any thrusters were attached to this fuel resource, they are disabled until
connected to a new fuel resource.

ClearPropellantResources
Removes all propellant resources and unlinks all thrusters from their resources.

voi d O ear Propel | ant Resources (void) const

Notes:
» After a call to this function, all the vessel's thrusters will be disabled until they
are linked to new resources.

GetPropellantHandleByIndex
Returns the handle of a propellant resource for a given index.

PROPELLANT_HANDLE Get Pr opel | ant Handl eByl ndex (
DWORD i dx) const

Parameters:
idx propellant resource index

Return value:
Propellant resource handle

Notes:

» The index must be in the range between 0 and npropellant-1, where
npropellant is the number of propellant resources defined for the vessel (use
GetPropellantCount to obtain this value). If the index is out of range, the
returned handle is NULL.

* Theindex of a given propellant resource may change if any resources are
deleted. The handle remains valid until the corresponding resource is
deleted.

GetPropellantCount
Returns the number of propellant resources currently defined for the vessel.

Synopsis:
DWORD Get Pr opel | ant Count (voi d) const

Return value:
Number of propellant resources currently defined for the vessel.

SetDefaultPropellantResource
Defines a “default” propellant resource. This is used for the various legacy fuel-related
API functions, and for the “Fuel” indicator in the generic panel-less HUD display.

Synopsis:
voi d Set Def aul t Propel | ant Resource (
PROPELLANT_HANDLE ph) const

Parameters:
ph propellant resource handle

Notes:
» If this function is not used, the first propellant resource is used as default.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 48

SetPropellantMaxMass
Resets the maximum capacity (mass) of a fuel resource.

Synopsis:
voi d Set Propel | ant MaxMass (
PROPELLANT_HANDLE ph
doubl e maxmass) const

Parameters:
ph propellant resource handle
maxmass max. fuel capacity (= 0) [kg]

Notes:
» The actual fuel mass contained in the tank is not affected by this function,
unless the new maximum propellant mass is less than the current fuel mass,
in which case the fuel mass is reduced to the maximum capacity.

SetPropellantEfficiency
Resets the efficiency factor of a fuel resource.

Synopsis:
voi d Set Propel |l ant Efficiency (
PROPELLANT _HANDLE ph,
doubl e efficiency) const

Parameters:
ph propellant resource handle
efficiency fuel efficiency factor (> 0)

Notes:

* See CreatePropellantResource for an explanation of the fuel efficiency
factor.

SetPropellantMass
Sets the current mass of a propellant resource.

voi d Set Propel | ant Mass (
PROPELLANT_HANDLE ph,
doubl e mass) const

Parameters:
ph propellant resource handle
mass propellant mass (= 0) [kg]
Notes:

* 0 < mass < maxmass is required, where maxmass is the maximum capacity
of the propellant resource.

* This method should be used to simulate refuelling, fuel leaks, cross-feeding
between tanks, etc. but not for normal fuel consumption by thrusters (which
is handled internally by the Orbiter core).

GetPropellantMass
Returns the current mass of a propellant resource.

Synopsis:
doubl e Get Propel | ant Mass (PROPELLANT_HANDLE ph) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 49

Parameters:
ph propellant resource handle

Return value:
current propellant mass [kg]

GetPropellantMaxMass
Returns the maximum capacity of a propellant resource.

Synopsis:

doubl e Get Propel | ant MaxMass (PROPELLANT_HANDLE ph) const
Parameters:

ph propellant resource handle

Return value:
max. propellant capacity [kg].

GetPropellantEfficiency
Returns the efficiency factor of a propellant resource.

Synopsis:

doubl e Get Propell antEffici ency (PROPELLANT_HANDLE ph) const
Parameters:

ph propellant resource handle

Return value:
fuel efficiency factor

GetPropellantFlowrate
Returns the current mass flow rate from a propellant resource.

Synopsis:

doubl e Get Propel | ant Fl owr at e (PROPELLANT_HANDLE ph) const
Parameters:

ph propellant resource identifier

Return value:
Propellant mass flow rate [kg/s].

GetTotalPropellantMass
Returns the vessel’s current total propellant mass.

Synopsis:
doubl e Get Tot al Propel | ant Mass (voi d) const

Return value:
Current total propellant mass [kg]

GetTotalPropellantFlowrate
Returns the current total mass flow rate, summed over all propellant resources.

Synopsis:
doubl e Get Tot al Propel | ant Fl owrate (void) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 50

Return value:
Total propellant mass flow rate [kg/s]

See also:
GetPropellantFlowrate(), GetFuelRate()

GetFuelMass
Returns the current mass of the vessel’s default propellant resource.

Synopsis:
doubl e Get Fuel Mass (voi d) const

Return value:
Current fuel mass of default propellant resource [kg]

See also:
GetPropellantMass(), SetDefaultPropellantResource()

GetFuelRate
Returns the vessel’s current propellant mass flow rate for the default propellant
resource.

Synopsis:
doubl e Get Fuel Rate (voi d) const

Return value:
Propellant mass flow rate for default propellant resource [kg/s]

See also:
GetPropellantFlowrate()

SetFuelMass

Sets the current fuel mass of the vessel's default propellant resource [kg].

Synopsis:
voi d Set Fuel Mass (doubl e nass) const

Parameters:
mass New fuel mass [kg].

Notes:

The value of mass should be between 0 and the maximum capacity defined
by SetMaxFuelMass.

If the vessel has not defined any propellant resources then this function has
no effect.

See also:
SetPropellantMass(), SetDefaultPropellantResource()
SetMaxFuelMass

Sets the maximum fuel capacity of the vessel’s default propellant resource, or creates a
new resource if none exists.

Synopsis:
voi d Set MaxFuel Mass (double m const

Parameters:
m Maximum fuel mass [kg].

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 51

Notes:
» If the vessel already contains propellant resources, this function resets the
maximum capacity of the vessel’s default resource, otherwise it creates a
new resource with this capacity, and makes it the default resource.

See also:
SetPropellantMaxMass(), SetDefaultPropellantResource()

GetMaxFuelMass
Returns the maximum fuel capacity of the vessel's default propellant resource.

Synopsis:
doubl e Get MaxFuel Mass (voi d) const

Return value:
Maximum fuel mass of default propellant resource [kg].

Notes:
e The function returns O if no fuel resources are defined.

See also:
GetPropellantMaxMass(), SetDefaultPropellantResource()

11.6 Thruster management

CreateThruster
Add a logical thruster definition for the vessel.

Synopsis:

THRUSTER_HANDLE Creat eThruster (
const VECTOR3 &pos,
const VECTOR3 &dir,
doubl e maxt hO,
PROPELLANT_HANDLE hp=NULL,
doubl e i sp0=0. 0,
doubl e isp_ref=0.0,
doubl e p_ref=101.4e3) const;

Parameters:
pos thrust force attack point in vessel coordinates [m]
dir thrust force direction invessel coordinates
maxthO max. vacuum thrust rating [N]
hp propellant resource for the thruster
isp0 vacuum Isp (fuel-specific impulse) rating [m/s]
isp_ref Isp rating at ambient pressure p_ref [m/s]
p_ref reference pressure for Isp rating [Pa]

Return value:
thruster identifier

Notes:

e The fuel-specific impulse defines how much thrust is produced by burning
1kg of fuel per second. If the Isp level is not specified or is < 0, a default
value is used (see SetISP).

* To define the thrust and Isp ratings to be pressure-dependent, specify an
isp_ref value > 0, and set p_ref to the corresponding atmospheric pressure.
Thrust and Isp at pressure p will then be calculated as

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 52

|Sp0 - Ispref
pref ISpO

» Ifisp_ref <0 then no pressure-dependence is assumed (/7 =0)

« If no propellant resource is specified, the thruster is disabled until it is linked
to a resource by SetThrusterResource.

» Thrusters can now create simultaneous linear and angular moments,
depending on the attack point and direction.

» Use CreateThrusterGroup to assemble thrusters into logical groups.

Isp(p) = Isp, (L= p77), Th(p) =Th,(L- p77), where =

See also:
DelThruster(), CreateThrusterGroup(), AddExhaust(), SetISP(),
SetThrusterISP(), SetThrusterResource()

DelThruster
Delete a logical thruster definition.

Synopsis:

bool Del Thruster (THRUSTER HANDLE &t h) const
Parameters:

th thruster identifier (NULL on return)

Return value:
true on success, or false if the supplied thruster handle was invalid.

Notes:
» Deleted thrusters will be automatically removed from all thruster groups they
had been assigned to.
» All exhaust render definitions which refer to the deleted thruster are
removed.
See also:

CreateThruster(), AddExhaust(), CreateThrusterGroup()

ClearThrusterDefinitions
Delete all of the vessel's thruster and thruster group definitions.

Synopsis:
void ClearThrusterDefinitions () const

Notes:
» This function removes all thruster definitions, as well as all the thruster group
definitions.
» It also removes all previously defined exhaust render definitions.

GetThrusterHandleByIlndex
Returns the handle of a thruster specified by its index.

Synopsis:

THRUSTER_HANDLE Get Thr ust er Handl eByl ndex (DWORD i dx) const
Parameters:

idx thruster index

Return value:
Thruster handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 53

Notes:

» The index must be between 0 and nthruster-1, where nthruster is the thruster
count returned by VESSEL.:GetThrusterCount. If the index is out of range,
the returned handle is NULL.

* Note that the thruster indices change if vessel thrusters are deleted. A
thruster handle remains valid until the corresponding thruster is deleted.

GetThrusterCount
Returns the number of thrusters currently defined for the vessel.

Synopsis:
DWORD Get Thruster Count (voi d) const

Return value:
Number of thrusters currently defined for the vessel.

SetThrusterResource
Connects a thruster to a propellant resource (fuel tank).

Synopsis:
voi d Set Thrust er Resource (

THRUSTER_HANDLE t h,
PROPELLANT_HANDLE ph) const

Parameters:

th thruster identifier

ph fuel resource identifier
Notes:

» Athruster can only be connected to one propellant resource at a time.
Setting a new resource disconnects from the previous resource.
» Todisconnect the thruster from its current tank, use ph=NULL.

GetThrusterResource
Returns a handle for the propellant resource connected with a thruster.

Synopsis:
PROPELLANT_HANDLE Get Thr ust er Resour ce (THRUSTER_HANDLE t h)

const

Parameters:
th thruster identifier

Return value:
Handle for connected propellant resource, or NULL if thruster is not connected.

SetThrusterRef
Reset the thrust force attack point of a thruster.

Synopsis:
voi d Set ThrusterRef (

THRUSTER_HANDLE t h,
const VECTOR3 &pos) const

Parameters:
th thruster identifier
pos new force attack point [m]

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 54

Notes:

» pos is specified in the vessel reference system.

» This function should be used whenever a thruster has been physically
moved in the vessel’s local frame of reference.

» If the vessel's centre of gravity, i.e. the origin of its reference system, is
moved with VESSEL.::ShiftCG, the thruster positions are updated
automatically.

» The attack point has no influence on the linear force exerted on the vessel
by the thruster, but it affects the induced torque.

GetThrusterRef
Returns the thrust force attack point of a thruster.

Synopsis:
voi d Get ThrusterRef (

THRUSTER_HANDLE t h,
VECTOR3 &pos) const

Parameters:
th thruster identifier
pos attack point [m]
Notes:

e pos is returned in the vessel frame of reference.

SetThrusterDir
Reset the force direction of a thruster.

Synopsis:
voi d Set ThrusterDir (

THRUSTER_HANDLE t h,
const VECTOR3 &dir) const

Parameters:
th thruster identifier
dir new thrust direction
Notes:

» This function should be used to reflect a tilt of the thruster (e.g. for an
implementation of thrust vectoring)

GetThrusterDir
Returns the force direction of a thruster.

Synopsis:
voi d Get ThrusterDir (

THRUSTER _HANDLE t h,
VECTOR3 &dir) const

Parameters:
th thruster identifier
dir thrust direction
SetThrusterMax0

Reset the maximum vacuum thrust rating of a thruster.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 55

Synopsis:
voi d Set Thruster Max0 (THRUSTER HANDLE th, doubl e maxt h0)

const
Parameters:

th thruster identifier

maxthO new maximum vacuum thrust rating [N]
Notes:

* The max. thrust rating in the presence of atmospheric ambient pressure may
be lower if a pressure-dependent Isp value has been defined.

See also:
CreateThruster, SetThrusterlsp

GetThrusterMax0
Returns the maximum vacuum thrust rating of a thruster.

Synopsis:

doubl e Get Thrust er Max0 (THRUSTER HANDLE t h) const
Parameters:

th thruster identifier

Return value:
Maximum vacuum thrust rating [N]

Notes:

* To retrieve the actual current maximum thrust rating (which may be lower in
the presence of ambient atmospheric pressure) use GetThrusterMax.

GetThrusterMax (1)
Returns the current maximum thrust rating of a thruster.

Synopsis:

doubl e Get Thrust er Max (THRUSTER HANDLE t h) const
Parameters:

th thruster identifier

Return value:
maximum thrust rating at the current atmospheric pressure [N]

Notes:

e This function will return the vacuum max thrust rating, unless a pressure-
dependent Isp value has been defined for the thruster.

See also:
CreateThruster, SetThrusterlsp

GetThrusterMax (2)
Returns maximum thrust rating of a thruster for a specific ambient pressure.

Synopsis:
doubl e Get Thrust er Max (
THRUSTER_HANDLE t h,
doubl e p_ref) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 56

Parameters:
th thruster identifier
p_ref reference pressure [Pa]

Return value:
maximum thrust rating [N] at atmospheric pressure p_ref.

SetThrusterlsp (1)
Reset the fuel-specific impulse rating of a thruster, assuming no pressure-dependence.

Synopsis:

void Set Thrusterlsp (THRUSTER HANDLE th, double isp) const
Parameters:

th thruster identifier

isp new Isp rating [m/s]
Notes:

* The specified Isp value is assumed to be independent of ambient
atmospheric pressure. To define a pressure-dependent Isp value, use
SetThrusterlsp (2).

See also:
SetISP, SetThrusterlsp (2)

SetThrusterlsp (2)
Reset pressure-dependent fuel-specific impulse rating of a thruster.

Synopsis:
void SetThrusterlsp (

THRUSTER_HANDLE t h,

doubl e i spO,

doubl e isp_ref,

doubl e p_ref=101. 4e3) const

Parameters:
th thruster identifier
isp0 new vacuum Isp rating [m/s]
isp_ref Isp rating at ambient pressure p_ref [m/s]
p_ref reference pressure for Isp rating [Pa]
Notes:

» See CreateThruster for equations of pressure-dependent thrust and Isp.

See also:
CreateThruster, SetISP, SetThrusterlsp (1)

GetThrusterlsp (1)
Returns current fuel-specific impulse (Isp) rating of a thruster.

Synopsis:

doubl e Get Thrusterlsp (THRUSTER HANDLE th) const
Parameters:

th thruster identifier

Return value:
Current fuel-specific impulse [m/s]

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 57

Notes:
* The return value will depend on the current ambient atmospheric pressure if
a pressure-dependent Isp rating has been defined for this thruster.

See also:
SetThrusterlsp, GetThrusterlsp (2)

GetThrusterlsp (2)
Returns Isp rating for a thruster at a specific ambient pressure.

Synopsis:
doubl e Get Thrusterlsp (

THRUSTER_HANDLE t h,
doubl e p_ref) const

Parameters:
th thruster identifier
p_ref reference pressure [Pa]

Return value:
Fuel-specific impulse [m/s] at ambient pressure p_ref.

Notes:
* Unless a pressure-dependent Isp rating has been defined for this thruster, it
will always return the vacuum rating, independent of the specified pressure.
e To obtain vacuum Isp rating, set p_ref to 0.
« To obtain the Isp rating at (Earth) sea level, set p_ref to 101.4e3.

GetThrusterlsp0
Returns vacuum Isp rating for a thruster.

Synopsis:

doubl e Get Thrusterlsp0 (THRUSTER HANDLE th) const
Parameters:

th thruster identifier

Return value:
Fuel-specific impulse in vacuum [m/s].

Notes:
* This function is equivalent to GetThrusterlsp (th, 0)

SetThrusterLevel
Set the current thrust level [0..1] for a thruster.

Synopsis:
voi d Set ThrusterLevel (

THRUSTER_HANDLE t h,
doubl e I evel) const

Parameters:
th thruster identifier
level thrust level [0..1].
Notes:

e Atlevel 1 the thruster generates maximum force, as defined by its maxth
parameter.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 58

» Certain thrusters are controlled directly by Orbiter via primary input controls
(e.g. joystick throttle control for main thrusters), which may override this
function.

SetThrusterLevel_SingleStep
Set thrust level for the current time step only.

Synopsis:
Set Thrust erLevel _Si ngl eStep (
THRUSTER_HANDLE t h,
doubl e I evel) const

Parameters:
th thruster identifier
level thrust level [0..1]

Notes:
» Atlevel 1 the thruster generates maximum force, as defined by its maxth
parameter.
» This method is applied only to the current time step, so it should normally
only be used in the body of the VESSEL2::clbkPreStep() callback function.

IncThrusterLevel_SingleStep
Increment thrust level for the current time step only.

Synopsis:
voi d I ncThrusterLevel SingleStep (
THRUSTER_HANDLE t h,
doubl e dl evel) const

Parameters:
th thruster identifier
dlevel delta thrust level [0..1]
Notes:

» This method is applied only to the current time step, so it should normally
only be used in the body of the VESSEL2::clbkPreStep() callback function.

» This function may be overridden by manual user input via keyboard and
joystick, or by automatic attitude sequences.

» The resulting thrust level is clamped to range [0..1]

GetThrusterLevel
Returns the current thrust level for a thruster.

Synopsis:

double GetThrusterLevel (THRUSTER_HANDLE th) const
Parameters:

th thruster identifier

Return value:
Current thrust level [0..1]

Notes:

* To obtain the actual force [N] generated by the thruster in vacuum, multiply
the thrust level with its maximum thrust rating. However, the thrust force in
the presence of ambient atmospheric pressure may be lower if
Set Thr ust Pr essur eDependency has been applied.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 59

GetThrusterMoment
Returns the linear moment (force) and angular moment (torque) currently generated by
a thruster.

Synopsis:
voi d Get ThrusterMonment (

THRUSTER_HANDLE t h,
VECTOR3 &F,
VECTOR3 &T) const

Parameters:

th thruster identifier

F force (linear moment)

T torque (angular moment)
Notes:

* The returned values include the influence of ambient pressure on the thrust
generated by the engine.

CreateThrusterGroup
Combine thrusters into a logical group.

Synopsis:
THGROUP_HANDLE Creat eThrust er G oup (

THRUSTER_HANDLE *t h,
int nth,
THGROUP_TYPE t hgt) const

Parameters:
th array of thruster identifiers, as returned by CreateThruster()
nth number of thrusters in the array
thgt thruster group type (see notes)

Return value:
thruster group identifier

Notes:
» The following group types are defined:

THGROUP_NMAI N main thrusters
THGROUP_RETRO retro thrusters
THGROUP_HOVER hover thrusters
THGROUP_ATT_PI TCHUP rotation: pitch up
THGROUP_ATT_PI TCHDOWN rotation: pitch down
THGROUP_ATT_YAW.EFT rotation: yaw left
THGROUP_ATT_YAWRI GHT rotation: yaw right
THGROUP_ATT_ BANKLEFT rotation: bank left
THGROUP_ATT_BANKRI GHT rotation: bank right
THGROUP_ATT RI GHT translation: move right
THGROUP_ATT LEFT translation: move left
THGROUP_ATT_UP translation: move up
THGROUP_ATT DOWN translation: move down
THGROUP_ATT FORWARD translation: move forward
THGROUP_ATT BACK translation: move back
THGROUP_USER user-defined group

» Thruster groups (except for user-defined groups) are engaged by Orbiter as
a result of user input. For example, pushing the stick backward in rotational

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 60

attitude mode will engage the thrusters in the THGROUP_ATT_PI TCHUP
group.

« ltis the responsibility of the vessel designer to make sure that the thruster
groups are designed so that they behave in a sensible way.

» Thrusters can be added to more than one group. For example, an attitude
thruster can be simultaneously grouped into THGROUP_ATT_PI TCHUP and
THGROUP_ATT_UP.

* Rotational thrusters should be designed so that they don’t induce a
significant linear momentum. This means rotational groups require at least 2
thrusters each.

« Linear thrusters should be designed such that they don’t induce a significant
angular momentum.

» If avessel does not define a complete set of attitude thruster groups, certain
navmode sequences (e.g. KILLROT) may fail.

See also:
CreateThruster()

DelThrusterGroup (1)
Delete a thruster group and (optionally) all associated thrusters.

Synopsis:
bool Del Thruster G oup (

THGROUP_HANDLE &t hg,
THGROUP_TYPE t hgt ,
bool delth = fal se) const

Parameters:
thg thruster group identifier (NULL on return)
thgt thruster group type (see CreateThrusterGroup)
delth thruster destruction flag

Return value:
true on success.

Notes:
» If delth==true, all thrusters associated with the group will be destroyed. Note
that this can have side effects if the thrusters were associated with multiple
groups, since they are removed from all those groups as well.

DelThrusterGroup (2)
Delete a default thruster group and (optionally) all associated thrusters.

Synopsis:
bool Del ThrusterG oup (

THGROUP_TYPE t hgt,
bool delth = false) const

Parameters:
thgt thruster group type (excluding THGROUP_USER)
delth thruster destruction flag

Return value:
true on success

Notes:
e This version can only be used for default thruster groups (< THGROUP_USER)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 61

« If delth==true, all thrusters associated with the group will be destroyed. Note
that this can have side effects if the thrusters were associated with multiple
groups, since they are removed from all those groups as well.

GetThrusterGroupHandle
Returns the handle of one of the default thruster groups, specified by its type.

Synopsis:
THGROUP_HANDLE Cet Thrust er GroupHandl e (

THGROUP_TYPE t hgt) const

Parameters:
thgt thruster group type (for a list, see notes to
Creat eThr ust er G oup)

Return value:
thruster group handle (or NULL if no group is defined for the specified type).

Notes:
* The thruster group type must not be THGROUP_USER. To retrieve the
handle of a nonstandard thruster group, use
Cet User Thr ust er G oupHand| eByl ndex.

GetUserThrusterGroupHandleBylndex
Returns the handle of a user-defined (nonstandard) thruster group specified by its
index.

Synopsis:
THGROUP_HANDLE Cet User Thrust er G- oupHandl eByl ndex (

DWORD i dx) const

Parameters:
idx index of user-defined thruster group

Return value:
thruster group handle

Notes:

* Use this method only to retrieve handles for nonstandard thruster groups
(created with the THGROUP_USER flag). For standard groups, use
GetThrusterGroupHandle instead.

* The index must be in the range between 0 and nuserthgroup-1, where
nuserthgroup is the number of nonstandard thruster groups. Use
GetUserThrusterGroupCount to obtain this value.

GetGroupThrusterCount (1)
Returns the number of thrusters assigned to a logical thruster group.

Synopsis:

DWORD Get G oupThr ust er Count (THGROUP_HANDLE t hg) const
Parameters:

thg thruster group handle

Return value:
number of thrusters assigned to the specified thruster group.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 62

Notes:

» Thrusters can be assigned to more than one group (and some thrusters may
not be assigned to any group) so the sum of GetGroupThrusterCount values
over all groups can be different to the overall number of thrusters.

GetGroupThrusterCount (2)
Returns the number of thrusters assigned to a standard logical thruster group.

Synopsis:

DWORD Get GroupThr ust er Count (THGROUP_TYPE t hgt) const
Parameters:

thgt thruster group enumeration type

Return value:
number of thrusters assigned to the specified thruster group.

Notes:
» This function only works for standard group types. Do not use it with
THGROUP_USER. For user-defined groups, use version (1) of the function.
» Thrusters can be assigned to more than one group (and some thrusters may
not be assigned to any group) so the sum of GetGroupThrusterCount values
over all groups can be different to the overall number of thrusters.

GetGroupThruster (1)
Returns a handle for a thruster inside a specified thruster group.

Synopsis:
THRUSTER_HANDLE Get GroupThruster (
THGROUP_HANDLE t hg,
DWORD i dx) const

Parameters:
thg thruster group handle
idx thruster index (0 < idx < GetGroupThrusterCount())

Return value:
Thruster handle for idx-th thruster in group thg.

GetGroupThruster (2)
Returns a handle for a thruster inside a specified standard thruster group.

Synopsis:
THRUSTER_HANDLE Get GroupThruster (

THGROUP_TYPE t hgt
DWORD i dx) const

Parameters:
thgt thruster group enumeration type
idx thruster index (0 < idx < GetGroupThrusterCount())

Return value:
Thruster handle for idx-th thruster in group thgt.

Notes:
e This function only works for standard group types. Do not use it with
THGROUP_USER. For user-defined groups, use version (1) of the function.

GetUserThrusterGroupCount

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 63

Returns the number of user-defined (nonstandard) thruster groups.

Synopsis:
DWORD Get User Thrust er G oupCount (voi d) const

Return value:
number of user-defined thruster groups.

Notes:
* The value returned by this method only includes user-defined thruster
groups (created with the THGROUP_USER flag). It does not contain any of the
standard thruster groups (such as THGROUP_MAI N, etc.)

SetThrusterGroupLevel (1)
Set the thrust level for all thrusters in a group.

Synopsis:
voi d Set Thruster GroupLevel (

THGROUP_HANDLE t hg,
doubl e I evel) const

Parameters:
thg thruster group identifier
level new thruster level

SetThrusterGroupLevel (2)
Set the thrust level for all thrusters in a standard group.

Synopsis:
voi d Set Thruster GroupLevel (

THGROUP_TYPE t hgt ,
doubl e I evel) const

Parameters:
thgt thruster group type
level new thruster level
Notes:

* This method can only be used for standard thruster group types (the types
listed in Cr eat eThr ust er G oup except THGROUP_USER).

IncThrusterGroupLevel (1)
Increment the thrust level for all thrusters in a group.

Synopsis:
voi d I ncThruster G oupLevel (

THGROUP_HANDLE t hg,
doubl e dl evel) const

Parameters:
thg thruster group identifier
dlevel thrust level increment
Notes:

e Thrust levels will automatically be truncated to the range [0..1]
e Use negative dlevel to decrement the thrust level.

IncThrusterGroupLevel (2)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 64

Increment the thrust level for all thrusters in a standard group.

Synopsis:
voi d I ncThruster GroupLevel (
THGROUP_TYPE t hgt ,
doubl e dl evel) const

Parameters:
thgt thruster group type
dlevel thrust level increment
Notes:

» This method can only be used for standard thruster group types (the types
listed in Cr eat eThr ust er G oup except THGROUP_USER).

* Thrust levels will automatically be truncated to the range [0..1]

* Use negative dlevel to decrement the thrust level.

GetThrusterGroupLevel (1)
Retrieve the average thrust level for a thruster group.

Synopsis:

doubl e Get Thrust er G oupLevel (THGROUP_HANDLE t hg) const
Parameters:

thg thruster group identifier

Return value:
Average thrust level [0..1]

Notes:
» This function is probably only useful if all thrusters in the group have the
same maximum thrust rating, otherwise it is difficult to interpret the average
value.

GetThrusterGroupLevel (2)
Retrieve the average thrust level for a default thruster group.

Synopsis:

doubl e Get Thrust er G oupLevel (THGROUP_TYPE thgt) const
Parameters:

thgt thruster group type

Return value:
Average thrust level [0..1]

GetAttitudeRotLevel
Returns the current combined thrust levels for RCS (reaction control system) thruster
groups in rotational mode.

Synopsis:
void GetAttitudeRotLevel (VECTOR3 &th) const
Parameters:
th vector containing RCS thruster group levels for rotation around the

3 principal vessel axes (values: -1 to +1).

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 65

Notes:

» The fractional thrust levels of the RCS engines for rotation around the
vessel's x, y and z axis are returned in the X, y, and z components of th,
respectively.

* The orientation of the vessel axes is implementation-dependent, but usually
by convention, +x is "right", +y is "up", and +z is "forward".

» Avalue of +1 denotes maximum thrust in the positive direction around an
axis, while -1 denotes maximum thrust in the negative direction.

e This method combines the results of calls to GetThrusterGroupLevel for all
relevant RCS thruster groups in the following combinations:

th.x = THCGROUP_ATT_PI TCHUP - THGROUP_ATT_PI TCHDOWN
th.y = THCGROUP_ATT_YAW.EFT - THGROUP_ATT_YAWRI GHT
th.z = THGROUP_ATT_BANKRI GHT - THGROUP_ATT_BANKLEFT

» To obtain the actual thrust force magnitudes [N], the absolute values must
be multiplied with the max. attitude thrust (see GetMaxThrust).

GetAttitudeLinLevel
Returns the current combined thrust levels for RCS (reaction control system) thruster
groups in linear (translational) mode.

Synopsis:
void GetAttitudeLi nLevel (VECTOR3 &th) const
Parameters:
th vector containing RCS thruster group levels for translation along the
3 principal vessel axes (values: -1 to +1)
Notes:

» The fractional thrust levels of the RCS engines for translation along the
vessel's x, y and z axis are returned in the X, y, and z components of th,
respectively.

* The orientation of the vessel axes is implementation-dependent, but usually
by convention, +x is "right", +y is "up", and +z is "forward".

» Avalue of +1 denotes maximum thrust in the positive direction along an axis,
while -1 denotes maximum thrust in the negative direction.

» This method combines the results of calls to GetThrusterGroupLevel for all
relevant RCS thruster groups in the following combinations:

th.x = THGROUP_ATT RI GHT - THGROUP_ATT LEFT
th.y = THGROUP_ATT UP - THGROUP_ATT_ DO
th.z = THGROUP_ATT_FORWARD - THGROUP_ATT_BACK

« To obtain the actual thrust force magnitudes [N], the absolute values must
be multiplied with the max. attitude thrust (see GetMaxThrust)

SetAttitudeRotLevel (1)
Set attitude thruster levels for rotation in all 3 axes.

Synopsis:

void SetAttitudeRotLevel (const VECTOR3 &t h) const
Parameters:

th attitude thruster levels for rotation around x,y,z axes
Notes:

e Thruster levels must be in the range [-1...1]
* This function works even if manual attitude mode is set to linear.

SetAttitudeRotLevel (2)
Set attitude thruster level for rotation around a single axis.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 66

Synopsis:
void SetAttitudeRotLevel (int axis, double th) const

Parameters:
axis rotation axis (0=x, 1=y, 2=2)
th attitude thruster level

Notes:

* Thruster levels must be in the range [-1..1]
e This function works even if manual attitude mode is set to linear.

SetAttitudeLinLevel (1)
Set attitude thruster levels for linear translation in all 3 axes.

Synopsis:

void SetAttitudelLi nLevel (const VECTOR3 &t h) const
Parameters:

th attitude thruster levels for translation along x,y,z
Notes:

* Thruster levels must be in the range [-1..1]
e This function works even if manual attitude mode is set to rotational.

SetAttitudeLinLevel (2)
Set attitude thruster level for linear translation along a single axis.

Synopsis:

void SetAttitudeLinLevel (int axis, double th) const
Parameters:

axis translation axis (0=x, 1=y, 2=2)

th attitude thruster level
Notes:

* Thruster levels must be in the range [-1..1]
e This function works even if manual attitude mode is set to rotational.

GetManualControlLevel
Returns the thrust level of an attitude thruster group requested by the user via
keyboard or joystick input.

Synopsis:
doubl e VESSEL: : Get Manual Control Level (
THGROUP_TYPE t hgt ,
DWORD node = MANCTRL_ATTMODE,
DWORD devi ce = MANCTRL_ANYDEVI CE) const

Parameters:
thgt thruster group identifier
mode attitude control mode (see notes)
device input device (see notes)

Return value:
Manual level for the specified thruster group (0..1)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 67

Notes:

» device can be one of the following:
MANCTRL_KEYBOARD: retrieve keyboard thrust input
MANCTRL_JOYSTICK: retrieve joystick thrust input
MANCTRL_ANYDEVICE: retrieve input from any device

* mode can be one of the following:
MANCTRL_ATTMODE: retrieve level for the vessel’s current attitude mode
MANCTRL_ROTMODE: retrieve level for rotational modes only
MANCTRL_LINMODE: retrive level for linear modes only
MANCTRL_ANYMODE: retrieve level for rotational and linear modes

* If mode is not MANCTRL_ANYMODE, only thruster groups which are of the
specified mode (linear or rotational) will return nonzero values.

AddExhaust (1)
Add an exhaust render definition for a thruster.

Synopsis:
U NT AddExhaust (
THRUSTER_HANDLE t h,
doubl e | scal e,
doubl e wscal e,
SURFHANDLE tex = 0) const

Parameters:
th thruster identifier
Iscale exhaust flame size (Ilength) [m]
wscale exhaust flame size (width) [m]
tex texture handle for custom exhaust flames

Return value:
Exhaust identifier

Notes:

* Thrusters defined with CreateThruster do not by default render exhaust
effects, until an exhaust definition has been specified with AddExhaust.

* The size of the exhaust flame is automatically scaled by the thrust level.

» This version retrieves exhaust reference position and direction directly from
the thruster setting, and will therefore automatically reflect any changes
caused by SetThrusterRef and SetThrusterDir.

* To use a custom exhaust texture, set tex to a surface handle returned by
oapiRegisterExhaustTexture. If tex == 0, the default texture is used.

See also:

CreateThruster, SetThrusterRef, SetThrusterDir, SetThrusterLevel,
oapiRegisterExhaustTexture

AddExhaust (2)
Add an exhaust render definition for a thruster with explicit reference position and
direction.

Synopsis:
U NT AddExhaust (

THRUSTER_HANDLE t h,

doubl e I scal e,

doubl e wscal e,

const VECTOR3 &pos,

const VECTOR3 &dir,
SURFHANDLE tex = 0) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 68

Parameters:

th thruster identifier

Iscale exhaust flame size (Ilength) [m]

wscale exhaust flame size (width) [m]

pos reference position in the local vessel frame
dir exhaust direction

tex texture handle for custom exhaust flames

Return value:
Exhaust identifier

Notes:

* Unlike AddExhaust (1), this version uses the explicitly provided reference
position and direction, rather than using the thruster parameters.

* This allows multiple exhaust render definitions to refer to a single thruster
definition, e.g. where multiple thrusters have been combined into a single
“logical” thruster definition. This technique can be used to simplify the
description of thruster groups which are always addressed synchronously.

» The exhaust direction should be opposite to the thrust direction of the
thruster it refers to.

« Exhaust positions and directions are fixed in this version, so they will not
react to changes caused by SetThrusterRef and SetThrusterDir.

» To use a custom exhaust texture, set tex to a surface handle returned by
oapiRegisterExhaustTexture. If tex == 0, the default texture is used.

See also:
oapiRegisterExhaustTexture

DelExhaust
Removes an exhaust render definition.

Synopsis:

bool Del Exhaust (U NT idx) const
Parameters:

idx exhaust identifier

Return value:
Error status; false if exhaust definition did not exist.

GetMaxThrust
IR, Returns maximum thrust rating [N] for one of the vessel’'s engine groups,
defined by eng.

Synopsis:

doubl e Get MaxThrust (ENG NETYPE eng) const
Parameters:

eng engine group identifier

Return value:
Maximum thrust rating [N]

Notes:
e This function has been replaced by Get Thr ust er G oupLevel .

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 69

* For eng==ENGINE_ATTITUDE, the function returns the group thrust rating
for the THGROUP_ATT_PITCHUP group. Other attitude thrust groups may
have different parameters.

SetMaxThrust

OB Sets the maximum thrust rating for engine group eng to th [N].

This function has been superseded by CreateThruster and CreateThrusterGroup. It is
retained for backward compatibility and can still be used to define a simplified thruster
implementation (see notes).

Synopsis:

voi d Set MaxThrust (ENG NETYPE eng, double th) const
Parameters:

eng engine group identifier

th maximum thrust rating [N]
Notes:

» This method can still be used to implement a simple, idealised thruster
configuration, but it should not be mixed with the new thruster functions
CreateThruster and CreateThrusterGroup.

* Inthe context of the new thruster interface, this function now performs the
following functions:

eng action

ENG NE_MAI N thr = CreateThruster (_V(0,0,0), _V(0,0,1), th);
CreateThrusterGoup (& hr, 1, THGROUP_MAIN);

ENG NE_RETRO thr = CreateThruster (_V(0,0,0), _V(0,0,-1), th);
CreateThrusterGoup (& hr, 1, THGROUP_RETRO);

ENG NE_HOVER thr = CreateThruster (_V(0,0,0), _V(0,1,0), th);
CreateThrusterGoup (& hr, 1, THGROUP_HOVER);

ENG NE_ATTI TUDE This creates a complete set of linear and rotational attitude
thrusters and attitude thruster groups (see below)

» Calling SetMaxThrust for ENGINE_ATTITUDE will create all 12
THGROUP_ATT_xxx groups (see CreateThrusterGroup) and add one
thruster to each linear group (max. rating t h), and 2 thrusters to each
rotational group (max. rating ¥2 t h each), creating 18 thrusters in total. Any
previous THGROUP_ATT_xxx definitions will be overwritten. Thrusters are
mounted in an ‘ideal’ configuration, such that linear groups do not induce
angular moments, and rotational groups do not induce linear moments. All
linear thrusters are mounted in the centre of gravity, all rotational thrusters
are mounted at a distance of Size from the centre of gravity. (This means
that the vessel’s size must have been set by a previous call to SetSize).

SetISP

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

Sets a default Isp value for subsequently created thrusters.
Synopsis:

void Setl SP (double isp) const
Parameters:

isp fuel-specific impulse [m/s].
Notes:

* The Isp defines the amount of thrust [N] obtained by burning 1 kg of fuel per
second. (or conversely, the amount of fuel consumed to attain a given thrust
level)

70

» The effect of this function has changed from v.020419: previously it
redefined the global Isp value for all thrusters. Now it only takes effect for
subsequently defined thrusters which do not explicitly specify their own Isp
rating (see CreateThruster).

» Before the first call to SetISP, the default Isp value is 5010* m/s.

See also:
CreateThruster, SetThruster|SP

GetISP

Returns vessel’s current default fuel-specific impulse.

Synopsis:
doubl e Getl SP (void) const

Return value:

Fuel-specific impulse [m/s]. This is the amount of thrust [N] obtained by burning
1kg of fuel per second.

Notes:

» The effect of this function has changed from v.020419: previously it returned
the global Isp value for all thrusters. Now it returns the current default Isp
value which will be used for all subsequently defined thrusters which do not
define individual Isp settings.

* To obtain an actual Isp value for a thruster, use GetThrusterISP.

See also:
SetISP, GetThrusterISP

SetEnginelLevel

IR, Sets the thrust level for an engine group.
This function has been replaced by SetThrusterGroupLevel.

Synopsis:

voi d Set Engi neLevel (ENG NETYPE eng, double |evel) const
Parameters:

eng engine group identifier

level thrust level (0..1)
Notes:

* Main engine level —x is equivalent to retro engine level +x and vice versa.

IncEngineLevel

OJsFIeJZI=. Increase or decrease the thrust level for an engine group.
This function has been replaced by IncThrusterGroupLevel.

Synopsis:

voi d I ncEngi neLevel (ENGQ NETYPE eng, double dlevel) const
Parameters:

eng engine group identifier

dlevel thrust increment
Notes:

» Use negative dlevel to decrease the engine’s thrust level.
e Levels are clipped to valid range.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 71

GetEngineLevel
Olefe][E18=. Returns the thrust level for an engine group.
This function has been replaced by GetThrusterGroupLevel.

Synopsis:

doubl e Get Engi neLevel (ENGA NETYPE eng) const
Parameters:

eng engine group identifier

Return value:
thrust level (0..1)

Notes:
* For main engines, this does not include externally defined, module-controlled
thrusters
» This function does not work for attitude thrusters.
GetMainThrustModPtr

OJefYe][E18=. This function is no longer supported.

AddExhaustRef
IR, Replaced by AddExhaust.

DelExhaustRef
EIEIET. Replaced by DelExhaust.

ClearExhaustRefs
Deletes all exhaust render definitions.

Synopsis:
voi d C ear Exhaust Ref s (voi d)

Notes:
e This function clears the render definitions for all thrusters, but does not affect
the physical thruster behaviour. To remove thrusters physically, use
ClearThrusterDefinitions instead.

AddAttExhaustRef
IR, Adds an exhaust render definition for an attitude thruster. This function is
only retained for backward compatibility and may be removed in a future version. Use
AddExhaust instead.

Synopsis:
U NT AddAtt Exhaust Ref (

const VECTOR3 &pos,
const VECTOR3 &dir,
doubl e wscale = 1.0,
doubl e Iscale = 1.0) const

Parameters:
pos exhaust reference position (in local vessel coordinates)
dir exhaust direction (normalised)

wscale exhaust render width scaling factor
Iscale exhaust render length scaling factor

Return value:
Attitude exhaust id.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 72

Notes:
» This function only affects the exhaust rendering, not the physical parameters
of the attitude engines.
» After creating an attitude thruster with AddAttExhaustRef, it must be
assigned to one or more attitude modes with AddAttExhaustMode.

See also:
AddExhaust

AddAttExhaustMode
Olefe][E1E. Assign an attitude thruster to an attitude mode. This function is only retained
for backward compatibility and may be removed in a future version. Use AddExhaust

instead.
Synopsis:
voi d AddAtt Exhaust Mode (
Ul NT i dx,
ATTI TUDEMODE node,
int axis,
int dir) const
Parameters:
idx attitude exhaust id, as returned by AddAttExhaustRef.
mode ATTMODE_ROT or ATTMODE_LIN
axis rotation/translation axis (0=x, 1=y, 2=2)
dir rotation/translation direction (0 or 1)
Notes:

* An attitude thruster can be assigned to more than one mode (e.g. a
rotational and a linear mode)

* Multiple attitude thrusters can be assigned to a single mode.

* The following attitude modes are available:

mode axis dir used for
ATTMODE_ROT 0 0 pitch up
ATTMODE_ROT 0 1 pitch down
ATTMODE_ROT 1 0 yaw left
ATTMODE_ROT 1 1 yaw right
ATTMODE_ROT 2 0 roll right
ATTMODE_ROT 2 1 roll left
ATTMODE_LIN 0 0 move right
ATTMODE_LIN 0 1 move left
ATTMODE_LIN 1 0 move up
ATTMODE_LIN 1 1 move down
ATTMODE_LIN 2 0 move forward
ATTMODE_LIN 2 1 move back
See also:
AddExhaust

ClearAttExhaustRefs
IR, Replaced by DelExhaust, DelThruster and ClearThrusterDefinitions. This
function does no longer have any effect.

11.7 Docking port management

CreateDock
Create a new docking port.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 73

Synopsis:
DOCKHANDLE Cr eat eDock (

const VECTOR3 é&pos,
const VECTOR3 &dir,
const VECTOR3 &rot) const

Parameters:
pos dock reference position in vessel coordinates
dir approach direction in vessel coordinates
rot longitudinal rotation alignment vector

Return value:
dock handle

Notes:
« Thedir andr ot vectors should be normalised to length 1.
« Therot vector should be perpendicular to the di r vector.
* When two vessels connect at their docking ports, the relative orientation of
the vessels is defined such that their respective approach direction vectors
(di r) are anti-parallel, and their longitudinal alignment vectors (r ot) are
parallel.

DelDock
Delete a previously defined docking port.

Synopsis:

bool Del Dock (DOCKHANDLE hDock) const
Parameters:

hDock dock handle

Return value:
false indicates failure (invalid dock handle)

Notes:

* Any object docked at the docking port will be undocked before the dock is
deleted.

ClearDockDefinitions
Delete all docking ports defined for the vessel.

Synopsis:
voi d Cl ear DockDefinitions (void) const
Notes:
e Any docked objects will be undocked before deleting the docking ports.
DockCount

Returns number of docking ports defined for the vessel.

Synopsis:
U NT DockCount (void) const

Return value:
Number of docking ports.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 74

SetDockParams (1)
Set the parameters for the vessel’s primary docking port (port 0), or create a new dock

if required.

Synopsis:
voi d Set DockParans (

const VECTOR3 é&pos,
const VECTOR3 &dir,
const VECTOR3 &rot) const

Parameters:
pos dock reference position in vessel coordinates
dir approach direction in vessel coordinates
rot longitudinal rotation alignment vector

Notes:

» This function creates a new docking port if none was previously defined.
Otherwise it overwrites the parameters for dock 0.
» See CreateDock for additional notes on the parameters.

SetDockParams (2)
Reset the parameters for for a vessel dock.

Synopsis:
voi d Set DockParans (

DOCKHANDLE dock,

const VECTOR3 &pos,

const VECTOR3 &dir,

const VECTOR3 &rot) const

Parameters:
dock dock identifier
pos new dock reference position
dir new approach direction
rot new longitudinal rotation alignment vector
Notes:

» This function should not be called while the dock is engaged.

GetDockParams
Returns the parameters of a docking port.

Synopsis:
voi d Get DockPar ans (

DOCKHANDLE dock,
VECTOR3 &pos,
VECTOR3 &di r,
VECTOR3 &rot) const;

Parameters:
dock dock handle
pos dock reference position
dir approach direction
rot longitudinal rotation alignment vector

GetDockHandle
Returns a handle to a docking port.

Synopsis:
DOCKHANDLE Get DockHandl e (U NT n) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 75

Parameters:
n docking port index (= 0)

Return value:
dock handle, or NULL if index was out of range.

GetDockStatus
Returns a handle to a docked vessel.

Synopsis:

OBJHANDLE Cet DockSt at us (DOCKHANDLE dock) const
Parameters:

dock dock handle

Return value:

Handle to vessel docked at the specified port, or NULL if no vessel is docked at

that port.

DockingStatus
Returns a flag indicating whether a given dock is engaged.

Synopsis:

U NT Docki ngStatus (U NT port) const
Parameters:

port docking port index (=0)

Return value:
port status: 0 = free, 1 = docked

Notes:
e This function has the same functionality as
(Get DockSt at us (Get DockHandl e(port)) ? 1:0)

Undock
Release a docked vessel from a docking port.

Synopsis:

bool Undock (U NT n, const OBJHANDLE exclude = 0) const
Parameters:

n docking port index or ALLDOCKS

exclude optional handle of a vessel to be excluded from undocking

Return value:
true if at least one vessel was released from a port.

Notes:
e Ifnis setto ALLDOCKS, all docking ports are released simultaneously.
» If exclude is nonzero, this vessel will not be undocked. This is useful for
implementing remote undocking in combination with ALLDOCKS.
Dock

Dock with another vessel.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

76

Synopsis:

int Dock (
OBJHANDLE t ar get,
U NT n,
U NT tgtn,
U NT node) const
Parameters:
target vessel handle of docking target
n index of docking port on the vessel (= 0)
tgtn index of docking port on the target (= 0)
mode attachment mode (see notes)

Return value:
0 = ok,
1 = docking port n on the vessel already in use,
2 = docking port tgtn on the target already in use,
3 =target vessel is already part of the vessel’s superstructure.

Notes:

» This function is useful for designing scenario editors and during startup
configuration, but its use should be avoided during a running simulation,
because it can lead to unphysical situations: it allows to dock two vessels
regardless of their current separation, by teleporting one of them to the
location of the other.

» During a simulation, Orbiter will dock two vessels automatically when their
docking ports are brought into close proximity.

* The mode parameter determines how the vessels are connected. The
following settings are supported:

0: calculate the linear and angular moments of the superstructure from the
moments of the docking components. This should only be used if the two
vessels are already in close proximity and aligned for docking.

1: Keep this in place, and teleport the target vessel for docking

2: Keep the target in place, and teleport this for docking.

11.8 Attachment management

Similar to docking ports, attachment points allow to connect two or more vessel objects.

There are a few important differences:

» Docking ports establish peer connections, attachments establish parent-child hierarchies:
A parent vessel can have multiple attached children, but each child can only be attached
to a single parent.

» Attachments use a simplified physics engine: the root parent alone defines the object’s
trajectory (both for freespace and atmospheric flight). The children are assumed to have
no influence on flight behaviour.

« Orbiter establishes docking connections automatically if the docking ports of two vessels
are brought close to each other. Attachment connections are only established by API
calls.

* Currently, docking connections only work in freeflight. Attachments also work for landed
vessels.

Attachment connections are useful for attaching small objects to larger vessels. For example,
Orbiter uses attachments to connect payload items to the Space Shuttle’s cargo bay or the tip
of the RMS manipulator arm (see Orbitersdk\samples\Atlantis).

Attachment points use an identifier string (up to 8 characters) which can provide a method to
establish compatibility. For example, the Atlantis RMS arm tip will only connect to attachment
points with an id string that contains “GS” in the first 2 characters (it ignores the last 6
characters).

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 77

Now let's assume somebody creates another Shuttle (say a Buran) with its own RMS arm. He

could then allow it to

» grapple exactly the same objects as Atlantis, by checking for “GS”.

« grapple a subset of objects grapplable by Atlantis, by checking additional characters, for
example “GSX”.

» grapple all objects grapplable by Atlantis, plus additional objects, for example by checking
for “GS” or “GX”

» grapple entirely different objects, for example by checking for “GX”.

To connect a satellite into the payload bay, Atlantis uses the id “XS” (This means that the
payload bay connection can not be used for grappling. To allow a satellite to be grappled and
stored in the payload bay, it must define both a “GS” and an “XS” attachment point).

CreateAttachment
Define a new attachment point for a vessel.

Synopsis:

ATTACHVENTHANDLE Creat eAttachnent (

bool toparent,

const VECTOR3 é&pos,

const VECTOR3 &dir,

const VECTOR3 é&rot,

const char *id,

bool | oose = fal se) const

Parameters:
toparent If true, the attachment can be used to connect to a parent (i.e.

vessel acts as child). Otherwise, attachment is used to connect to a
child (i.e. vessel acts a parent).

pos attachment point position in vessel coordinates

dir attachment direction in vessel coordinates

rot longitudinal alignment vector in vessel coordinates
id compatibility identifier

loose If true, allow loose connections (see notes)

Return value:
Handle to the new attachment point

Notes:

A vessel can define multiple parent and child attachment points, and can
subsequently have multiple children attached, but it can only be attached to
a single parent at any one time.

the dir and rot vectors should both be normalised to length 1, and they
should be orthogonal.

The identifier string can contain up to 8 characters. It can be used to define
compatibility between attachment points.

If the attachment point is defined as loose, then the relative orientation
between the two attached objects is frozen to the orientation between them
at the time the connection was established. Otherwise, the two objects snap
to the orientation defined by their “dir” vectors.

SetAttachmentParams
Reset attachment position and orientation for an existing attachment point.

Synopsis:
voi

d Set Attachment Paranms (
ATTACHVENTHANDLE att achment,
const VECTOR3 &pos,
const VECTOR3 &dir,
const VECTOR3 &rot) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 78

Parameters:
attachment attachment handle

pos new attachment point position in vessel coordinates

dir new attachment direction in vessel coordinates

rot new longitudinal alignment vector in vessel coordinates
Notes:

» If the parameters of an attachment point are changed while a vessel is
attached to that point, the attached vessel will be shifted to the new position

automatically.
« the dir and rot vectors should both be normalised to length 1, and they

should be orthogonal.

GetAttachmentParams
Retrieve the parameters of an attachment point.

voi d Get Attachment Parans (

ATTACHVENTHANDLE att achnent,
VECTOR3 &pos,

VECTOR3 &di r,

VECTOR3 &rot) const

Parameters:
attachment attachment handle
pos attachment point position
dir attachment direction
rot longitudinal alignment vector

GetAttachmentld
Retrieve attachment identifier string.

Synopsis:
const char *GetAttachnmentld (

ATTACHVENTHANDLE attachnent) const

Parameters:
attachment attachment handle

Return value:
pointer to attachment string (8 characters)

GetAttachmentStatus
Return the current status of an attachment point.

OBJHANDLE Get Attachment St atus (

ATTACHVENTHANDLE att achnent) const

Parameters:
attachment attachment handle

Return value:
Handle of the attached vessel, or NULL if no vessel is attached to this point.

AttachmentCount
Return the number of child or parent attachment points defined for a vessel.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 79

Synopsis:
DWORD Attachnent Count (bool toparent) const

Parameters:
toparent If true, return the number of attachment points to parents.
Otherwise, return the number of attachment points to children.

Return value:
Number of defined attachment points to connect to parents or to children.

GetAttachmentindex
Return the list index of a vessel's attachment point defined by its handle.

Synopsis:
DWORD Get Att achment | ndex (

ATTACHVENTHANDLE attachnent) const

Parameters:
attachment attachment handle

Return value:
List index (= 0)

Notes:
» Avessel defines separate lists for child and parent attachment points.
Therefore two different attachment points may return the same index.

GetAttachmentHandle
Return the handle of an attachment point identified by its list index.

Synopsis:
ATTACHVENTHANDLE GCet Att achment Handl e (
bool toparent, DWORD i) const

Parameters:
toparent If true, return handle for attachment point to parent. Otherwise,
return handle for attachment point to child.
[attachment index

Return value:
Attachment handle

AttachChild
Attach a child vessel to an attachment point.

Synopsis:
AttachChild (

bool
OBJHANDLE chi | d,
ATTACHVENTHANDLE att achnent,
ATTACHVENTHANDLE chil d_attachnent) const

Parameters:
child handle of child vessel to be attached

attachment attachment point to which the child is to be attached
child_attachment attachment point on the child to which we want to attach

Return value:
true indicates success, false indicates failure (child refuses attachment)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 80

Notes:

* The attachment handle must refer to an attachment “to child” (i.e. created
with toparent=false); the child_attachment handle must refer to an
attachment “to parent” on the child object (i.e. created with toparent=true). It
is not possible to connect two parent or two child attachment points.

« Achild can only be connected to a single parent at any one time. If the child
is already connected to a parent, the previous parent connection is severed.

» The child may check the parent attachment’s id string and, depending on the
value, refuse to connect. In that case, the function returns false.

DetachChild
Break an existing attachment to a child.

Synopsis:
bool DetachChild (

ATTACHVENTHANDLE at t achnent,
doubl e vel = 0.0) const

Parameters:
attachment attachment handle
vel separation velocity [m/s]

Return value:

true when detachment is successful, false if no child was attached, or if child
refuses to detach.

11.9 Orbital elements

Note: Calculating elements from state vectors is expensive. If possible, avoid calling the
functions in this group at each frame. On the other hand, once any function in this group has
been called, calling other functions during the same time step is not expensive.

GetGravityRef

Returns a handle to the main contributor of the gravity field at the vessel's current
position.

Synopsis:
const OBJHANDLE Get GravityRef () const

Return value:
Handle to gravity reference object.

GetElements (1)

Returns the current osculating elements for the vessel with respect to the dominant
gravitational source acting on the vessel.

Synopsis:
OBJHANDLE Get El enents (ELEMENTS &el, double &mjd ref) const
Parameters:
el osculating elements (semi-major axis a, eccentricity e, inclination i,
longitude of ascending node 6, longitude of periapsis w, mean
longitude at epoch L)
mjd_ref reference epoch in MJD (Modified Julian Date) format

Return value:
Handle of reference object. NULL indicates failure (no elements available).

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 81

Notes:

There are various ways to specify orbital elements. Note that here we use
the longitude of the ascending node (not anomaly of the ascending node),
and longitude of periapsis, and that the mean anomaly L refers to epoch
(mjd_ref), not to date (so it should not change over time unless the orbit itself
changes).

GetElements (2)
Returns the current osculating elements for the vessel. This version has an extended
functionality: it allows to specify an arbitrary celestial body as reference object, an
arbitrary reference time, and can return elements either in the ecliptic or equatorial
frame of reference.

Synopsis:

bool GetEl ements (

OBJHANDLE hRef,

ELEMVENTS &el ,

ORBI TPARAM *prm = 0,

doubl e &nj d_ref 0,

int frane = FRAVE ECL) const

Parameters:
hRef reference body handle
el osculating elements
prm additional orbital parameters
mjd_ref reference date in MJD (Modified Julian Date) format
frame orientation of reference frame (see notes)
Return value:

This function currently always returns true.

Notes:

SetElements

This version returns the elements with respect to an arbitrary celestial body,
even if that body is not the main source of the gravity field acting on the
vessel.

If the hRef parameter is set to NULL, the default reference body (the primary
contributor to the gravitational field) is used as a reference.

If the prm pointer is not set to NULL, the ORBITPARAM structure it points to
will be filled with additional orbital parameters derived from the primary
elements.

All parameters returned in the prm structure refer to the current date, rather
than the reference date mjd_ref. Therefore, the values of el.L and prm->MnL
can be different.

Unlike version 1 of GetElements, mjd_ref is a user-provided input parameter
which specifies to which date the returned el.L (mean longitude) value will
refer. An exception is mjd_ref = 0, which is interpreted as the current time
(equivalent to mjd_ref = oapiGetSimMJID()).

The frame parameter can be set to one of the following:

FRAME_ECL: returned elements are expressed in the ecliptic frame (epoch
J2000).

FRAME_EQU: returned elements are expressed in the equatorial frame of
the reference object (hRef).

See Section 8 for a definition of the ELEMENTS and ORBITPARAM types.

Sets a vessel state (position and velocity) by means of specifying its osculating orbital

elements.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 82

Synopsis:

bool SetEl ements (

OBJHANDLE hRef,

const ELEMENTS &el ,

ORBI TPARAM *prm = 0,

double njd ref = 0,

int frane = FRAVE ECL) const

Parameters:
hRef reference body handle
el set of elements to be assigned to the vessel
prm derived orbital parameters
mjd_ref reference date in MJD format
frame orientation of reference frame
Return value:

If the vessel position resulting from applying the elements would be located
below the surface of the reference body, the function does nothing and returns
false. Otherwise it returns true.

Notes:

» This function resets the vessel's position and velocity according to the
specified orbital elements.

» If the hRef parameter is set to NULL, the default reference body (the primary
contributor to the gravitational field) is used as a reference.

» If the prm pointer is not set to NULL, the ORBITPARAM structure it points to
will be filled with secondary orbital parameters derived from the primary
elements el. Note that this is an output parameter, i.e. the resulting vessel
state will not be influenced by initialising this structure prior to the function
call.

» All parameters returned in the prm structure refer to the current date, rather
than the reference date mjd_ref. Therefore, the values of el.L and prm->MnL
can be different.

* The elements can be supplied either in terms of the ecliptic frame (frame =
FRAME_ECL) or in the equatorial frame of the reference body (frame =
FRAME_EQU).

* mjd_ref is an input parameter which defines the date to which the el.L (mean
longitude) value refers. An exception is mjd_ref = 0, which is interpreted as
the current time (equivalent to mjd_ref = oapiGetSimMJD()).

» Calling SetElements will always put a vessel in freeflight mode, even if it had
been landed before.

» Currently, SetElements doesn’t check for validity of the provided elements.
Setting invalid elements, or elements which put the vessel below a planetary
surface will produce undefined results.

GetArgPer
Returns argument of periapsis of current orbit.
Synopsis:
OBJHANDLE Cet ArgPer (doubl e &arg) const
Parameters:
arg argument of periapsis for current orbit [rad]
Return value:

Handle of reference object. NULL indicates failure (no elements available)

GetSMi

Returns semi-minor axis of current orbit.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 83

Synopsis:
OBJHANDLE Get SM (doubl e &smi) const

Parameters:
smi semi-minor axis for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

GetApDist
Returns apoapsis distance of current orbit.
Synopsis:
OBJHANDLE Cet ApDi st (doubl e &apdi st) const
Parameters:
apdist apoapsis distance for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

GetPeDist
Returns periapsis distance of current orbit.

Synopsis:

OBJHANDLE Get PeDi st (doubl e &pedi st) const
Parameters:

pedist periapsis distance for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

11.10 Surface-relative parameters

GetSurfaceRef
Returns a handle to the closest planet or moon. This is the object to which all surface-
relative parameters refer.

Synopsis:
const OBJHANDLE GCet SurfaceRef () const;

Return value:
Handle to surface reference object (planet or moon)

GetEquPos
Returns vessel's current equatorial position (longitude, latitude and radius) with respect
to the closest planet or moon.

Synopsis:
OBJHANDLE Get EquPos (

doubl e &l ongi t ude,
doubl e &l atitude,
doubl e &radi us) const

Parameters:

longitude variable receiving longitude value [rad]
latitude variable receiving latitude value [rad]

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 84

radius variable receiving radius value [m]

Return value:

Handle to reference body to which the parameters refer. NULL indicates failure
(no reference body available).

GetAltitude
Returns altitude above closest planet/moon.

Synopsis:
doubl e GetAltitude (void) const

Return value:
altitude [m]

GetAirspeed

Returns magnitude of the freestream airflow velocity vector measured in ship-relative
coordinates.

Synopsis:
doubl e Get Ai rspeed (voi d) const

Return value:
Magnitude of airflow velocity [m/s]

Notes:

» This function also works in the absence of an atmosphere. At low altitudes,
the returned value is a ground-speed equivalent. At high altitudes the value
diverges from ground speed, since an atmospheric drag effect is assumed.

» This function returns the length of the vector returned by
GetShipAirspeedVector.

GetHorizonAirspeedVector
Returns airspeed vector in local horizon coordinates.

Synopsis:

bool GetHori zonAi rspeedVector (VECTOR3 &v) const
Parameters:

\ variable receiving airspeed vector [m/s]

Return value:
false indicates error.

Notes:

» This function returns the airspeed vector in the reference frame of the local
horizon. x = longitudinal component, y = vertical component, z = latitudinal
component.

GetShipAirspeedVector
Returns airspeed vector in the vessel’s local coordinates.

Synopsis:

bool Get Shi pAi rspeedVector (VECTOR3 &v) const
Parameters:

% variable receiving airspeed vector [m/s]

Return value:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 85

false indicates error

Notes:
* This function returns the airspeed vector in local ship coordinates. x = lateral
component, y = vertical component, z = longitudinal component.

GetAOA
Returns AOA (angle of attack). This is the pitch angle between the velocity vector and
the vessel’s longitudinal axis.

Synopsis:
doubl e Get ACA (void) const

Return value:
angle of attack [rad]

GetSlipAngle
Returns the lateral (yaw) angle between the velocity vector and the vessel's
longitudinal axis.

Synopsis:
doubl e Get Sli pAngl e (void) const

Return value:
lateral slip angle [rad]

GetPitch
Returns pitch angle in local horizon frame.

Synopsis:
doubl e GetPitch (void) const

Return value:
pitch angle [rad]

GetBank
Returns bank angle in local horizon frame.

Synopsis:
doubl e GetBank (void) const

Return value:
bank angle [rad]

11.11 Transformations

ShiftCentreOfMass
Register a shift in the centre of mass after a structural change (e.g. stage separation)

Synopsis:

void ShiftCentreOrMass (const VECTOR3 &shift)
Parameters:

shift CoM displacement vector.
Notes:

e This function should be called after a vessel has undergone a structural
change which shifted the centre of mass, and which resulted in a change of
the mesh component offsets of -shift. It will do two things:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 86

1. Translate the vessel's world reference point by +shift to compensate for
the mesh offset shift.
2. Drag the camera so that it centers at the new CoM (if in external mode
tracking the concerned vessel).
* A more convenient way to implement a transition of the centre of mass is the
function ShiftCG, which automatically takes care of translating meshes,
docking ports, etc.

ShiftCG
Shift the centre of gravity of a vessel.

Synopsis:

void ShiftCG (const VECTOR3 &shift)
Parameters:

shift translation vector in local vessel coordinates.
Notes:

* By definition, the centre of gravity is located at the origin of the vessel’'s local
coordinate system (0,0,0). To realise an effective shift of the centre of gravity
of a vessel, this function performs the following transformations:

» Calls ShiftMeshes (-shift) to re-align the vessel’s visual representation
with the shifted coordinate origin.

» Applies an equivalent shift to all thruster positions, docking ports,
attachment points and to the cockpit camera position.

» CallsShiftCentreOfMass (shift) to compensate for the mesh translation by
a translation of the vessel’s global position in the opposite direction.

GetSuperstructureCG

Returns the centre of mass of the superstructure to which the vessel belongs, if
applicable.

Synopsis:
bool Get SuperstructureCG (VECTOR3 &cg) const

Parameters:
cg superstructure centre of mass [m,m,m]

Return value:
true if vessel is part of a superstructure, false otherwise.

Notes:

» The returned vector is the position of the superstructure centre of mass, in
coordinates of the local vessel frame.

» If the vessel is not part of a superstructure, cg returns (0,0,0).

GetRotationMatrix

Returns the vessel’s current rotation matrix for transformations from the vessel’s local
frame of reference to the global (world) frame of reference.

Synopsis:

void GetRotationMatrix (MATRI X3 &R) const
Parameters:

R rotation matrix

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 87

Notes:
* To transform a point r .y from local vessel coordinates to a global point
I gowal, the following formula is used:
Fgiobal = R Tocal + Puessels
where pye IS the vessel’s global position.
» This transformation can be directly performed by a call to Local2Global.

SetRotationMatrix
Sets the vessel’'s current rotation matrix for transformations from local vessel frame to
global ecliptic frame.

Synopsis:

void SetRotationMatrix (const MATRI X3 &R) const
Parameters:

R rotation matrix
Notes:

* The user is responsible to provide a valid rotation matrix. The matrix must be
orthogonal and normalised: the norms of all column vectors of R must be 1,
and scalar products between any column vectors of R must be 0.

GlobalRot
Performs a rotation of a direction from the local vessel frame to the global frame.

Synopsis:
voi d d obal Rot (

const VECTOR3 é&rl oc,
VECTOR3 &rrot) const

Parameters:
rloc point in local vessel coordinates (input)
rrot rotated point (output)

Notes:
* This function is equivalent to multiplying rloc with the rotation matrix returned
by GetRotationMatrix.
» Should be used to transform directions. To transform points, use
Local2Global, which additionally adds the vessel's global position to the
rotated point.

HorizonRot
Performs a rotation of a direction from the local vessel frame to the current local
horizon frame.

Synopsis:
voi d HorizonRot (

const VECTOR3 &rl oc,
VECTOR3 &r horizon) const

Parameters:
rloc vector in local vessel coordinates (input)
rhorizon vector in local horizon coordinates (output)

Notes:

* The local horizon frame is defined as follows:
y is “up” direction (planet centre to vessel centre)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 88

Z is “north” direction
X is “east” direction

HorizonlnvRot
Performs a rotation of a direction from the current local horizon frame to the current
local vessel frame.

Synopsis:
voi d Horizonl nvRot (

const VECTOR3 &rhori zon,
VECTOR3 &rl oc) const

Parameters:
rhorizon vector in local horizon coordinates (input)
rloc vector in local vessel coordinates (output)
Notes:

* This function performs the inverse operation of HorizonRot.

Local2Global
Performs a transformation from local vessel to global coordinates.

Synopsis:
voi d Local 2d obal (

const VECTOR3 &l ocal,
VECTOR3 &gl obal) const

Parameters:

local point in local vessel coordinates (input)

global transformed point in global coordinates (output)
Notes:

* This function maps a point from the vessel's local coordinate system
(centered at the vessel CG) into the global ecliptical system (centered at the
solar system barycentre).

* The transform has the form

pglob = Rv&ssel ploc + pv&ssei

where Ry IS the vessel's global rotation matrix (as given by
GetRotationMatrix), and pyesse IS the vessel position in the global frame.

Global2Local
Performs a transformation from global to local vessel coordinates.

Synopsis:
voi d d obal 2Local (

const VECTOR3 &gl obal
VECTOR3 &l ocal) const

Parameters:

global point in global coordinates (input)

local transformed point in local vessel coordinates (output)
Notes:

e This is the inverse transform of Local2Global; it maps a point from global
ecliptical coordinates into the vessel’s local frame.
* The transform has the form

Pioc = R\:ése{ (pglob - pv&ssd)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 89

where Ry IS the vessel’s global rotation matrix (as given by
GetRotationMatrix), and puess IS the vessel position in the global frame.

Local2Rel
Performs a transformation from the local vessel frame to the global ecliptical frame,
relative to the vessel’s reference body.

Synopsis:
voi d Local 2Rel (const VECTOR3 & ocal, VECTOR3 &rel) const
Parameters:
local point in local vessel coordinates (input)
rel transformed point in reference body-relative global coordiates
(output)
Notes:

* This function maps a point from the vessel’'s local coordinate system
(centered at the vessel CG) into an ecliptical coordinate system centered at
the vessel's reference object’'s CG (e.g. the planet that is currently being
orbited).

» A handle to the reference object can be obtained via
VESSEL::GetGravityRef. The reference object may change if the vessel
enters a different object’s sphere of influence.

* The transformation has the form
P = Rv&asel Pioc T Pressa ~Pres
where R iS the vessel’'s global rotation matrix (as given by
GetRotationMatrix), and pyesses @and pye are the CG positions of the vessel and
reference body in the global frame, respectively.

11.12 Atmospheric parameters
GetAtmRef
Returns a handle to the reference body for atmospheric calculations.

Synopsis:
const OBJHANDLE GCet At mRef (void) const

Return value:
Handle to the celestial body whose atmosphere the vessel is currently moving
through, or NULL if the vessel is not inside an atmosphere.

GetAtmTemperature
Returns atmospheric temperature [K] at current vessel position.

Synopsis:
doubl e Get At nTenperature (void) const

Return value:
atmospheric temperature [K] at curremt vessel position.

Notes:
» This function returns 0 if the vessel is outside all planetary atmospheric hulls,
as defined by the planets’ AtmAltLimit parameters.

GetAtmDensity
Returns atmospheric density [kg/m3] at current vessel position.

Synopsis:
doubl e Get At mDensity (voi d) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 90

Return value:
atmospheric density [kg/m3] at current vessel position.

Notes:
* This function returns 0 if the vessel is outside all planetary atmospheric hulls,
as defined by the planets’ AtmAltLimit parameters.

GetAtmPressure
Returns static atmospheric pressure [Pascal] at current vessel position.

Synopsis:
doubl e Get At mPressure (void) const

Return value:
atmospheric pressure [Pa] at current vessel position.

Note:
» This function returns 0 if the vessel is outside all planetary atmospheric hulls,
as defined by the planets’ AtmAltLimit parameters.

11.13 Aerodynamics

GetDynPressure
Returns the current dynamic pressure for the vessel.

Synopsis:
doubl e Get DynPressure (void) const

Return value:
Current vessel dynamic pressure [Pa].

Notes:
* The dynamic pressure is defined as g =% ,0V2 with density p and airflow
velocity V. Dynamic pressure is an important aerodynamic parameter.

GetMachNumber
Returns the vessel’s current Mach number.

Synopsis:
doubl e Get MachNunmber (voi d) const

Return value:
Mach number — the ratio of current freestream airflow velocity over speed of
sound.

Notes:
e The speed of sound depends on several parameters, e.g. atmospheric
composition and temperature. The Mach number can therefore vary even if
the airspeed is constant.

SetCW

Sets the vessel's wind resistance coefficients along the local reference axes
[dimensionless].

Synopsis:
voi d Set CW (

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 91

doubl e cw _z pos,
doubl e cw_z neg,
doubl e cw x,

doubl e cw_y) const

Parameters:
CW_z_pos resistance in positive z direction (forward)
CW_z_neg resistance in negative z direction (back)
CW_X resistance in lateral direction
cwW_y resistance in vertical direction

Notes:

* The first value (cw_z_pos) is the coefficient used if the vessel’'s airspeed z-
component is positive (vessel moving forward). The second value is used if
the z-component is negative (vessel moving backward).

» Lateral and vertical components are assumed symmetric.

» The cw coefficients are only used if no airfoils are defined (see CreateAirfoil),
in which case the flight model reverts to legacy parasite drag calculation.

GetCW
Returns the vessel’s wind resistance coefficients in the principal directions
[dimensionless].

Synopsis:
void Get CW (

doubl e &w z_pos,
doubl e &w z_neg,
doubl e &cw x,

doubl e &w_ y) const

Parameters:
CW_z_pos resistance in positive z direction (forward)
CW_z_neg resistance in negative z direction (back)
CW_X resistance in lateral direction
cw_y resistance in vertical direction

Notes:

» The first value (cw_z_pos) is the coefficient used if the vessel's airspeed z-
component is positive (vessel moving forward). The second value is used if
the z-component is negative (vessel moving backward).

» Lateral and vertical components are assumed symmetric.

» The cw coefficients are only used if no airfoils are defined (see CreateAirfail),
in which case the flight model reverts to legacy parasite drag calculation.

SetRotDrag
Sets the vessel's resistance against rotation around axes in atmosphere.
Synopsis:
voi d SetRotDrag (const VECTOR3 &rd) const
Parameters:
rd drag components for rotation around the 3 vessel axes
GetRotDrag

Returns the vessel’s resistance r,,, , against rotation around axes in atmosphere.

Synopsis:
void GetRotDrag (VECTOR3 &rd) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 92

Parameters:

rd

Notes:

CreateAirfoil

rotational drag coefficient in the three coordinate axes of the
vessel’s frame of reference.

rd contains the components r,, , against rotation around axes in atmosphere,
where angular deceleration due to atmospheric friction is a, ,, = -/, ,, q
S Iy With angular velocity AR dynamic pressure g, and reference surface

S, defined by the vessel’s cross section projected along the vertical (y) axis.

Defines the lift and drag characteristics of an airfoil.

Synopsis:
void CreateAirfoil (
Al RFO L_ORI ENTATI ON al i gn,
const VECTOR3 &ref,
Ai rfoil Coef f Func cf,
doubl e c,
doubl e S,
doubl e A) const
Parameters:
align lift vector orientation (LI FT_VERTI CAL or LI FT_HORI ZONTAL)
ref lift and drag vector attack point
cf pointer to coefficient callback function (see notes)
c airfoil chord length [m]
S wing area [m?]
A wing aspect ratio
Notes:

A vessel can define multiple airfoils (for wings, main body, tail stabilisators,
etc.). In general, it should define at least one vertical and one horizontal
component.

Airfoil definitions for wings and horizontal stabilisers set align to

LI FT_VERTI CAL. Vertical stabilisers (vertical tail fin, etc) set align to

LI FT_HORI ZONTAL.

The location of the attack point (together with the moment coefficient) is
important for the aerodynamic stability of the vessel. Usually the attack point
will be aft of the CG, and the moment coefficient will have a negative slope
around the trim angle of attack.

The AirfoilCoeffFunc is a callback function which must be supplied by the
module which calculates the lift, moment and drag coefficients for the airfoil.
It has the following interface:

void Airfoil CoeffFunc (
doubl e aoa, double M double Re,
doubl e *cl, double *cm doubl e *cd)

and returns the lift coefficient (cl), moment coefficient (cn) and drag
coefficient (cd) as a function of angle of attack aoa [rad], Mach number M
and Reynolds number Re. Note that aoa can range over the full circle (-1tto
). For vertical lift components, aoa is the pitch angle of attack (a), while for
horizontal components it is the yaw angle of attack (). Some useful
functions for calculating the coefficients can be found in Section 19.7.

If the wing area Sis set to 0, then Orbiter uses the projected vessel cross
sections to define a reference area. Let V=(v,,v,,v,) be the unit vector of

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 93

freestream air flow in vessel coordinates. Then the reference area is
calculated as S=v,C, +v C fora Ll FT_VERTI CAL airfoil, and as
S=v,C, +v,C, for a LI FT_HORI ZONTAL airfoil, where C,, C,, C, are the
vessel cross-sections in x, y and z direction, respectively.

« The wing aspect ratio is defined as defined as A = b¥Swith wing span b.

» Avessel should typically define its airfoils in the ovcSetClassCaps callback

function. If no airfoils are defined, Orbiter will fall back to its legacy (pre-
030601) drag calculation, using the cw coefficients defined in SetCW.

Legacy lift calculation is no longer supported.
* For more details, see the Programmer’s Guide.

CreateAirfoil2

Identical to CreateAirfoil, but returns a handle for the new airfoil.

Synopsis:
Al RFO LHANDLE CreateAirfoil 2 (

Al RFO L_ORI ENTATI ON al i gn,
const VECTOR3 &ref,

Al rfoil Coef f Func cf,

doubl e c,

doubl e S,

doubl e A) const

Parameters:
See CreateAirfoil.

Return value:
Handle for the new airfoil.

Notes:

» Use this function if you need to reference the airfoil later (e.g. to delete it).

CreateAirfoil3

Defines the lift and drag characteristics of an airfoil. This is an extended version which

passes additional parameters to the lift coefficient callback function.

Synopsis:
Al RFO LHANDLE CreateAirfoil 3 (

Al RFO L_ORI ENTATI ON al i gn,
const VECTOR3 &ref,

Ai rfoil Coef f Funcex cf,

voi d *cont ext,

doubl e c,

doubl e S,

doubl e A) const

Parameters:
align lift vector orientation (LI FT_VERTI CAL or LI FT_HORI ZONTAL)
ref lift and drag vector attack point
cf pointer to coefficient callback function (see notes)
context pointer to user data passed to the coefficient callback function
c airfoil chord length [m]
S wing area [m2]
A wing aspect ratio

Return value:
Handle for the new airfoil.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

94

Notes:
e This function is an extension of CreateAirfoil2.
* The format of the lift callback function cf is different. It contains additional
parameters:

voi d Airfoil Coef f FunckEx (
VESSEL *v, doubl e aoa, double M double Re,
voi d *cont ext,
doubl e *cl, double *cm double *cd)

where v is a pointer to the calling vessel instance, and context is the pointer
passed to CreateAirfoil3. It can be used to pass additional parameters to the
callback function required to compute the lift coefficients.

EditAirfoil
Edit the parameters of an existing airfoil definition.

Synopsis:
void EditAirfoil (

Al RFO LHANDLE hAirfoil,
DWORD f ag,

const VECTOR3 &ref,

Al rfoil Coef f Func cf,

doubl e c,
doubl e S,
doubl e A) const
Parameters:
hAirfoil airfoil handle
flag bitflags for modification (see notes)
ref new force attack point
cf new coefficient callback function
c new chord length [m]
S new wing area [m?]
A new wing aspect ratio
Notes:
» This function can be used to modify the parameters of a previously created
airfoil.

» flag contains the bit flags defining which parameters will be modified. It can
be any combination of the following:
0x01: modify force attack point
0x02: modify coefficient callback function
0x04: modify chord length
0x08: modify wing area
0x10: modify wing aspect ratio

« If the airfoil identified by hAirfoil was created with CreateAirfoil3, and you
want to modifiy the callback function, then cf must point to a function with
AirfoilCoeffFuncEx interface, and must be cast to AirfoilCoeffFunc when
passed to EditAirfoil.

DelAirfoil
Delete a previously defined airfoil.

Synopsis:

bool Del Airfoil (Al RFO LHANDLE hAirfoil) const
Parameters:

hAirfoil airfoil handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 95

Return value:
false indicates failure (invalid handle)

Notes:

Avoid deleting all airfoils without creating new ones, because this will cause
Orbiter to revert to the obsolete legacy atmospheric flight model.

ClearAirfoilDefinitions
Remove all airfoil definitions currently defined for the vessel.

Synopsis:
voi

Notes:

d ClearAirfoil Definitions (void) const

This function is useful if a vessel needs to re-define all its airfoil definitions as
a result of a structural change.

After clearing all airfoils, you should generate new ones. Even wingless
objects (such as capsules) should define their aerodynamic behaviour by
airfoils (see CreateAirfoil). Vessels without airfoil definitions revert to the
obsolete legacy atmospheric flight model.

CreateControlSurface

Create an

airfoil control surface (elevator, rudder, aileron, flaps, etc.) which allows

atmospheric flight control.

Synopsis:
void CreateControl Surface (
Al RCTRL_TYPE type,
doubl e area,
doubl e dd ,
const VECTOR3 &ref,
int axis = Al RCTRL_AXI S_AUTQ,
U NT anim= (U NT)-1) const
Parameters:
type Control type. This is a member of the Al RCTRL_TYPE enumeration
type (see notes).
area control surface area [m2]
dcCl shift in lift coefficient achieved by fully extended control
ref lift/drag force attack point for the control
axis Control rotation axis. This is a member of the
Al RCTRL_AXI S_AUTOenumeration type (see notes).
anim animation reference, if applicable
Notes:

The following control types are available:

Al RCTRL_ELEVATOR elevator (pitch control)
Al RCTRL_RUDDER rudder (yaw control)

Al RCTRL_AI LERON aileron (bank control)
Al RCTRL_FLAP flaps

The following control axis types are available:

Al RCTRL_AXI S_AUTO automatic axis selection
Al RCTRL_AXI S_YPCS +Y axis (vertical)

Al RCTRL_AXI S_YNEG -Y axis (vertical)

Al RCTRL_AXI S_XPCS +X axis (transversal)

Al RCTRL_AXI' S _XNEG -X axis (transversal)

where switching between positive and negative axes reverses the effect of
the control. Automatic axis control will select the following axes:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 96

Elevator: XPOS

Rudder: YPOS

Aileron: XPOS if ref.x > 0,
XNEG otherwise

Flap: XPOS

» Atleast 2 control surfaces must be defined for ailerons (e.g. on the left and
right wing) with opposite rotation axes, to obtain the angular moment for
banking the vessel.

» Elevators will usually use the XPOS axis, assuming the attack point is aft of
the CG. If pitch control is provided by a canard configuration ahead of the
CG, XNEG should be used instead.

» Toimprove performance, multiple control surfaces may sometimes be
defined by a single call to CreateControlSurface. For example, the elevator
controls on the left and right wing may be combined by setting a centered
attack point.

» Control surfaces can be animated, by passing an animation reference to
CreateControlSurface. The animation reference is obtained from a call to
CreateAnimation(). The animation should support a state in the range from 0
to 1, with neutral surface position at state 0.5.

CreateControlSurface2
Identical to CreateControlSurface, but returns a handle for the new control surface.

Synopsis:
CTRLSURFHANDLE Cr eat eCont rol Surface2 (

Al RCTRL_TYPE type,

doubl e area,

doubl e dd ,

const VECTOR3 &ref,

int axis = AIRCTRL_AXI S_AUTO,
U NT anim= (U NT)-1) const

Parameters:
See CreateControlSurface

Return value:
Handle for the new control surface.

Notes:
» Use this function if you need to reference the control surface later (e.g. to
delete it).

DelControlSurface
Delete a previously defined aerodynamic control surface.

Synopsis:
bool Del Control Surface (CTRLSURFHANDLE hCtrl Surf) const

Parameters:
hCtrISurf control surface handle

Return value:
false indicates failure (invalid handle)

ClearControlSurfaceDefinitions
Remove all aerodynamic control surface definitions currently defined for the vessel.

Synopsis:
voi d Cl earControl SurfaceDefinitions (void) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 97

Notes:
* This function is useful if a vessel needs to re-define all its control surface
definitions as a result of a structural change.

SetControlSurfacelLevel
Modify the position of a control surface.

Synopsis:
voi d Set Control SurfaceLevel (

Al RCTRL_TYPE type,
doubl e I evel) const

Parameters:
type Control type. This is a member of the AIRCTRL_TYPE enumeration
type.
level new setting (-1 .. 1)
Notes:

» This function is only useful for flap and trim controls, because elevators,
rudder and ailerons are normally continuously scanned from the keyboard
and joystick inputs and overridden in each frame.

GetControlSurfaceLevel
Retrieve the current position of a control surface.

Synopsis:

doubl e Get Control SurfaceLevel (Al RCTRL_TYPE type) const
Parameters:

type Control type. This is a member of the AIRCTRL_TYPE enumeration

type.

Return value:
Current control position (-1 to 1).

CreateVariableDragElement
Attach a drag force to the vessel whose magnitude is controlled by an external variable
which may vary between 0 (no drag) and 1 (full drag). Useful for defining drag
produced by movable parts such as landing gear.

voi d CreateVari abl eDragEl enent (

doubl e *drag,
doubl e factor,
const VECTOR3 &ref) const

Parameters:
drag pointer to external control parameter
factor drag magnitude scale factor
ref drag attack point

Notes:

* The magnitude of the drag force is calculated as
D=d[T g,
where d is the control parameter (drag), f is the scale factor, and g. is the
freestream dynamic pressure.

« Depending on the attack point, the drag force may induce an angular
moment.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 98

» Control parameter d should be restricted to values between 0 and 1.

ClearVariableDragElements
Remove all drag components previously defined with CreateVariableDragElement.

Synopsis:
voi d Cl earVari abl eDragEl enents () const

SetWingAspect
EIERIET. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
It sets the wing aspect ratio (wingspan® / wing area).

Synopsis:

voi d Set W ngAspect (doubl e aspect) const
Parameters:

aspect wing aspect ratio [dimensionless]
Notes:

» The value defined by this function is only used in legacy mode, i.e. if the
vessel does not define any airfoils via CreateAirfoil.
» Default value is 1.0

GetWingAspect
PR This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
Returns the vessel’'s wing aspect ratio (wingspan® / wing area).

Synopsis:
doubl e Get W ngAspect (void) const

Return value:
Wing aspect ratio (Wingspan2 / wing area)

Notes:
» The value returned by this function is used by Orbiter only for legacy
vessels, i.e. vessels which do not define any airfoils via CreateAirfoil.

SetWingEffectiveness
PRI, This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
Sets the wing form factor. Used for lift and drag calculation.

voi d Set W ngEf fecti veness (doubl e we) const
Parameters:

we wing form factor.
Notes:

» The value defined by this function is only used in legacy mode, i.e. if the
vessel does not define any airfoils via CreateAirfoil.

» Typical values are: ~3.1 for elliptic wings, ~2.8 for tapered wings, ~2.5 for
rectangular wings.

GetWingEffectiveness

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

ORI, This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.

Returns wing form factor: ~3.1 for elliptic wings, ~2.8 for tapered wings, ~2.5 for
rectangular wings.

Synopsis:
doubl e Get W ngEffectiveness (void) const

Return value:
Wing form factor.

Notes:
* The value returned by this function is used by Orbiter only for legacy
vessels, i.e. vessels which do not define any airfoils via CreateAirfoil.
» This form factor describes the wing’s effectiveness in producing lift in an
atmosphere as a function of its shape.

SetLiftCoeffFunc

IR, This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.

Installs callback function for calculation of lift coefficient as a function of angle of attack.

Synopsis:
voi d SetLiftCoeffFunc (LiftCoeffFunc |cf) const
Parameters:
Icf callback function pointer with the following interface:
doubl e LiftCoeff (double aoa)
Notes:

» The preferred method for defining lift and drag characteristics is via the
CreateAirfoil method, which is much more versatile. Orbiter ignores the
SetLiftCoeffFunc function if any airfoils have been created with CreateAirfoil.

* The callback function must be able to deal with aoa values in the range —t...
T

« If the function is not installed, the vessel is assumed not to produce any lift.

11.14 Surface contact parameters

SetSurfaceFrictionCoeff
Set the surface friction coefficients in longitudinal and lateral direction.

Synopsis:
voi d Set SurfaceFrictionCoeff (

doubl e mu_I ng,
doubl e mu_l at) const

Parameters:
mu_Ing longitudinal coefficient
mu_lat lateral coefficient
Notes:

» The friction forces for each touchdown reference point which intersects the
surface are calculated by
f=cMg
where cg: friction coefficient, M: vessel mass: g: surface g-force

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 100

» Vessels with landing gear should define mu_Ing < mu_lat. For isotropic
surface friction, mu_Ing = mu_lat should be used.
e The default values are mu_Ing = 0.1, mu_lat = 0.5.

SetMaxWheelbrakeForce
Define the maximum force which can be provided by the vessel’'s wheel brake system.

voi d Set MaxWheel br akeForce (double f) const
Parameters:
f maximum force [N]

SetWheelbrakeLevel
Apply the wheel brake.

Synopsis:
voi d Set Wheel brakeLevel (

doubl e | evel
int which = 0,
bool permanent = true) const

Parameters:
level wheelbrake level (0..1)
which 0 = both, 1 = left, 2 = right main gear
permanent true sets the level permanently, false only applies to current time

step

GetWheelbrakeLevel
Returns the current wheel brake level.

Synopsis:

doubl e Get Wheel brakeLevel (int which) const
Parameters:

which 0 = average of both main gear levels, 1 = left, 2 = right

Return value:
wheel brake level (0..1)

11.15 Communications/radio interface

InitNavRadios
Defines the number of NAV radio receivers supported by the vessel.

voi d I nitNavRadi os (DWORD nnav) const
Parameters:

nnav number of NAV radio receivers
Notes:

» Avessel requires NAV radio receivers to obtain instrument navigation aids
such as ILS or docking approach information.

e Typically, a vessel should define 2-3 NAV receivers.

* If no NAV receivers are available, then certain MFD modes such as Landing
or Docking will not be supported.

» Default is 2 NAV receivers.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 101

SetNavRecv
Set the channel for a NAV receiver.

Synopsis:

bool Set NavRecv (DWORD n, DWORD ch) const
Parameters:

n NAV receiver index (= 0)

ch channel (= 0)

Return value:
false if n =2 nnav (see InitNavRadios), otherwise true.

Notes:
* NAV radios can be tuned from 108.00 to 140.00 MHz in steps of 0.05 MHz.
The frequency corresponding to a channel is given by
f=108.0 MHz + ch [0.05 MHz.
GetNavRecv

Returns the channel setting of a NAV receiver.

Synopsis:

DWORD Cet NavRecv (DWORD n) const
Parameters:

n NAV receiver index (= 0)

Return value:
channel (= 0). If index n is out of range, the return value is 0.

GetNavRecvFreq
Returns the current radio frequency of a NAV receiver [MHZ]
Synopsis:
float Get NavRecvFreq (DWORD n) const
Parameters:
n NAV radio index (=0)

Return value:
NAYV radio frequency [MHZz]. If index n is out of range then the return value is 0.0.

EnableTransponder
Enable/disable a vessel's transponder. The transponder is a radio transmitter which
can be used by other vessels to obtain navigation information, e.g. for docking
rendezvous approaches.

Synopsis:

voi d Enabl eTransponder (bool enable) const
Parameters:

enable flag for enabling/disabling the transponder
Notes:

» If the transponder is turned on (enable = true), its initial frequency is set to
108.00 MHz (channel 0). Use SetTransponderChannel to tune to a different
frequency.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 102

SetTransponderChannel
Sets the channel of the vessel’s transponder.

Synopsis:

bool Set Transponder Channel (DWORD ch) const
Parameters:

ch radio channel (0 < ch < 640)

Return value:
false indicates failure (transponder not enabled or channel out of range)

Notes:
* Transponders can be tuned from 108.00 to 140.00 MHz in steps of 0.05
MHz. The frequency corresponding to a channel number ch is given by
f=108.0 MHz + ch [0.05 MHz.
GetTransponder

Retrieves a handle of the vessel's transponder, if available.

Synopsis:
NAVHANDLE Cet Tr ansponder (voi d) const

Return value:
navigation radio handle of the vessel’s transponder, or NULL if not available.

Notes:

e This function returns NULL unless the transponder has been enabled by a
call to EnableTransponder or by setting the EnableXPDR entry in the
vessel’s config file to TRUE.

» ltis not safe to store the handle, because it can become invalid as a result of
disabling/enabling the transponder. Instead, the handle should be queried
when needed.

* The handle can be used to retrieve information about the transmitter, such
as current frequency.

EnablelDS
Enable/disable one of the vessel's IDS (instrument docking system) transmitters.

Synopsis:

voi d Enabl el DS (DOCKHANDLE hDock, bool enabl e) const
Parameters:

hDock docking port handle

enable flag for enabling/disabling the IDS transmitter
Notes:

e If the IDS transmitter is turned on (enable = true), its initial frequency is set to
108.00 MHz (channel 0). Use SetIDSChannel to tune to a different
frequency.

SetIDSChannel
Sets the channel of one of the vessel’s IDS (instrument docking system) transmitters.

Synopsis:

bool Set| DSChannel (DOCKHANDLE hDock, DWORD ch) const
Parameters:

hDock docking port handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 103

ch radio channel (0 < ch < 640)

Return value:
false indicates failure (IDS not enabled or channel out of range)

Notes:
» IDS transmitters can be tuned from 108.00 to 140.00 MHz in steps of 0.05
MHz. The frequency corresponding to a channel number ch is given by
f=108.0 MHz + ch [0.05 MHz.

GetIDS
Retrieve a handle of one of the vessel's IDS (instrument docking system) radio
transmitters.

Synopsis:

NAVHANDLE Get | DS (DOCKHANDLE hDock) const
Parameters:

hDock docking port handle

Return value:
navigation radio handle of the vessel's IDS transmitter for docking port hDock.

Notes:
» This function returns NULL if hDock hasn'’t defined an IDS transmitter, for
example via the docklist entries in the vessel's config file.
* A handle to a docking port can is provided by the CreateDock and
GetDockHandle methods.
* The IDS handle becomes invalid if the dock is deleted, e.g. with DelDock or
ClearDockDefinitions.

» The handle can be used to retrieve information about the transmitter, such
as current frequency.

GetNavSource
Retrieve a handle to the navigation radio transmitter currently received by one of the
vessel's NAV receivers.

Synopsis:

NAVHANDLE Get NavSource (DWORD n) const
Parameters:

n NAYV receiver index (= 0)

Return value:
handle of transmitter currently received, or NULL if the receiver is not tuned to
any station, or if n is out of range.

Notes:

e The returned handle may change if the user tunes the radio frequency of the
corresponding receiver, or if the vessel moves in or out of range of a station.

11.16 Visual manipulation

AddMesh (1)
Loads a new mesh from file and adds it to the vessel's visual representation.

Synopsis:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 104

i nt AddMesh (
const char *neshnane,
const VECTOR3 *of s=0) const

Parameters:
meshname mesh file name
ofs optional pointer to a displacement vector which describes the offset

(in meter) of the mesh origin against the vessel origin.

Return value:
mesh index

Notes:

* meshname defines a path to an existing mesh file. The mesh must be in
Orbiter's MSH format (see 3DModel.pdf).

* The file name (including optional directory path) is relative to Orbiter's mesh
directory (usually “\Meshes”). The file extension must not be specified (.msh
is assumed.)

* The mesh is either appended to the end of the vessel’'s mesh list, or inserted
at the location of a previously deleted mesh (see VESSEL::DelMesh)

* The returned value is the mesh list index at which the mesh reference was
stored. It can be used to identify the mesh later (e.g. for animations).

» This function only creates a reference to a mesh. The mesh is physically
loaded from file only when it is required (whenever the vessel moves within
visual range of the observer camera).

AddMesh (2)
This version adds a preloaded mesh to the vessel's visual representation.

Synopsis:

voi d AddMesh (MESHHANDLE hMesh, const VECTOR3 *of s=0) const
Parameters:

hMesh mesh handle

ofs optional pointer to a displacement vector which describes the offset

(in meter) of the mesh origin against the vessel origin.

Return value:
mesh index

See also:
oapiLoadMesh

Notes:

e hMesh is a handle to a mesh previously loaded with oapiLoadMeshGlobal.

* The global handle hMesh repersents a “mesh template”. Whenever the
vessel needs to create its visual representation (when moving within visual
range of the observer camera), it creates its individual mesh as a copy of the
template.

InsertMesh (1)
Insert or replace a mesh at a specific index location of the vessel's mesh list.

Synopsis:
U NT InsertMesh (

const char *neshnane,
Ul NT i dx,
const VECTOR3 *of s=0) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 105

Parameters:
meshname mesh file name
idx mesh list index (= 0)
ofs optional pointer to a displacement vector which describes the offset
(in meter) of the mesh origin against the vessel origin.

Return value:
mesh index

Notes:

* meshname defines a path to an existing mesh file. The mesh must be in
Orbiter’s MSH format.

» The file name (including optional directory path) is relative to Orbiter's mesh
directory (usually “.\Meshes”). The file extension should not be specified
(.msh is assumed.)

* idx is a zero-based index which specifies at which point the mesh reference
is added into the vessel’'s mesh list. If a mesh already exists at this position,
it is overwritten. If idx > number of meshes, then the required number of
(empty) entries is generated.

* The return value is always equal to idx.

InsertMesh (2)
Insert or replace a mesh at a specific index location of the vessel’'s mesh list, given a
pre-loaded mesh handle.

Synopsis:
U NT I nsertMesh (

MESHHANDLE hMesh,
Ul NT i dx,
const VECTOR3 *of s=0) const

Parameters:
hMesh mesh handle
idx mesh list index (= 0)
ofs optional pointer to a displacement vector which describes the offset

(in meter) of the mesh origin against the vessel origin.

Return value:

mesh index
Notes:

* hMesh is a handle to a mesh previously loaded with oapiLoadMeshGlobal.

* The global handle hMesh represents a “mesh template”. Whenever the
vessel needs to create its visual representation (when moving within visual
range of the observer camera), it creates its individual mesh as a copy of the
template.

* idx is a zero-based index which specifies at which point the mesh reference
is added into the vessel's mesh list. If a mesh already exists at this position,
it is overwritten. If idx > number of meshes, then the required number of
(empty) entries is generated.

e The return value is always equal to idx.

GetMesh

Returns a handle for a vessel mesh given by its index.

Synopsis:
MESHHANDLE Get Mesh (VI SHANDLE vis, Ul NT idx) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 106

Parameters:
vis visual handle
idx mesh index (= 0)

Return value:
mesh handle, or NULL if index out of range.

Notes:

» The visual representation of a vessel (including the meshes it is composed
of) only exists while the vessel is within visual range of the camera. The
handle returned from this function is therefore only valid between a call to
clbkVisualCreated and a subsequent clbkVisualDestroyed. Handle vis
(passed to clbkVisualCreated) identifies the visual.

ShiftMesh

Shift the position of a mesh relative to the vessel's local coordinate system.

Synopsis:

bool ShiftMesh (U NT idx, const VECTOR3 &ofs) const
Parameters:

idx mesh index (= 0)

ofs translation vector

Return value:
false indicates error (mesh index out of range)

Notes:

» This function does not define an animation (i.e. gradual transition), but resets
the mesh position instantly.

ShiftMeshes
Shift the position of all meshes relative to the vessel’'s coordinate system.

Synopsis:

voi d Shift Meshes (const VECTOR3 &of s) const
Parameters:

ofs translation vector
Notes:

* This function is useful when resetting a vessel’s centre of gravity, in
combination with ShiftCentreOfMass.

* A more convenient way to shift the centre of gravity is a call to ShiftCG.

DelMesh
Remove a mesh from the vessel’'s visual representation.

Synopsis:

bool Del Mesh (U NT idx, bool retain_ani m<fal se) const
Parameters:

idx mesh index (= 0)

retain_anim flag for keeping mesh animations

Return value:
false indicates error (mesh index out of range, or mesh already deleted.)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 107

Notes:

» After a mesh has been deleted, the mesh index is no longer valid, and
should not be used any more in function calls (e.g. for animations).

» If meshes are added subsequently, they are placed in the vacant list slots,
and therefore can be assigned the indices of previously deleted meshes.

» If you want to replace a mesh, it is easier to use the InsertMesh function
instead of a combination of DelMesh and AddMesh.

* By default, all animation components associated with the mesh are deleted.
This can be prevented by setting retain_anim to true. In general this is only
useful if the same mesh is subsequently loaded again into the same mesh
index slot.

ClearMeshes (1)
Removes all previously declared meshes for the vessel’s visual representation. This
version is obsolete (see ClearMeshes (2) below).

Synopsis:
voi d Cl ear Meshes () const

Notes:

» This function is equivalent to ClearMeshes (true), using version (2) of the
ClearMeshes function (see below). It is only retained for backward
compatibility, and may be removed in future versions.

» This function retains all mesh animations defined for the vessel even after
the meshes are deleted. This is only useful if the same meshes are loaded in
the same order subsequently, so that the animations point to the appropriate
meshes and mesh groups and can be re-used. If different meshes are
loaded later, the behaviour of the animations becomes undefined.

ClearMeshes (2)
Removes all previously declared meshes for the vessel’s visual representation.

Synopsis:
voi d C ear Meshes (bool retain_anim const

Parameters:
retain_anim flag for retaining mesh animations

Notes:

« If retain_anim is false, all animations defined for the vessel are deleted
together with the meshes. If true, the animations stay behind. This is only
useful if the same meshes are subsequently added again in the same order.

* Inthe future, version (1) of ClearMeshes will be removed, and retain_anim
will have a default value of false.

SetMeshVisibilityMode
Defines whether a mesh is visible for cockpit or external camera modes.

Synopsis:

voi d Set MeshVisibilityMde (U NT neshidx, WORD node) const
Parameters:

meshidx mesh index as returned by AddMesh

mode visibility mode
Notes:

* mode can be a combination of any of the following flags:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 108

MESHVIS_EXTERNAL | the mesh is rendered in external camera
modes

MESHVIS_COCKPIT the mesh is rendered in internal (cockpit)
camera modes

MESHVIS_VC the mesh is only rendered in internal virtual
cockpit camera modes
MESHVIS_ALWAYS shortcut for

MESHVIS_EXTERNAL|MESHVIS_COCKPIT

MESHVIS_EXTPASS a modifier that can be used in conjunction with
any other modes: forces the mesh to be
rendered during the external pass

* The default mode after adding a mesh is MESHVIS_EXTERNAL.

» MESHVIS_EXTPASS can’t be used on its own, but as a modifier to any of
the other visibility modes. If specified, it forces the mesh to be rendered in
Orbiter's external render pass, even if it is labelled as internal (e.g.
MESHVIS_COCKPIT or MESHVIS_VC). The significance of the external
render pass is that it allows the mesh to be obscured by other objects in front
of it. However, objects in the external render pass are clipped at a camera
distance of 2.5m. Meshes that are rendered during the internal pass always
cover all other objects, and have a smaller clipping distance.

* Use the MESHVIS_EXTPASS modifier for parts of the vessel that are visible
from the cockpit, but are not close to the camera and may be obscured by
other objects. An example is the Shuttle payload bay, which can be covered
by payload vessels.

SetMeshVisiblelnternal
O EJEIE. This method has been replaced by SetMeshVisibilityMode.
Marks a mesh as visible from internal cockpit view.

Synopsis:
voi d Set MeshVi si bl el nternal (

U NT neshi dx,
bool visible) const

Parameters:
meshidx mesh index as returned by AddMesh
visible visibility flag

Notes:
» By default, a vessel is not rendered when the camera is in internal (cockpit)
view. This function can be used to force rendering of some or all of the
vessel's meshes.

SetExhaustScales
Sets the longitudinal and transversal scaling factors for exhaust rendering

voi d Set Exhaust Scal es (

EXHAUSTTYPE exh,
WORD i d,

doubl e I scal e,

doubl e wscal €) const

Parameters:
exh engine group identifier (main, retro, hover, custom)
id engine identifier, as returned by AddExhaustRef

Iscale longitudinal scaling factor

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 109

wscale transversal scaling factor

Notes:
* This function must be called for custom engines to reflect changes in thrust
level. For standard engine types, this is done automatically.

MeshgroupTransform
Transform a mesh group of the vessel’s visual. Transformations include translation,
rotation and scaling.

Synopsis:
bool MeshgroupTransform (

VI SHANDLE vi s,
const MESHGROUP_TRANSFORM &nt) const

Parameters:

vis visual handle

mt transformation parameters
Notes:

» The MESHGROUP_TRANSFORM structure is defined as follows:

typedef struct {
uni on {
struct { /I rotation parameters
VECTOR3 ref; /1 rotation axis reference point
VECTOR3 axi s; /I rotation axis direction
float angle; /I rotation angle (rad)
} rotparam
struct { /I translation parameters
VECTOR3 shift; /[translation vector
} transparam
struct { /I scaling parameters
VECTOR3 scal e; /1 scaling factors along coordinate axes
} scal eparam
} PR
int nnesh; /I mesh id
int ngrp; /I group id
enum { TRANSLATE, ROTATE, SCALE }
transform /I transform type
} MESHGROUP_TRANSFORM

* If ngrp is set to < 0 then the complete mesh is transformed.

SetReentryTexture
Select a previously registered texture to be used for rendering reentry flames.

Synopsis:
voi d SetReentryTexture (

SURFHANDLE t ex,

doubl e plimt=6e7,

doubl e I scal e=1. 0,

doubl e wscal e=1.0) const

Parameters:
tex texture handle
plimit friction power limit
Iscale texture length scaling factor
wscale texture width scaling factor
Notes:

e The texture handle is obtained by a previous call to
oapiRegisterReentryTexture.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 110

« If a custom texture is not explicitly set, Orbiter uses a default texture
(reentry.dds) for rendering reentry flames. To suppress reentry flames
altogether for a vessel, call SetReentryTexture(NULL).

See also:
oapiRegisterReentryTexture

RegisterAnimation

Logs a request for calls to ovcAnimate, while the vessel’s visual exists.

Synopsis:
voi d Regi sterAni mati on (voi d) const

Notes:

e This function allows to implement animation sequences in combination with
the ovcAnimate callback function. After a call to RegisterAnimation,
ovcAnimate is called at each time step, if the vessel’s visual exists.

» Use UnregisterAnimation to stop further calls to ovcAnimate.

» Orbiter uses a reference counter to log animation requests. It calls
ovcAnimate as long as counter > 0,

» If ovcAnimate is not implemented by the module, RegisterAnimation has no
effect.

UnregisterAnimation

Unlogs an animation request.

Synopsis:
voi d Unregi sterAni mation (voi d) const

Notes:
» This stops a request for animation callback calls from a previous
RegisterAnimation.
* The call to UnregisterAnimation should not be placed in the body of
ovcAnimate, since it may be lost if the vessel’s visual doesn’t exist.

CreateAnimation

Create a “semi-automatic” animation sequence. The sequence can contain multiple
components (rotations, translations, scalings of mesh groups) with a fixed temporal
correlation. The animation is driven by manipulating its “state”, which is a number
between 0 and 1 used to linearly interpolate the animation within its range. See API
User’s Guide for details.

Synopsis:
U NT CreateAnimation (double initial_state) const

Parameters:
initial_state the animation state corresponding to the unmodified mesh

Return value:
Animation identifier

Notes:
e Once you have created an animation, use AddAnimationComponent to add
components.
e Use SetAnimation to manipulate the animation state.
e initial_state defines at which state the animation is stored in the mesh file.
Example: Landing gear animation between retracted state (0) and deployed

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 111

state (1). If the landing gear is retracted in the mesh file set initial_state to O.
If it is deployed in the mesh file, set initial_state to 1.

DelAnimation
Delete an existing animation sequence.

Synopsis:
bool Del Ani mation (U NT anin) const
Parameters:
anim animation identifier, as returned by CreateAnimation

Return value:
true if animation was deleted successfully

Notes:

* The animation is deleted by removing all the components associated with it.
Subsequently, any calls to SetAnimation using this animation index will not
have any effect.

» Before the animation is deleted, the mesh groups associated with the
animation are reset to their default (initial) positions.

AddAnimationComponent
Add a component (rotation, translation or scaling of mesh groups) to an animation.
Optionally, animations can be stacked hierachically, where transforming a parent
recursively also transforms all its children (e.g. a wheel spinning while the landing gear
is being retracted).

Synopsis:
ANI MATI ONCOVPONENT _HANDLE AddAni mat i onConponent (
U NT ani m
doubl e stat e0,
doubl e statel,
MGROUP_TRANSFORM *t r ans,
ANI MATI ONCOVPONENT_HANDLE parent = NULL) const

Parameters:
anim animation identifier, as returned by CreateAnimation
stateO animation cutoff state 0 for the component
statel animation cutoff state 1 for the component
trans transformation data (see notes)
parent parent transformation

Return value:
Animation component handle

Notes:

» state0 and statel (0..1) allow to define the temporal endpoints of the
component’s animation within the sequence. For example, state0=0 and
statel=1 perform the animation over the whole sequence animation, while
state0=0 and state1=0.5 perform the animation over the first half of the
sequence animation. This allows to build complex animations where different
components are animated in a defined temporal sequence.

e MGROUP_TRANSFORM is the base class for mesh group transforms. The
following derived classes are available:

MEROUP_ROTATE (rotation)
Constructor:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 112

MEROUP_ROTATE (Ul NT nmesh, U NT *grp, U NT ngrp,
const VECTOR3 &ref, const VECTOR3 &axi s,
float angle)

where:
mesh mesh index (O=first mesh, etc.)
grp array of mesh group indices
ngrp nhumber of mesh groups
ref rotation reference point
axis rotation axis
angle angular range of rotation [rad]

MEROUP_TRANSLATE (translation)

Constructor:

MEROUP_TRANSLATE (Ul NT nesh, U NT *grp, U NT ngrp,
const VECTOR3 &shift)

where:
mesh mesh index
grp array of mesh group indices
ngrp number of mesh groups
shift translation vector

MEROUP_SCALE (scaling)
Constructor:
MGEROUP_SCALE (Ul NT nesh, U NT *grp, U NT ngrp,
const VECTOR3 &ref, const VECTOR3 &scal e)
where:
mesh mesh index
arp array of mesh group indices
ngrp number of mesh groups
ref reference point for scaling origin
scale scaling factors in x, y and z

¢ To animate a complete mesh, rather than individual mesh groups, set the
“grp” pointer to NULL in the constructor of the corresponding
MGROUP_TRANSFORM operator. The “ngrp” value is then ignored.

* To define a transformation as a child of another transformation, set parent to
the handle returned by the AddAnimationComponent call for the parent.

* Instead of adding mesh groups to an animation, it is also possible to add a
local VECTORS array. To do this, set “mesh” to LOCALVERTEXLIST, and
set “grp” to MAKEGROUPARRAY (vtxptr), where vtxptr is the VECTOR3
array. “ngrp” is set to the number of vertices in the array. Example:

VECTOR3 vtx[2] = {_\V(0,0,0), _V(1,0,-1)};

MGROUP_TRANSFORM *nt = new MGROUP_TRANSFORM (LOCALVERTEXLI ST,
MAKEGROUPARRAY(Vvt X), 2);

AddAni mat i onConponent (anim 0, 1, nt);

Transforming local vertices in this way does not have an effect on the visual
appearance of the animation, but it can be used by the module to keep track
of a transformed point during animation. The Atlantis module uses this
method to track a grappled satellite during animation of the RMS arm.

Bugs:
* When defining a scaling transformation as a child of a parent rotation, only

homogeneous scaling is supported, i.e. scale.x = scale.y = scale.z is
required.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 113

DelAnimationComponent
Remove a component from an animation.

Synopsis:
bool Del Ani mati onConponent (
U NT ani m
ANI MATI ONCOVPONENT_HANDLE hAC)
Parameters:
anim animation identifier
hAC animation component handle

Return value:
false indicates failure (anim out of range, or hAC invalid)

Notes:
« If the component has children belonging to the same animation, these will be
deleted as well.
* Inthe current implementation, the component must not have children
belonging to other animations. Trying to delete such a component will result
in undefined behaviour.

SetAnimation
Set the state of an animation.

Synopsis:
bool Set Aninmation (U NT anim double state) const

Parameters:
anim animation identifier
state animation state (0..1)

Return value:
false indicates failure (animation identifier out of range)

Notes:

« Each animation is defined by its state, with extreme points state=0 and
state=1. When setting a state between 0 and 1, Orbiter carries out the
appropriate transformations to advance the animation to that state. It is the
responsibility of the code developer to call SetAnimation in such a way as to
provide a smooth movement of the animated parts.

RegisterAnimSequence
Olefe][E1f=. This method has been replaced by CreateAnimation. It is available for
backward compatibility only and will be removed in a future version.

Synopsis:
U NT Regi st er Ani nSequence (doubl e defstate) const

Parameters:
defstate animation state stored in the mesh.

Return value:
Animation sequence identifier.

Notes:

« Unlike RegisterAnimation/UnregisterAnimation, this function allows to create
animation sequences which are processed by the Orbiter core, rather than

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 114

manually by the module. The user only needs to define the components of
the animation sequence once after creating the vessel, using
AddAnimComp, and can then manipulate the animation state via
SetAnimState.

« Each animation sequence is defined by its state, which has a value between
0 and 1. For example, for an animated landing gear operation state 0 may
correspond to retracted gears, state 1 to fully deployed gears.

» defstate defines at which state the animation is stored in the mesh file.

AddAnimComp
I, This method has been replaced by AddAnimationComponent. It is available
for backward compatibility only and will be removed in a future version.

Synopsis:
bool AddAni nConmp (Ul NT seq, AN MCOVP *conp)

Parameters:
seq sequence identifier, as returned by RegisterAnimSequence
comp animation component description (see notes)

Return value:
false indicates failure.

Notes:
« ANIMCOMRP is a structure defining the component’s animation:

typedef struct {
U NT *grp; /I array of group indices to be included in component
U NT ngrp; /I number of groups in the grp array
doubl e st at e0; /I animation cutoff state 1
doubl e statel; /I animation cutoff state 2
MESHGROUP_TRANSFORM trans; // transformation parameters

1 AN MCOWP;

» For a complete description of the MESHGROUP_TRANSFORM structure
see method VESSEL::MeshgroupTransform.

* Note that in this case the angle or shift fields in
MESHGROUP_TRANSFORM describe the range of animation, e.g. the
angle over which a landing gear is rotated from fully retracted to fully
deployed.

+ state0 and statel (0..1) allow to define the temporal endpoints of the
component’s animation within the sequence. For example, state0=0 and
statel=1 perform the animation over the whole sequence animation, while
state0=0 and state1=0.5 perform the animation over the first half of the
sequence animation.

RecordEvent
Writes a custom tag to the vessel’s articulation data stream during a running recording
session.

Synopsis:
voi d RecordEvent (

const char *event type,
const char *event) const

Parameters:
event_type eventtag label
event event string

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 115

Notes:
» This function can be used to record custom vessel events (e.g. animations)
to the articulation stream (.atc) of a vessel record.
* The function does nothing if no recording is active, so it is not necessary to
check for a running recording before invoking RecordEvent.
* To read the recorded articulation tags during the playback of a recorded
session, overload the VESSEL2::clbkPlaybackEvent callback function.

11.17 Particle systems

AddParticleStream
Add a custom particle stream to a vessel.

Synopsis:
PSTREAM HANDLE AddParticl eStream (

PARTI CLESTREAVSPEC *pss,
const VECTOR3 é&pos,
const VECTOR3 &dir,
doubl e *lIvl) const

Parameters:
pss pointer to particle stream definition structure
pos particle source position (vessel coordinates)
dir particle emission direction (vessel coordinates)
vl pointer to scaling factor

Return value:
Particle stream handle

Notes:

» This function can be used to add venting effects and similar. For engine-
specific effects such as exhaust and contrails, use the AddExhaustStream
functions instead.

* The PARTICLESTREAMSPEC structure is defined in section 8. More details
can be found in the Programmer’s Guide.

* The position and direction variables are in vessel-relative coordinates. They
cannot be redefined.

* vl points to a variable which defines the strength of the particle emission. Its
value should be set in the range from 0 (particle generation off) to 1
(emission at full strength. It can be changed continuously to modulate the
particle generation.

AddExhaustStream (1)
Add a particle stream definition to generate an exhaust stream for a vessel. Exhaust
streams can be emissive (to simulate “glowing” ionised gases) or diffuse (e.g. for
simulating vapour trails).

Synopsis:
PSTREAM HANDLE AddExhaust Stream (

THRUSTER_HANDLE t h,
PARTI CLESTREAMSPEC *pss = 0) const

Parameters:
th thruster handle to which the exhaust stream is linked.
pss particle stream specification

Return value:
Handle to the newly created particle stream.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 116

Notes:

* The PARTICLESTREAMSPEC structure is defined in section 8. More details
can be found in the Programmer’s Guide.

» Multiple streams can be defined for a single engine. For example, an
emissive stream with short lifetime may represent the ionised exhaust gases,
while a diffuse stream with longer lifetime represents the vapour trail.

* Toimprove performance, closely packed engines may share a single
exhaust stream.

« If the user has disabled particle streams in the launchpad dialog, this
function will return NULL. The module must be able to cope with this case.

AddExhaustStream (2)
Add a particle stream definition to generate an exhaust stream for a vessel. This
version allows to specify an independent reference point for particle emission.

Synopsis:
PSTREAM HANDLE AddExhaust Stream (
THRUSTER_HANDLE t h,
const VECTOR3 &pos,
PARTI CLESTREAMSPEC *pss = 0) const

Parameters:
th thruster handle to which the exhaust stream is linked.
pos particle emission reference point
pss particle stream specification

Return value:
Handle to the newly created particle stream.

Notes:
» This version allows to pass an explicit particle emission reference position,
independent of the engine reference point.
» If the user has disabled particle streams in the launchpad dialog, this
function will return NULL. The module must be able to cope with this case.
AddReentryStream

Add a particle stream definition to generate a reentry stream for a vessel.

Synopsis:
PSTREAM HANDLE AddReentryStream (
PARTI CLESTREAMSPEC *pss) const

Parameters:
pss particle stream specification

Return value:
Handle to the newly created particle stream.

Notes:
» Vessels automatically define a default emissive particle stream, but you may
want to add further stream to customise the appearance.

DelExhaustStream
Delete a previously added particle stream.

Synopsis:
bool Del Exhaust Stream (PSTREAM HANDLE ch) const

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 117

Parameters:
ch particle stream handle

Return value:
false indicates failure (particle stream does not exist)

Notes:
« If athruster is deleted (with DelThruster), any attached particle streams are
deleted automatically.
» A deleted particle stream will no longer emit particles, but existing particles
persist until they expire.

11.18 Light beacon management

Light beacons on vessels can be used to simulate navigation lights, strobes, etc. to improve
visibility in darkness or at long distances. Beacons are emissive “spots” of light. They glow in
the darkness, but they don't illuminate anything else (so they can't be used as taxi-lights or
similar).

While it is possible to implement beacons simply by adding mesh groups with an emissive
material component to the vessel mesh, using the beacon management mechanism has a
few advantages:

» beacons are implemented as billboard meshes facing the camera, so they only require a
simple 2-D texture similar to exhaust flames and particles.

» They can be set up to be visible at longer distances, by reducing the geometric distance
dropoff factor.

» they can be switched on and off easily.

» they can be set up as strobes easily without need to manipulate the mesh.

» their parameters (position, colour, size, etc.) can be modified easily.

AddBeacon
Add a light beacon definition to the vessel.

Synopsis:
voi d AddBeacon (BEACONLI GHTSPEC *bs)
Parameters:
bs pointer to a BEACONLIGHTSPEC structure defining the beacon
parameters (see notes)
Notes:

» BEACONLIGHTSPEC is a structure that defines the properties of the
beacon. It has the following elements:

typedef struct {
DWORD shape; /I beacon shape id
VECTCR *pos; /I pointer to position in vessel frame
VECTCR *col ; /I pointer to beacon RGB colour
doubl e si ze; /I beacon size
doubl e falloff; /I beacon distance dropoff factor
doubl e peri od; /I strobe period [s] (0 for continuous)
doubl e durati on; /I strobe duration (< period)
doubl e tofs; /I strobe time offset (< period)
bool active; /I beacon lit?

} BEACONLI GHTSPEC;

e The BEACONLIGHTSPEC variable passed to AddBeacon (as well as the
pos and col vectors pointed to by the structure) must remain valid until the
beacon is removed (with DelBeacon, ClearBeacons, or by deleting the
vessel). It should therefore either be defined static, or as a member of the
derived vessel class.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 118

« The BEACONLIGHTSPEC parameters can be modified at any time by the
module after the call to AddBeacon, to modify the beacon appearance. The
changes take effect immediately.

» To turn the beacon off temporarily, don’t delete the beacon but simply set the
active element to false.

» shape defines the appearance of the beacon. Currently supported are:

« BEACONSHAPE_COMPACT (a compact blob)
« BEACONSHAPE_DIFFUSE (a more diffuse blob)
« BEACONSHAPE_STAR (a starlike appearance)

» falloff detemines how the render size of the beacon changes with distance.
The value should be between 0 and 1, where 0 means that the apparent size
of the beacon is proportional to 1/distance, and 1 means that the apparent
size doesn’t change at all with distance. The higher the value, the further
away the beacon will remain visible. (but note that visibility is limited to the
range defined by VESSEL::SetVisibilityLimit).

» period, duration and tofs are used to define a periodically blinking beacon
(strobe). To define a continuous beacon, set period = 0. The two other
parameters are then ignored.

DelBeacon
Remove a beacon definition from the vessel.

Synopsis:
bool Del Beacon (BEACONLI GHTSPEC *bs)
Parameters:
bs pointer to the BEACONLIGHTSPEC structure previously used to

define the beacon with AddBeacon.

Return value:
true if the beacon definition was found and removed, false otherwise.

ClearBeacons
Remove all beacon definitions from the vessel.

Synopsis:
voi d Cl earBeacons ()

12 VESSEL class extensions

Additions to the VESSEL interface are implemented by a chain of classes derived from
VESSEL. Each interface in the chain inherits all methods of the previous classes. New
interfaces may add addtional callback or query functions. You should always derive your own
vessel class from the most recent interface in the chain. Older interfaces will remain valid for
backward comparison, unless explicitly stated.

12.1 Class VESSEL?2

Inheritance:
VESSEL - VESSEL2

The VESSEL2 class adds a variety of callback functions to the VESSEL interface (clbkXXX).
These are called by Orbiter to notify the vessel about different types of events and allow it to
react to them. The VESSEL2 class implements these as virtual functions which act as
placeholders to be overwritten by derived classes whenever a non-default behaviour is
required.

Some of the callback methods defined in this section replace oveXXX vessel module callback
functions defined in section 10. In those cases, the default behaviour of VESSEL2::clbkXXX
functions will be to call the equivalent oveXXX function (if it exists) for backward compatibility.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 119

Addon developers should always use the VESSEL2::clbkXXX methods in preference over the
ovcXXX functions.

clbkSetClassCaps
Called after vessel creation, this function allows to set vessel class capabilities and
parameters. This can include definition of physical properties (size, mass, docking
ports, etc.), creation of propellant resources and engines, aerodynamic parameters,
including airfoil definitions, lift and drag properties, or active control surfaces.

Synopsis:

voi d cl bkSet O assCaps (FlI LEHANDLE cf g)
Parameters:

cfg handle for the vessel class configuration file

Default action:
Calls module callback function ovcSetClassCaps if present, for backward
compatibility.

Notes:

» This function is called after the vessel has been created, but before its state
is read from the scenario file. This means that its state (position, velocity,
fuel level, etc.) is undefined at this point.

» Use this function to set vessel class capabilities, not vessel state
parameters.

» Orbiter will scan the vessel class configuration file for generic parameters
(like mass or size) after clbkSetClassCaps returns. This allows to override
generic caps defined in the module by editing the configuration file.

» The configuration file handle is also passed to clbkSetClassCaps, to allow
reading of vessel class-specific parameters from file.

* The default action of calling ovcSetClassCaps will be dropped in future
versions.

clbkLoadStateEx
Called when the vessel needs to load its initial state from a scenario file.

Synopsis:

voi d cl bkLoadSt at eEx (FI LEHANDLE scn, voi d *status)
Parameters:

scn scenario file handle

status pointer to VESSELSTATUSKX structure (X = 2)

Default action:
Calls ovcLoadStateEx if defined by the module, for backward compatibility. In
ovcLoadStateEx doesn’t exist, clbkLoadStateEx loads the generic vessel state.

Notes:

e This callback function allows to read custom vessel status parameters from a
scenario file.

* The function should define a loop which parses lines from the scenario file
via oapiReadScenario_nextline.

e You should not call the base class VESSEL2::clbkLoadStateEx to parse
generic parameters, because this will skip over any custom scenario entries.
Instead, any lines which the module parser does not recognise should be
forwarded to Orbiter’s default scenario parser via
VESSEL::ParseScenarioLineEx.

e Orbiter will always pass the latest supported VESSELSTATUSX version to
ovcLoadStateEx. This is currently VESSELSTATUSZ2, but may change in

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 120

See also:

future versions. To maintain compatibility, vs should therefore not be used
other than to pass it on to ParseScenarioLineEx.
A typical parser implementation may look like this:

voi d MyVessel :: cl bkLoadSt at eEx (FI LEHANDLE scn, void *status)
{

char *line;
int ny_val ue;

whi | e (oapi ReadScenari o_nextline (scn, line)) {
if (!strnicnp (line, “ny_option”, 9)) { // customitem
sscanf (line+9, “%l”, &my_val ue);
} elseif (...) { //moreitems

} else { /I anything not recognised is passed on to Orbiter
Par seScenari oLi neEx (line, vs);
}

VESSELSTATUS2
VESSEL::ParseScenarioLineEx
oapiReadScenario_nextline

clbkSaveState

Called when the vessel needs to save its current status to a scenario file (typically at
the end of a simulation session).

Synopsis:

voi d cl bkSaveSt at e (FI LEHANDLE scn)
Parameters:

scn scenario file handle

Default action:
Calls ovcSaveState if defined by the module, for backward compatibility. If
ovcSaveState doesn't exist, clbkSaveState saves the generic vessel state.

Notes:

clbkSetStateEx

This function only needs to be overloaded if the vessel must save
nonstandard parameters.

If clbkSaveState is overloaded, generic state parameters will only be written
if the base class VESSEL2::clbkSaveState is called.

To write custom parameters to the scenario file, use the oapiWriteLine
function.

The default action of calling ovcSaveState will be dropped in future versions.

This callback function is invoked by Orbiter when a vessel is created during the
simulation with a call to oapiCreateVesselEx. It allows the vessel to initialise its state
according to the provided VESSELSTATUSKX interface (version x = 2). To allow default
initialisation, the status can be passed to VESSEL::DefSetStateEx.

Synopsis:

voi d cl bkSet St at eEx (const void *status)
Parameters:

status pointer to a VESSELSTATUSKX structure

Default action:
Calls the module’s ovcSetStateEx callback function if present, to provide
backward compatibility.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 121

Otherwise invokes Orbiter’s default state initialisation.

Calling sequence:
This function is called when the vessel is being created with
oapiCreateVesselEx, after its clbkSetClassCaps has been invoked and before its
clbkPostCreation method is invoked. Vessels that are created during simulation
start as a result of parsing the scenario file invoke clbkLoadStateEx instead.

Notes:

» This callback function receives the VESSELSTATUSKX structure passed to
oapiCreateVesselEx. It must therefore be able to process the interface
version used by those functions.

» This function remains valid even if future versions of Orbiter introduce new
VESSELSTATUSKX interfaces.

* To enable default state initialisation, call DefSetStateEx from
clbkSetStateEx.

* Atypical implementation may look like this:

voi d MyVessel :: cl bkSet St at eEx (const voi d *status)
{

/'l specialised vessel initialisations
...

/1 default initialisation:
Def Set St at eEx (st atus);
}

clbkPostCreation
Called after a vessel has been created and its state has been set.

Synopsis:
voi d cl bkPost Creation ()

Default action:
Calls the module callback function ovcPostCreation if present, to provide
backward compatibility.

Calling sequence:
This function is called during vessel creation after clbkSetStateEx or
clbkLoadStateEx have been called and before the vessel enters the update loop,
i.e. before its clbkPreStep is invoked for the first time.
Vessels that are created at the start of the simulation (i.e. are listed in the
scenario) call their clbkPostCreation after all scenario vessels have been
created.

Notes:

* This function can be used to perform the final setup steps for the vessel,
such as animation states and instrument panel states. When this function is
called, the vessel state (e.g. position, thruster levels, etc.) have been
defined.

e The default action of calling ovcPostCreation will be dropped in future
versions.

clbkPlaybackEvent
Called during playback of a recording session when a custom event tag in the vessel's
articulation stream is encountered.

Synopsis:
bool cl bkPl aybackEvent (
doubl e sint,

doubl e event _t,

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 122

const char *event_type,
const char *event)

Parameters:
simt current simulation time
event t recorded event time
event_type event tag string
event event data string

Return value:
Should return true if the event type is recognised and processed, false otherwise.

Default action:
Do nothing, return false.

Notes:
» This function can be used to process any custom vessel events that have
been recorded with VESSEL::RecordEvent during a recording session.

clbkFocusChanged
Called after a vessel gained or lost input focus.

Synopsis:
voi d cl bkFocusChanged (

bool getfocus,
OBJHANDLE hNewVessel ,
OBJHANDLE hd dVessel)

Parameters:
getfocus true if the vessel gained focus, false if it lost focus
hNewVesselhandle of vessel gaining focus
hOldVessel handle of vessel losing focus

Default action:
Calls the module callback function ovcFocusChanged if present, to provide
backward compatibility.

Notes:

* Whenever the input focus is switched to a new vessel (e.g. via user selection
F3), this method is called for both the vessel losing focus (getfocus=false)
and the vessel gaining focus (getfocus=true).

* In both calls, hNewVessel and hOldVessel are the vessel handles for the
vessel gaining and the vessel losing focus, respectively.

* This method is also called at the beginning of the simulation for the initial
focus object. In this case hOldVessel is NULL.

clbkPreStep
Called at each simulation time step before the state is updated to the current simulation
time. This function allows to define actions which need to be controlled continuously.

Synopsis:
void cl bkPreStep (doubl e Sinl, double SinDT, double njd)
Parameters:
SimT next simulation run time (second)
SimDT step length over which the current state will be integrated (seconds)
mjd next absolute simulation time (days) in Modified Julian Date format

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 123

Default action:
None

Notes:

» This function is called at each frame of the simulation, after the integration
step length has been determined, but before the time integration is applied to
the current simulation state.

» This function is useful when the step length At is required in advance of the
time integration, for example to apply a force that produces a given Ay, since
the AddForce request will be applied in the next update. Using clbkPostStep
for this purpose would be wrong, because its At parameter refers to the
previous step length.

voi d MyVessel ::cl bkPreStep (double sint, double sindt, double njd)

doubl e F = mass * dv/sindt;
AddForce(_V(0,0,F), _V(0,0,0));
}

See also:
VESSELZ2::clbkPostStep, opcPreStep, opcPostStep

clbkPostStep
Called at each simulation time step after the state has been updated to the current
simulation time. This function allows to define actions which need to be controlled
continuously.

Synopsis:

voi d cl bkPost Step (double sim, double sindt, double njd)
Parameters:

simt current simulation run time (seconds)

simdt last time step length (seconds)

mjd absolute simulation time (days) in Modified Julian Date format.

Default action:
Calls the module callback function ovcTimestep(this,simt) if present, to provide
backward compatibility.

Notes:

* This function, if implemented, is called at each frame for each instance of
this vessel class, and is therefore time-critical. Avoid any unnecessary
calculations here which may degrade performance.

* The default action of calling ovcTimestep will be dropped in future versions.

See also:
VESSELZ2::clbkPreStep, opcPreStep, opcPostStep

clbkVisualCreated
Called after a visual representation (a render object) has been created for the vessel.

Synopsis:

voi d cl bkVi sual Created (VI SHANDLE vis, int refcount)
Parameters:

vis handle for the newly created visual

refcount visual reference count

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 124

Default action:
Calls the module ovcVisualCreated callback function if present, for backward
compatibility.

Notes:

» The logical interface to a vessel exists as long as the vessel is present in the
simulation. However, the visual interface exists only when the vessel is
within visual range of the camera. Orbiter creates and destroys visuals as
required. This enhances simulation performance in the presence of a large
number of objects in the simulation.

* Whenever Orbiter creates a vessel's visual it reverts to its initial configuration
(e.g. as defined in the mesh file). The module can use this function to update
the visual to the current state, wherever dynamic changes are required.

* More than one visual representation of an object may exist. The refcount
parameter defines how many visual interfaces to the object exist.

» The default action of calling ovcVisualCreated will be dropped in future
versions.

clbkVisualDestroyed
Called before the visual representation of the vessel is destroyed.

Synopsis:

voi d cl bkVi sual Destroyed (VI SHANDLE vis, int refcount)
Parameters:

vis handle for the visual to be destroyed

refcount visual reference count

Default action:
Calls the module ovcVisualDestroyed callback function if present, for backward
compatibility.

Notes:

* Orbiter calls this function before it destroys a visual representation of the
vessel. This may be in response to the destruction of the actual vessel, but
in general simply means that the vessel has moved out of visual range of the
current camera location.

» The default action of calling ovcVisualDestroyed will be dropped in future
versions.

clbkRCSMode
Called when a vessel’'s RCS (reaction control system) mode changes. Usually the RCS
consists of a set of small thrusters arranged so as to allow controlled attitude changes.
In Orbiter, the RCS can be driven in either rotational mode (to change the vessel's
angular velocity) or in linear mode (to change its linear velocity), or be switched off.

Synopsis:
voi d cl bkRCSMode (int node)
Parameters:
mode new RCS mode: O=disabled, 1=rotational, 2=linear

Default action:
Calls the module ovcRCSmode callback function if present, for backward
compatibility.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 125

Notes:

» This callback function is invoked when the user switches RCS mode via the
keyboard (“/” or “Ctrl-/” on numerical keypad) or after a call to
VESSEL::SetAttitudeMode or VESSEL::ToggleAttitudeMode.

* Not all vessel types may support a reaction control system. In that case, the
callback function can be ignored by the module.

clbkADCtrIMode
Called when user input mode for aerodynamic control surfaces (elevator, rudder,
aileron) changes.

Synopsis:

voi d cl bkADCt r| Mode (DWORD node)
Parameters:

mode control mode

Default action:
Calls module ovcADCtrimode callback function if present. Otherwise no action.

Notes:
* The returned control mode contains bit flags as follows:
bit O: elevator enabled/disabled
bit 1: rudder enabled/disabled
bit 2: ailerons enabled/disabled
Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates
fully enabled.

clbkNavMode
Called when an automated “navigation mode” is activated or deactivated for a vessel.
Most navigation modes engage the vessel’'s RCS to attain a specific attitude, including
pro/retrograde, normal to the orbital plane, level with the local horizon, etc.

Synopsis:
voi d cl bkNavMode (i nt node, bool active)
Parameters:
mode navmode identifier (see Section 9).
active true if activated, false if deactivated.

Default action:
Calls the module ovcNavmode callback function if present, for backward
compatibility.

clbkHUDMode
Called after a change of the vessel's HUD (head-up-display) mode.

Synopsis:

voi d cl bkHUDMode (int node)
Parameters:

mode new HUD mode

Default action:
Calls the module ovcHUDmode callback function if present, for backward
compatibility.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 126

Notes:
* For currently supported HUD modes see HUD_xxx constants in section 9.
 mode HUD_NONE indicates that the HUD has been turned off.

clbkMFDMode
Called when the user has switched one of the MFD (multi-functional display)
instruments to a different display mode.

voi d cl bkM-DMode (int nfd, int node)
Parameters:

mfd MFD identifier (see Section 9)

mode new MFD mode id (see notes)

Default action:
Calls the module ovcMFDmode callback function if present, for backward
compatibility.

Notes:

» This callback function can be used to refresh the MFD button labels after the
MFD mode has changed, or if a mode requires a dynamic label update.

* The mode parameter can be one of the MFD mode identifier listed in Section
9, or MFD_REFRESHBUTTONS. The latter is sent as a result of a call to
oapiRefreshMFDBuUttons. It indicates not a mode change, but the need to
refresh the button labels within a mode (i.e. a mode that dynamically
changed its labels).

clbkDrawHUD
Called when the vessel’s head-up display (HUD) needs to be redrawn (usually at each
time step, unless the HUD is turned off). Overwriting this function allows to implement
vessel-specific modifications of the HUD display (or to suppress the HUD altogether).

Synopsis:
voi d cl bkDr awHUD (
i nt node,
const HUDPAI NTSPEC * hps,
HDC hDC)
Parameters:
mode HUD mode (see HUD_xxx constants in section 9).
hps pointer to a HUDPAINTSPEC structure (see notes)
hDC GDI drawing device context

Default action:
Draws a standard HUD display with Orbiter’s default display layout.

Notes:
» If a vessel overwrites this method, Orbiter will draw the default HUD only if
the base class VESSEL::clbkDrawHUD is called.
e hps points to a HUDPAINTSPEC structure containing information about the
HUD drawing surface. It has the following format:

typedef struct {
int W H
int CX CY;
doubl e Scal e;
int Mrkersize;
} HUDPAI NTSPEC;

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 127

where W and H are width and height of the HUD drawing surface in pixels,
CX and CY are the x and y coordinates of the HUD centre (the position of
the "forward marker", which is not guaranteed to be in the middle of the
drawing surface or even within the drawing surface!), Scale represents an
angular aperture of 1° expressed in HUD pixels, and Markersize is a "typical"
size which can be used to scale objects like direction markers.

* The device context passed to clbkDrawHUD contains the appropriate
settings for the current HUD display (font, pen, colours). If you need to
change any of the GDI settings, make sure to restore the defaults before
calling the base class clbkDrawHUD. Otherwise the default display will be
corrupted.

* Tryto avoid changing HUD display colours. Orbiter has its own internal
mechanism to allow users to switch the HUD colour.

» clbkDrawHUD can be used to implement entirely new vessel-specific HUD
modes. In this case, the module would maintain its own record of the current
HUD mode, and ignore the node parameter passed to clbkDrawHUD.

clbkConsumeDirectKey
Keyboard handler. Called at each simulation time step. This callback function allows
the installation of a custom keyboard interface for the vessel.

Synopsis:

i nt ovcConsumeDi rect Key (char *kstate)
Parameters:

kstate keyboard state

Return value:
A nonzero return value will completely disable default processing of the key state
for the current time step. To disable the default processing of selected keys only,
use the RESETKEY macro (see orbiterapi.h) and return 0.

Default action:

Calls the module ovcConsumeKey callback function if present. Otherwise returns
0.

Notes:
« The keystate contains the current keyboard state. Use the KEYDOWN
macro in combination with the key identifiers as defined in orbiterapi.h
(OAPI_KEY_xxx) to check for particular keys being pressed. Example:

if (KEYDOM (kstate, OAPI_KEY_F10)) {
/I perform action
RESETKEY (kstate, OAPI _KEY_F10);
/I optional: prevent default processing of the key

}

e This function should be used where a key state, rather than a key event is
required, for example when engaging thrusters or similar. To test for key
events (key pressed, key released) use clbkConsumeBufferedKey instead.

clbkConsumeBufferedKey
This callback function notifies the vessel of a buffered key event (key pressed or key

released).
Synopsis:
i nt ovcConsuneBufferedKey (
DWORD key,
bool down,

char *kstate)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 128

Parameters:

key key scan code (see OAPI_KEY_xxx constants in orbiterapi.h)
down true if key was pressed, false if key was released
kstate current keyboard state

Return value:
The function should return 1 if Orbiter’s default processing of the key should be
skipped, 0 otherwise.

Default action:
Calls the module ovcConsumeBufferedKey callback function if present.
Otherwise returns 0.

Notes:
* The key state (kstate) can be used to test for key modifiers (Shift, Ctrl, etc.).
The KEYMOD_xxx macros defined in orbiterapi.h are useful for this purpose.
» This function may be called repeatedly during a single frame, if multiple key
events have occurred in the last time step.

clbkDockEvent
Called after a docking or undocking event at one of the vessel's docking ports.

Synopsis:

voi d cl bkDockEvent (int dock, OBJHANDLE mat e)
Parameters:

dock docking port index

mate handle to docked vessel, or NULL for undocking event

Default action:
Calls the module ovcDockEvent callback function if present. Otherwise no action.

Notes:
» dock is the index (= 0) of the vessel's docking port at which the
docking/undocking event takes place.
* mate is a handle to the vessel docking at the port, or NULL to indicate an
undocking event.

clbkAnimate
Called at each simulation time step if the module has registered at least one animation
request and if the vessel’s visual exists.

Synopsis:
voi d cl bkAni mat e (doubl e sint)
Parameters:
simt simulation up time (seconds since simulation start)

Default action:
Calls the module ovcAnimate callback function if present. Otherwise no action.

Notes:
e This callback allows the module to animate the vessel’s visual representation
(moving undercarriage, cargo bay doors, etc.)
» ltis only called as long as the vessel has registered an animation (between
matching VESSEL.::RegisterAnimation and VESSEL::UnregisterAnimation
calls) and if the vessel's visual exists.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 129

clbkLoadGenericCockpit
Called when the vessel’s generic cockpit view (consisting of two “floating” MFD
instruments and a HUD, displayed on top of the 3-D render window) is selected by the
user pressing F8, or by a function call.

Synopsis:
bool cl bkLoadGenericCockpit ()

Return value:
The function should return true if it supports generic cockpit view, false
otherwise.

Default behaviour:
Sets camera direction to “forward” (0,0,1) and returns true.

Notes:

» The generic cockpit view is available for all vessel types by default, unless
this function is overwritten to return false.

* Only disable the generic view if the vessel supports either 2-D instrument
panels (see clbkLoadPanel) or a virtual cockpit (see clbkLoadVC). If no valid
cockpit view at all is available for a vessel, Orbiter will crash.

» Even if the vessel supports panels or virtual cockpits, you shouldn’t normally
disable the generic view, because it provides the best performance on
slower computers.

clbkLoadPanel
Called when Orbiter tries to switch the cockpit view to a 2-D instrument panel.

Synopsis:

bool cl bkLoadPanel (int id)
Parameters:

id panel identifier (= 0)

Return value:
The function should return true if it supports the requested panel, false
otherwise.

Default action:
Calls ovcLoadPanel if defined, for backward compatibility, otherwise returns

false.
Notes:

* Inthe body of this function the module should define the panel background
bitmap and panel capabilities, e.g. the position of MFDs and other
instruments, active areas (mouse hotspots) etc.

e Avessel which implements panels must at least support panel id 0 (the main
panel). If any panels register neighbour panels (see
oapi Set Panel Nei ghbour s), all the neighbours must be supported, too.

* The default action of calling ovcLoadPanel will be dropped in future
versions.

See also:

oapi Regi st er Panel Backgr ound, oapi Regi st er Panel Ar ea,
oapi Regi st er MFD.

clbkPanelMouseEvent
Called when a mouse-activated panel area receives a mouse event.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 130

Synopsis:
bool cl bkPanel MouseEvent (

int id,
int event,
i nt nx,
int ny)
Parameters:
id panel area identifier
event mouse event (see PANEL _MOUSE xxx constants in orbitersdk.h)
mx, my relative mouse position in area at event

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
Calls ovcPanel MbuseEvent if defined, for backward compatibility, otherwise
returns false.

Notes:
* Mouse events are only sent for areas which requested notification during
definition (see oapi Regi st er Panel Ar ea).
» The default action of calling ovcPanel MouseEvent will be dropped in
future versions.

clbkPanelRedrawEvent
Called when a registered panel area needs to be redrawn.

Synopsis:
bool cl bkPanel RedrawEvent (
int id,
i nt event,
SURFHANDLE sur f)
Parameters:
id panel area identifier
event redraw event (see PANEL_REDRAW xxx constants in orbitersdk.h)
surf area surface handle

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
Calls ovcPanel Redr awkEvent if defined, for backward compatibility, otherwise
returns false.

Notes:

* This callback function is only called for areas which were not registered with
the PANEL_ REDRAW NEVER flag.

e Allredrawable panel areas receive a PANEL_REDRAW | NI T redraw
notification when the panel is created, in addition to any registered redraw
notification events.

» The surface handle surf contains either the current area state, or the area
background, depending on the flags passed during area registration.

e The surface handle may be used for blitting operations, or to receive a
Windows device context (DC) for Windows-style redrawing operations.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 131

» The default action of calling ovcPanel Redr awEvent will be dropped in
future versions.

See also:
oapi CGet DC, oapi Rel easeDC, oapi Tri gger Panel Redr awAr ea

clbkLoadVC
Called when Orbiter tries to switch the cockpit view to a 3-D virtual cockpit mode (for
example in response to the user switching cockpit modes with F8).

Synopsis:

bool cl bkLoadVC (int id)
Parameters:

id virtual cockpit identifier (= 0)

Return value:
true if the vessel supports the requested virtual cockpit, false otherwise.

Default action:
None, returning false (i.e. virtual cockpit mode not supported).

Notes:

» Multiple virtual cockpit camera positions (e.g. for pilot and co-pilot) can be
defined. In this case, the body of clbkLoadVC should examine the value of id
and set the VC parameters accordingly. Multiple positions are defined by
specifying the neighbour positions of the current position via a call to
oapiVCSetNeighbours.

* Inthe body of this function the module should define MFD display targets
(with oapiVCRegisterMFD) and other active areas (with
oapiVCRegisterArea) for the requested virtual cockpit.

clbkVCMouseEvent
Called when a mouse-activated virtual cockpit area receives a mouse event.

Synopsis:
bool cl bkVCWbuseEvent (int id, int event, VECTOR3 &p)
Parameters:
id area identifier
event mouse event (see PANEL_MOUSE xxx constants in orbitersdk.h)
p parameter vector (area type-dependent, see notes)

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
None, returning false.

Notes:
e To generate a mouse-activated area in a virtual cockpit, you must do the

following when registering the area during cl bkLoadVC:

» register the area with a call to oapi VCRegi st er Ar ea with a mouse
mode other than PANEL_MOUSE | GNORE.

» define a mouse-click area in the vessel's local frame. Use one of the
oapi VCRegi st er Ar ead i cknmode_ XXX functions. You can define
spherical or quadrilateral click areas.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 132

» Parameter p returns information about the mouse position at the mouse
event. The type of information returned depends on the area type for which
the event was generated:

Areatype p

spherical p.x is distance of mouse event from area centre
p.y and p.z not used

quadrilateral p.x and p.y are the area-relative mouse x and y positions (top
left = (0,0), bottom right = (1,1)
p.z not used

clbkVCRedrawEvent
Called when a registered virtual cockpit area needs to be redrawn.

Synopsis:

bool cl bkVCRedrawkEvent (int id, int event, SURFHANDLE surf)
Parameters:

id area identifier

event redraw event (see PANEL_REDRAW xxx constants in orbitersdk.h)

Return value:
The function should return true if it processes the event, false otherwise.

Default action:
None, returning false.

Notes:

* To allow an area of the virtual cockpit to be redrawn dynamically, the area
must be registered with oapi VCRegi st er Ar ea during ¢l bkLoadVC, using
a redraw mode other than PANEL_REDRAW NEVER.

* When registering the area with oapi VCRegi st er Ar ea, you must also
provide a handle to the texture onto which the redrawn surface is mapped.
This texture must be part of the virtual cockpit mesh, and it must be listed in
the mesh file with the 'D’ (“dynamic”) flag (see 3DModel.pdf).

* “Redrawing” an area is not limited to dynamically updating textures. It may
also involve mesh transforms (e.g. to animate levers and switches rendered
in 3D).

13 Class MFD

This class acts as an interface for user defined MFD (multi functional display) modes. It
provides control over keyboard and mouse functions to manipulate the MFD mode, and
allows the module to draw the MFD display. The MFD class is a pure virtual class. Each user-
defined MFD mode requires the definition of a specialised class derived from MFD. An
example for a generic MFD mode implemented as a plugin module can be found in
orbitersdk\samples\CustomMFD.

Public member functions

13.1 Construction/creation

MFD
Constructor. Creates a new MFD.

Synopsis:
MFD (DWORD w, DWORD h, VESSEL *vessel)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 133

Parameters:

w width of the MFD display (pixel)
h height of the MFD display (pixel)
vessel pointer to VESSEL interface associated with the MFD.

Notes:

« MFD is a pure virtual function, so it can’t be instantiated directly. It is used as
a base class for specialised MFD modes.

* New MFD modes are registered by a call to oapiRegisterMFDMode.
Whenever the new mode is selected by the user, Orbiter sends a
OAPI_MSG_MFD_OPENED signal to the message handler, to which the
module should respond by creating the MFD mode and returning a pointer to
it. Orbiter will automatically destroy the MFD mode when it is turned off.

13.2 Display repaint
Update
Callback function: Orbiter calls this method when the MFD needs to update its display.

Synopsis:

virtual void Update (HDC hDC) = 0
Parameters:

hDC Windows device context for drawing on the MFD display surface.
Notes:

» The frequency at which this function is called corresponds to the “MFD
refresh rate” setting in Orbiter's parameter settings, unless a redraw is forced
by InvalidateDisplay.

» This function must be overwritten by derived classes.

InvalidateDisplay
Force a display update in the next frame. This function causes Orbiter to call the MFD’s
Update method in the next frame.

Synopsis:
voi d I nvalidateDi splay ()

InvalidateButtons
Force the MFD buttons to be redrawn. This is useful to alert Orbiter that the MFD mode
has dynamically modified its button labels.

Synopsis:
voi d I nvalidateButtons ()

Notes:

* Orbiter will call the MFD::ButtonLabel method to retrieve the new button
labels. Therefore this must have been updated to return the new labels
before calling InvalidateButtons.

* If the MFD is part of a 2-D panel view or 3-D virtual cockpit view, Orbiter
calls the VESSEL2::clbkMFDMode method to allow the vessel to update its
button labels. If the MFD is one of the two glass cockpit MFD displays, the
buttons are updated internally.

» If the MFD is displayed in an external window, Orbiter calls the
ExternMFD::clbkRefreshButtons method to refresh the buttons.

Title
Displays a title string in the upper left corner of the MFD display.

Synopsis:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 134

void Title (HDC hDC, const char *title) const

Parameters:

hDC device context

title title string (null-terminated)
Notes:

» This method should be called from within Update()

» The title string can contain up to approx. 35 characters when displayed in the
default Courier MFD font.

» This method switches the text colour of the GDI context to white.

SelectDefaultFont

Selects a predefined MFD font into the device context.

Synopsis:

HFONT Sel ect Def aul t Font (HDC hDC, DWORD i) const
Parameters:

hDC Windows device context

i font index

Return value:
Windows font handle

Notes:

e Currently supported are font indices 0-2, where

0 = standard MFD font (Courier, fixed pitch)
1 = small font (Arial, variable pitch)
2 = small font, rotated 90 degrees (Arial, variable pitch)

* In principle, an MFD mode may create its own fonts using the standard
Windows CreateFont function, but using the predefined fonts is preferred to
provide a consistent MFD look.

» Default fonts are scaled automatically according to the MFD display size.

SelectDefaultPen

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

Selects a predefined pen into the device context.

Synopsis:

HPEN Sel ect Def aul t Pen (HDC hDC, DWORD i) const
Parameters:

hDC Windows device context

i pen index

Return value:
Windows pen handle

Notes:

e Currently supported are pen indices 0-5, where
0 = solid, HUD display colour
1 = solid, light green
2 = solid, medium green
3 = solid, medium yellow
4 = solid, dark yellow
5 = solid, medium grey

e In principle, an MFD mode may create its own pen resources using the
standard Windows CreatePen function, but using predefined pens is
preferred to provide a consistent MFD look.

135

ButtonLabel
Return the label for the specified MFD button.

Synopsis:

virtual char *ButtonLabel (int bt)
Parameters:

bt button identifier

Return value:
The function should return a O-terminated character string of up to 3 characters,
or NULL if the button is unlabelled.

ButtonMenu
Defines a list of short descriptions for the various MFD mode button/key functions.

Synopsis:

virtual int ButtonMenu (const MFDBUTTONMENU **nenu) const
Parameters:

menu on return this should point to an array of button menu items. (see

notes)

Return value:
number of items in the list

Notes:
* The definition of the MFDBUTTONMENU struct is:
typedef struct {
const char *linel, *line2;
char sel char;
} MFDBUTTONMENU;
containing up to 2 lines of short description, and the keyboard key to trigger
the function.
» Each line should contain no more than 16 characters, to fit into the MFD
display.
e If the menu item only uses one line, then line2 should be set to NULL.
* menu==0 is valid and indicates that the caller only requires the number of
items, not the actual list.
« Atypical implementation would be

int MYMFD: : ButtonMenu (const MFDBUTTONMENU **menu) const

static const MFDBUTTONMENU mu[2] = {
{"Select target", 0, 'T'},

{"Select orbit", "reference", 'R}
i% (menu) *menu = mu;
return 2;
}
13.3 Input
ConsumeKeyBuffered

MFD keyboard handler for buffered keys.

Synopsis:

virtual bool ConsuneKeyBuffered (DWRD key)
Parameters:

key key code (see OAPI_KEY_xxx constants in orbitersdk.h)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 136

Return value:
The function should return true if it recognises and processes the key, false
otherwise.

ConsumeKeylmmediate
MFD keyboard handler for immediate (unbuffered) keys.

Synopsis:

virtual bool ConsumeKeyl medi ate (char *kstate)
Parameters:

kstate: keyboard state.

Return value:
The function should return true only if it wants to inhibit Orbiter’s default
immediate key handler for this time step completely.

Notes:
* The state of single keys can be queried by the KEYDOWN macro.
* The immediate key handler is useful where an action should take place while
a key is pressed.

ConsumeButton
MFD button handler. This function is called when the user performs a mouse click on a
panel button associated with the MFD.

Synopsis:
virtual bool ConsumeButton (int bt, int event)
Parameters:
bt button identifier.
event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)

Return value:
The function should return true if it processes the button event, false otherwise.

Notes:
» This function is invoked as a response to a call to
oapi ProcessM-DBut t on in a vessel module.
» Typically, ConsuneBut t on will call ConsuneKeyBuf f er ed or
ConsuneKeyl nmedi at e to emulate a keyboard event.

13.4 Load/save state

WriteStatus
Called when the MFD should write its status to a scenario file.

Synopsis:

virtual void WiteStatus (FILEHANDLE scn) const
Parameters:

scn scenario file handle (write only)
Notes:

* Use the oapiWriteScenario_xxx functions to write MFD status parameters to
the scenario.

e The default behaviour is to do nothing. MFD modes which need to save
status parameters should overwrite this function.

ReadStatus

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 137

Called when the MFD should read its status from a scenario file.

Synopsis:

virtual void ReadStatus (FlI LEHANDLE scn)
Parameters:

scn scenario file handle (read only)
Notes:

* Use aloop with oapiReadScenario_nextline to read MFD status parameters
from the scenario.

» The default behaviour is to do nothing. MFD modes which need to read
status parameters should overwrite this function.

StoreStatus

Called before destruction of the MFD mode, to allow the mode to save its status to
static memory.

Synopsis:
virtual void StoreStatus (void) const

Notes:

* This function is called before an MFD mode is destroyed (either because the
MFD switches to a different mode, or because the MFD itself is destroyed). It
allows the MFD to back up its status parameters, so it can restore its last
status when it is created next time.

» Since the MFD mode instance is about to be destroyed, status parameters
should be backed up either in static data members, or outside the class
instance.

* In principle this function could be implemented by opening a file and calling
WriteStatus with the file handle. However for performance reasons file 1/0
should be avoided in this function.

» The default behaviour is to do nothing. MFD modes which need to save
status parameters should overwrite this function.

RecallStatus

Called after creation of the MFD mode, to allow the mode to restore its status from the
last save.

virtual void Recall Status (void)

Notes:

* This is the counterpart to the StoreStatus function. It should be implemented
if and only if StoreStatus is implemented.

14 Class GraphMFD

This class is derived from MFD and provides a template for MFD modes containing 2D
graphs. An example is the ascent profile recorder in the samples\CustomMFD folder.

14.1 Construction/creation

GraphMFD
Constructor. Creates a new GraphMFD.

Synopsis:

GraphM-D (DWORD w, DWORD h, VESSEL *vessel)
Parameters:

w width of the MFD display (pixel)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 138

h height of the MFD display (pixel)

vessel pointer to VESSEL interface associated with the MFD
14.2 Graph/plot management

AddGraph
Adds a new graph to the MFD.

Synopsis:
i nt AddGraph (void)

Return value:
graph identifier

Notes:
» This function allocates data for a new graph. To display plots in the new
graph, one or more calls to AddPlot are required.

AddPlot
Adds a plot to an existing graph.

Synopsis:
voi d AddPl ot (
int g,
float *absc,
fl oat *data,
i nt ndat a,
int col,
int *ofs = 0)
Parameters:
g graph identifier
absc pointer to array containing the abscissa (x-axis) values.
data pointer to array containing the data (y-axis) values.
ndata number of data points
col plot colour index
ofs pointer to data offset (optional)
Notes:

» Data arrays are not copied, so they should not be deleted after the call to
AddPlot.

» colis used as an index to select a pen for the plot using the
SelectDefaultPen function. Valid range is the same as for SelectDefaultPen.

» If defined, *ofs is the index of the first plot value in the data array. The plot is
drawn using the points *ofs to ndata-1, followed by points 0 to *ofs-1. This
allows to define continuously updated plots without having to copy blocks of
data within the arrays.

SetRange
Sets a fixed range for the x or y axis of a graph.
Synopsis:
void SetRange (int g, int axis, float rmn, float rmax)
Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)
rmin minimum value
rmax maximum value

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

139

Notes:
» The range applies to all plots in the graph.

SetAutoRange
Allows the graph to set its range automatically according to the range of the plots.
Synopsis:
void Set AutoRange (int g, int axis, int p=-1)
Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)
p plot identifier (-1=all)
Notes:

* If p=0, then p specifies the plot used for determining the graph range. If p =
-1, then all of the graph’s plots are used to determine the range.

FindRange
Determines the range of an array of data.

Synopsis:
voi d Fi ndRange (
float *d,
i nt ndata,
float &dnin,
fl oat &Inmax) const

Parameters:
d data array
ndata number of data
dmin minimum value on return
dmax maximum value on return

SetAxisTitle
Sets the title for a given graph and axis.

Synopsis:

void Set Axi sTitle (int g, int axis, char *title)
Parameters:

g graph identifier

axis axis identifier (0=x, 1=y)

title axis title
Notes:

 The MFD may append an extension of the form “x <scale>" to the title,
where <scale> is a scaling factor applied to the tick labels of the axis. It is
therefore a good idea to finish the title with the units applicable to the data of
this axis, so that for example a title “Altitude: km” may become “Altitude: km
x 1000".

SetAutoTicks
Calculates tick intervals for a given graph and axis.

Synopsis:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 140

void Set AutoTicks (int g, int axis)

Parameters:

g graph identifier

axis axis identifier (0=x, 1=y)
Notes:

* This function is called from within SetRange and normally doesn’t need to be
called explicitly by derived classes.

Plot
Displays a graph.

Synopsis:
void Plot (
HDC hDC,
int g,
i nt hO,
int hi,
const char *title = 0)
Parameters:
hDC Windows device context
g graph identifier
hO upper boundary of plot area (pixel)
hl lower boundary of plot area (pixel)
title graph title
Notes:

» This function should be called from Update to paint the graph(s) into the
provided device context.

15 Class ExternMFD

ExternMFD provides support for defining an MFD display in a plugin module, e.g. for
displaying the MFD in a dialog box. Unlike the MFD class described above, which defines a
logical MFD mode, this class represents an actual MFD instrument, i.e. the physical display
and associated push buttons.

A plugin module should derive its own MFD class from ExternMFD and overload the virtual
notification callback methods.

The class interface is defined in Orbitersdk\include\MFDAPI.h.

For an example using the ExternMFD class, see project Orbitersdk\samples\ExtMFD.

Public member functions

15.1 Construction/destruction

ExternMFD
Constructor. Creates a new instance of ExternMFD.

Synopsis:
Ext er nMFD (const MFDSPEC &spec)
Parameters:
spec structure containing MFD layout geometry data

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 141

Notes:

 To use a new MFD instance, it must be registered with Orbiter via a call to
oapiRegisterExternMFD, e.g. with
oapiRegisterExternMFD (new ExternMFD (spec));
» To unregister an MFD instance, use oapiUnregisterExternMFD. Note that
oapiUnregisterExternMFD automatically calls the ~ExternMFD destructor, so
the plugin should not try to delete the MFD instance manually.

~ExternMFD
Destructor. Deallocates the ExternMFD instance.

Synopsis:
virtual ~ExternMD ()

Notes:

» The destructor should not be called directly by the module. Instead, a call to
oapiUnregisterExternMFD will invoke the ~ExternMFD destructor (or the
overloaded destructor of a derived class), as well as remove the MFD
instance from Orbiter’s internal list of MFDs.

Returns an identifier for the MFD instance.

Synopsis:
U NT Id() const

Return value:
A unique identifier for the MFD instance.

Notes:

* Unlike the internal MFD instances (e.g. MFDs embedded in panels) whose
identifiers are in the range 0 ... MAXMFD-1, the ExternMFD class simply
uses its own instance pointer (UINT)this to create an identifier.

Active
Returns a flag indicating active/passive MFD state.

Synopsis:
bool Active () const

Return value:

true indicates that the MFD is active (switched on), false indicates inactive
(switched off).

GetVessel
Returns the handle of the vessel associated with the MFD.

Synopsis:
OBJHANDLE Cet Vessel () const

Return value:
Vessel handle associated with the MFD.

Notes:
* Normally, the ExternMFD class always connects to the “focus vessel”, i.e.

the vessel receiving user input. If the user switches to a different vessel (e.qg.
via F3), then ExternMFD re-attaches itself to the new vessel.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 142

This behaviour can be changed by overloading the clbkFocusChanged

method. For example, the MFD could be forced to stick to a given vessel,
regardless of the focus object.

SetVessel
Attaches the MFD to a different vessel.

Synopsis:

virtual void SetVessel (OBJHANDLE hV)
Parameters:

hv vessel handle

Default behaviour:

Sets the vessel reference to hV. If an MFD mode is active, the mode is closed
and reopened with the new vessel reference.

GetDisplaySurface
Returns a handle to the surface containing the current MFD display.

Synopsis:
SURFHANDLE Get Di spl aySurface () const

Return value:
Handle to the MFD display surface.

Notes:

* The handle can be used to modify or copy the current contents of the MFD
display. For example, you can obtain a GDI drawing device context for the
surface with oapiGetDC.

GetButtonLabel

Returns the label currently associated with one of the MFD buttons.

Synopsis:
const char *GetButtonLabel (int bt) const

Parameters:
bt button number (0 < bt < nbuttons)

Return value:

Pointer to the label associated with the button (up to 3 characters, zero-

terminated), or NULL if no function is associated with the button by the current
MFD mode.

Notes:

The number of buttons provided by the MFD depends on the data passed to
the constructor in the MFDSPEC structure.

The module can use this method to update its button labels within the
clbkRefreshButtons callback function.

16 Class Launchpadltem

Launchpaditem is the base class for objects that can be inserted into the parameter list of the
Extra tab of the Orbiter Launchpad dialog. The Extra tab provides a mechanism for plugin
modules to allow users to set global parameters specific to an addon. Launchpadlitem is

notified whenever the user selects the item from the list, and when parameters need to be
read from or written to disk.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 143

See also: oapiRegisterLaunchpadltem, oapiUnregisterLaunchpadltem.

Public member functions

Launchpaditem
Constructor. Creates a new launchpad item.

Synopsis:
Launchpadl tem ()

~Launchpadltem
Destructor. Destroys the launchpad item.

Synopsis:
virtual ~Launchpadltem()

Name

Derived classes should return a pointer to the string to appear in the Launchpad “Extra”

list.

Synopsis:
virtual char *Name()

Return value:
Pointer to the item label in the list.

Default action:
Returns NULL (no entry in the list).

Description

Derived classes should return a pointer to the the string containing a description of the

item. The description is shown next to the Launchpad list whenever the item is

selected.

Synopsis:
virtual char *Description()

Return value:
Pointer to the descriptive string, or NULL if there is none.

Default action:
Returns NULL (no description).

Notes:

e Line breaks can be inserted into the description with a carriage

return/newline sequence (\r\n).

OpenDialog
Opens a dialog box associated with the launchpad item.

Synopsis:
virtual bool OpenDi al og (

H NSTANCE hl nst,
HWAD hLaunchpad,
int resld,
DLGPRCC pDl g)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

144

Parameters:

hinst module instance handle
hLaunchpad launchpad window handle

resld integer resource ID of the dialog box
pDlg dialog box message handler

Return value:
Currently this function always returns true.

Notes:

» This function is usually called in the body of LaunchpadIitem::clbkOpen.

* ltis an alternative to the standard Windows DialogBox function. It has the
advantage that a pointer to the Launchpadltem instance is passed as IParam
to the message handler with the WM_INITDIALOG message. In all
subsequent calls to the handler, the Launchpadltem instance pointer can be
obtained with a call to GetWindowLong (hwnd, DWL_USER), where hwnd
is the dialog box handle passed to the message handler.

clbkOpen

This method is called whenever the user opens the item by double-clicking on the list or
clicking the “Edit” button below the list.

Synopsis:
virtual bool clbkOpen (HWND hLaunchpad)

Parameters:
hLaunchpad The window handle of the Launchpad dialog

Return value:
Currently ignored. Should be true if the derived class processes this callback
function.

Default action:
Nothing; returns false.

Notes:

* The derived class can use this function to open a dialog box or some other
means of allowing the user to set addon-specific parameters.

clbkWriteConfig
This method is called whenever the item should write its current state to a file.

Synopsis:
virtual int clbkWiteConfig()

Return value:
Currently ignored. Should be 0.

Default action:
Nothing; returns 0.

Notes:

e This function is called before a simulation session is launched, before Orbiter
shuts down, and before the module is deactivated. It allows the module to
write its current state to a file, so it can re-load its settings the next time
Orbiter is launched.

* You can either use default C or C++ methods to open a file for output, or you
can use the oapiOpenFile method.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 145

* Modules should never write to the global Orbiter.cfg configuration file. Any
addons that are not active when Orbiter overwrites Orbiter.cfg will lose their
settings, since their clbkWriteConfig method cannot be called.

* The best place to read the settings stored during a previous session is in the
overloaded Launchpaditem constructor. Use oapiOpenFile or another file
access method compatible with the way the file was written. The parameter
settings should then be stored in class member variables, and modified by
user interaction.

17 Plugin callback function reference

This is a list of callback functions which Orbiter will call for all activated plugin modules. (i.e.
DLLs in the Modules\Plugin subdirectory which were activated by the user via the Launchpad
dialog). Plugin callback functions use an opc (“orbiter plugin callback”) prefix.

InitModule
Called after the DLL is loaded by Orbiter, before the simulation window is opened.
DLLs are loaded either during the program start, or when the user activates a DLL in
the Modules tab of the launchpad dialog.

Synopsis:

DLLCLBK voi d I nitMdul e (H NSTANCE hDLL)
Parameters:

hDLL DLL module handle
Notes:

» To guarantee correct initialisation of your module, you must link the
Orbitersdk.lib library (found in Orbitersdk\lib) with your plugin project, and
add the line
#def i ne ORBI TER_MODULE
at the beginning of the main source file of your project.

» If Orbitersdk.lib is not linked, the standard Windows entry point DI | Mai n will
be called instead when the library is loaded.

ExitModule
Called before the DLL is unloaded by Orbiter, after the simulation window has closed.
DLLs are unloaded either when Orbiter exits, or when the user deactivates a DLL in the
Modules tab of the launchpad dialog.

Synopsis:

DLLCLBK voi d ExitMdul e (H NSTANCE hDLL)
Parameters:

hDLL DLL module handle
Notes:

» To guarantee correct cleanup of your module, you must link the
Orbitersdk.lib library (found in Orbitersdk\lib) with your plugin project, and
add the line
#defi ne ORBlI TER_MODULE

at the beginning of the main source file of your project.
« If Orbitersdk.lib is not linked, the standard Windows entry point DI | Mai n will
be called instead when the library is unloaded.

opcDLLInit
CIFRIEE. Use | ni t Modul e instead.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 146

opcDLLEXit
OIERIEE. Use Exi t Mbdul e instead.

opcOpenRenderViewport
Called after the simulation window has been opened. The DLL should use this function
for initialisations which depend on the size of the render window. The size remains
valid until the opcCloseRenderViewport method is called. Note that for windowed
modes the width and height parameters may be smaller than the user-defined window
size, to accommodate window borders and title line.

Synopsis:
DLLCLBK voi d opcOpenRender Vi ewport (

HWAD r ender Whd,
DWORD wi dt h,
DWORD hei ght
BOOL full screen)
Parameters:
renderwWnd render window handle
width width of the render viewport (pixel)
height height of the render viewport (pixel)
fullscreen TRUE if a fullscreen video mode is used, FALSE for a windowed
mode

opcCloseRenderViewport
Called before the simulation window is closed.

DLLCLBK voi d opcC oseRender Vi ewport (void)

opcPreStep
Called at each time step of the simulation, before the state is updated to the current
simulation time. This function is only called when the “physical” state of the simulation
is propagated in time. opcPreStep is not called while the simulation is paused, even if
the user moves the camera.

Synopsis:
DLLCKBK voi d opcPreStep (

doubl e Si nT,
doubl e Si nDT,
doubl e nj d)

Parameters:
SimT elapsed simulation time since simulation start (seconds)
SimDT time interval to be applied in current time step (seconds)
mjd simulation universal time in MJD (modified Julian date) format.

Notes:

» This function is called by Orbiter after the new time step (SimDT) and
simulation time (SimT) have been calculated, but before the simulation state
is integrated to SimT. The parameters passed to opcPreStep therefore are
the values that will be applied in the current simulation step.

« A schematic flow diagram of the frame update loop is given by

Set k=0, Ty™ =0 and T, = (systemtime)
Loop

k=k+1

T =(systemtime)

AT =T -T%

ATS™ = AT> Qwarp factor)

T =T +ATT

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 147

Call opcPreStep (T ", ATS™) _
Integrate simulation state from T27 to T2™
Call opcPostStep (T ™, ATS™)

Render scene

end

» See also opcPostStep.

opcPostStep

Called at each time step of the simulation, after the state has been updated to the
current simulation time.

Synopsis:
DLLCLBK voi d opcPost Step (
doubl e Si nT,
doubl e Si nDT,
doubl e njd)
Parameters:
SimT elapsed simulation time since simulation start (seconds)
SimDT time interval applied in last update (seconds)
mjd simulation universal time in MJD (modified Julian date) format.

opcTimestep

PRI, Replaced by opcPreStep.

opcFocusChanged

Called when input focus (keyboard and joystick control) is switched to a new vessel (for
example as a result of a call to oapiSetFocus).

Synopsis:
DLLCLBK opcFocusChanged (

OBJHANDLE new_f ocus,
OBJHANDLE ol d_f ocus)

Parameters:
new_focus handle of vessel receiving the input focus
old_focus handle of vessel losing focus

Notes:
* Currently only objects of type “vessel” can receive the input focus. This may
change in future versions.
» This callback function is also called at the beginning of the simulation, where
new_focus is the vessel receiving the initial focus, and old_focus is NULL.
» opcFocusChanged is sent to plugin modules after the vessels receiving and
losing focus have been notified via VESSEL2::clbkFocusChanged.

opcTimeAccChanged

Called when the simulation time acceleration factor changes.

DLLCLBK voi d opcTi neAccChanged (

doubl e nWar p,
doubl e oWar p)

Parameters:
nWarp new time acceleration factor
oWarp old time acceleration factor

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 148

opcPause
Called when the pause/resume state of the simulation has changed.

Synopsis:
DLLCLBK voi d opcPause (bool pause)
Parameters:
pause pause/resume state: true if simulation has been paused, false if

simulation has been resumed.

18 Planet modules

Planet modules can be used to calculate ephemerides (position and velocity) in cases where
Orbiter's standard 2-body approximation or dynamic update is not sufficient. By defining a
custom module for a planet or moon, more accurate solutions, including semi-analytic pertur-
bation codes, can be implemented. Modules also allow to implement altitude-dependent at-
mospheric parameters.

See the API Guide manual on how to write a planet module. Typically, during instance initiali-
sation a planet class derived from CELBODY will be created, and Orbiter then communicates
with the module by calling its overloaded callback functions. The module must be referenced
in the planet’s configuration file.

The older standalone module callback functions (opcXXX) are obsolete and should no longer
be used.

18.1 Initialisation functions

The following global functions will be called by Orbiter during module and instance
initialisation/cleanup. They require that the module is linked with Orbitersdk\lib\orbitersdk.lib,
and defines #define ORBITER_MODULE in its main source file.

InitModule
Called after the DLL is loaded by Orbiter. This happens only once per Orbiter session.

Synopsis:
DLLCLBK void InitMdul e (H NSTANCE hModul e)

Parameters:
hModule module instance handle

Notes:

» This function is optional. You can use this function to initialise global
parameters, if required.

» Itis called the first time Orbiter loads a planet referencing this module. It will
not be called again if the user exits to the Launchpad and runs another
scenario.

ExitModule

Called before Orbiter unloads the DLL. This usually happens when Orbiter is closed.

Synopsis:
DLLCLBK voi d Exit Mdul e (H NSTANCE hModul e)

Parameters:
hModule module instance handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 149

Notes:

e This function is optional. You can use it to clean up the module, e.g. by
deallocating dynamic data.

Initinstance
Called when Orbiter loads a planet referencing this module.

Synopsis:
DLLCLBK CELBODY *1nitlnstance (OBJHANDLE hBody)

Parameters:
hBody object handle for the planet

Return value:
CELBODY-derived class instance

Notes:
* Your module must define this function.

» Create an instance of your planet class (derived from CELBODY) here, and
return a pointer to it.

Exitinstance
Called after a simulation run when Orbiter destroys the planet.

Synopsis:

DLLCLBK voi d Exitlnstance (CELBODY *body)
Parameters:

body pointer to planet class
Notes:

» Use this method to destruct the planet class instance created in Initinstance.

* You should cast body to your derived class when deleting the instance, e.g.
delete (MyPlanet*)body.

18.2 The CELBODY class

CELBODY defines callback methods which Orbiter will call whenever it requires information

from your planet module. You define the behaviour of the planet by overloading the relevant
methods. Below is a list of public CELBODY methods:

bEphemeris

Returns true or false depending on whether the module supports ephemeris
calculation.

Synopsis:
virtual bool bEpheneris() const

Return value:

If your module supports ephemeris calculation (that is, if it defines the

clbkEphemeris and clbkFastEphemeris methods) return true. Otherwise return
false.

Default action:
Returns false.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 150

clbkinit
Called when the planet is initialised at the beginning of a simulation run. This function
allows to read any parameters from the configuration file, and perform additional
initialisation tasks such as reading data files.

Synopsis:

virtual void clbklnit (FILEHANDLE cfg);
Parameters:

cfg file handle of configuration file

Default action:
None.

clbkEphemeris
Called when Orbiter requires (non-sequential) ephemeris data from the planet for a

given time.
Synopsis:
virtual int clbkEphemeris (
doubl e njd,
int req,
doubl e *ret)
Parameters:
mjd ephemeris date (days, in Modified Julian Date format)
req data request bitflags (see notes)
ret pointer to result vector

Return value:
bitflags describing returned data (see notes)

Default action:
None, returning 0.

Notes:
* The ephemeris data should be calculated with respect to the body’s parent
body, in the ecliptic frame (J2000 equator and equinox).
* req specifies the data that should be calculated by the callback function. This
can be any combination of

EPHEM TRUEPQCS (true body position)
EPHEM TRUEVEL (true body velocity)
EPHEM BARYPCS (barycentric position)
EPHEM BARYVEL (barycentric velocity)

where the barycentre refers to the system consisting of the body itself and all
its children (e.g. moons).
* ret is apointer to an array of 12 doubles, to which the function should write

its results:

ret[0-2]: true position (if requested)
ret[3-5]: true velocity (if requested)
ret[6-8]: barycentric position (if requested)

ret[9-11]: barycentric velocity (if requested)

« Data can be returned in either polar or cartesian format. In cartesian format,
the position data blocks should contain x,y and z position (in meters), and
the velocity data blocks should contain dx/dt, dy/dt and dz/dt (in m/s), where
X points to the vernal equinox, y points to ecliptic zenith, and z is orthogonal
to both.

In polar format, the position data blocks should contain longitude ¢ [rad],

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 151

latitude @[rad] and radial distance r [AU], and the velocity data blocks should
contain d¢/dt [rad/s], d@dt [rad/s] and d r/dt [AU/s].

When returning data in polar format, include the EPHEM POLAR flag in the
return value.

* The return value should contain the flags for the data that were actually
computed. For example, if both true and barycentric data were requested,
but the module can only compute true positions, it should return
EPHEM TRUEPOS | EPHEM TRUEVEL.

» If the true and barycentric positions are identical (that is, if the body has no
child objects) the return value should contain the additional flag
EPHEM BARY| STRUE.

» If both true and barycentric data are requested, but are computationally
expensive to compute (for example, if they require two separate series
evaluations), the module can return true positions only. Orbiter will then
calculate the barycentric data directly, after evaluating the child object
positions.

» If arequest can't be satisfied at all (e.g. if barycentric data were requested,
but the module can only compute true positions), the module should
calculate whatever data it can, and signal so via the return value. Orbiter will
then try to convert these data to the required ones.

« If the returned ephemerides are computed in terms of the barycentre of the
parent body’s system, the return value should include the
EPHEM _PARENTBARY flag. If the ephemerides are computed in terms of the
parent body’s true position, this flag should not be included.

» This function is not called by Orbiter to update the planet’s position during
the normal simulation frame update. (For that purpose, clbkFastEphemeris is
called instead). clokEphemeris is only called if the planet state at some
arbitrary time point is required, e.g. by an instrument calculating a transfer
orbit.

clbkFastEphemeris
Called by Orbiter to update the body’s state to the next simulation frame.

Synopsis:
virtual int cl bkFastEpheneris (
doubl e sint,
int req,
doubl e *ret)
Parameters:
simt simulation time (seconds)
req data request bitflags (see notes)
ret pointer to result vector

Return value:
bitflags describing returned data (see notes)

Default action:
None, returning 0.

Notes:

* This function should perform the same function as clbkEphemeris, but it will
be called at each simulation frame. This means that the sampling times will
be incremented in small steps, allowing for a potentially more efficient
implementation, e.g. by using an interpolation scheme.

» If possible, a full evaluation of a long series of perturbation terms should be
avoided here, to avoid performance hits.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 152

* Note that the time parameter is passed in the form of simulation time
(seconds) unlike clbkEphemeris, which uses absolute MJD time. This avoids
rounding errors in the time variable, and allows higher temporal resolutions.

clbkAtmParam
Called by Orbiter to obtain atmospheric parameters at a given altitude.

virtual bool cl bkAtnParam (double alt, ATMPARAM *prm
Parameters:

alt altitude over planet mean radius

prm pointer to ATMPARAM structure receiving results

Return value:
true if parameters have been retrieved sucessfully, false to indicate that the
planet has no atmosphere, or if alt is above the cutoff limit for atmospheric
calculations.

Default action:
None, returning false.

Notes:
» The ATMPARAM structure contains the following fields:
double T absolute temperature [K]
double p pressure [N/m?]

doublerho density [kg/m’]
» Currently, atmospheric parameters are assumed to be functions of altitude
only. Local variations (“weather”) are not yet supported.

18.3 Orbital parameters

<Planet>_SetPrecision
@Yo EIfs. Set the error limit in CELBODY: ::clbkinit instead.
Define the relative error for the calculations for <Planet>.

Synopsis:

DLLCLBK i nt <Pl anet>_Set Preci si on (doubl e prec)
Parameters:

prec module-specific

Return value:
0 if successful, < 0 otherwise

Notes:

» Orbiter calls this function at the start of each simulation with the value of the
ErrorLimit entry of the planet’s configuration file. The module can use this to
set its calculation precision.

e If the ErrorLimit entry is not defined in the cfg file, then
<Planet>_SetPrecision will not be called, so the module should initialise
some default precision.

e ltis up to the module how to interpret the passed precision value, but by
convention prec should specify the relative error for position and velocity
calculations.

e This function is optional. If the module doesn’t define it, Orbiter will ignore
the ErrorLimit entry in the cfg file.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 153

<Planet>_Ephemeris
B, Use CELBODY::clbkEphemeris instead.
Calculate ecliptic positions and velocities. Reference frame is ecliptic and equinox of
J2000. For planets (i.e. objects defined as “Planet” in the solar system cfg file)
heliocentric coordinates should be calculated. For moons (i.e. objects defined as
“Moon” in the solar system cfg file) coordinates w.r.t. the moon'’s reference planet
should be calculated, e.g. geocentric for Earth’s moon.

Synopsis:
DLLCLBK int <Pl anet> Epheneris (
doubl e njd,
doubl e *ret,
int & ormat)
Parameters:
mjd date in MJD format (MJD = JD-2400000.5)
ret array of position and velocity data calculated by the function. The
type of data depends on the format flag (see notes).
format data format flag (see notes).

Return value:
Error code (not currently used)

Notes:

» Orbiter currently accepts the following data formats:

EPHEMERIS_POLAR - returned values are polar coordinates and velocities:

ret[0] = ecliptic longitude [rad]

ret[1] = ecliptic latitude [rad]

ret[2] = radius [m]

ret[3] = velocity in longitude [rad/s]

ret[4] = velocity in latitude [rad/s]

ret[5] = radial velocity [m/s]
EPHEMERIS_CARTESIAN - returned values are cartesian coordinates and
velocities:

ret[0] = x-coordinate (direction of vernal equinox) [m]

ret[1] = y-coordinate (perpendicular to ecliptic) [m]

ret[2] = z-coordinate (perpendicular to x and y) [m]

ret[3] = velocity in x [m/s]

ret[4] = velocity in y [m/s]

ret[5] = velocity in z [m/s]
When implementing this function, you should calculate the ephemeris data in
one of these formats and set the format flag accordingly.

» The function should calculate the values for ret in the J2000 ecliptic frame,
but Orbiter’s precision requirements are not very high, so the ecliptic of a
different epoch (or the ecliptic of date) is probably ok.

« Orhiter only calls this function directly to calculate positions at times other
than the current simulation time (e.qg. for trajectory predictions). Otherwise it
calls <Planet>_FastEphemeris (see below).

<Planet> FastEphemeris
FITRIET. Use CELBODY::clokFastEphemeris instead.
This function is called by Orbiter at each frame to update planet positions and
velocities. Therefore the implementation can make use of interpolation methods to
increase the efficiency of the calculation.

Synopsis:
DLLCLBK int <Pl anet > Fast Epheneris (

doubl e sint,

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 154

doubl e *ret,

int & ormat)
Parameters:
simt Time (in seconds) since simulation start
ret results (as in <Planet>_Ephemeris)
format data format flag (see <Planet>_Ephemeris for details)

Return value:
currently not used

Notes:

* Orbiter passes simt (simulation time in seconds) rather than mjd to this
function to allow more precise calculation of the interpolation point.

* The simplest way to implement this function is as
return <Pl anet > _Epheneris (oapi Ti me2MID (sim), ret,
format);

However this is not recommended. Instead the function should sample the
planet data in appropriate intervals and use an interpolation scheme to
calculate the data for a given time. This is more efficient and helps
smoothing rounding errors in the full updates.

« This function is called at every frame by Orbiter and is therefore extremely
time-critical. As a performance target, the execution of this function for all
planets should take < 10 milliseconds on a low-end machine.

» The sampling times for full position calculations should be staggered for
different planets, so that not all full updates occur at the same frame.

18.4 Physical parameters
<Planet> AtmPrm
O]ofHe]Eifs. Use CELBODY::clbkAtmParam instead.

If defined, this function returns atmospheric parameters as a function of altitude above
zero (“sea level”).

Synopsis:
DLLCLBK voi d <Pl anet >_At nPrm (doubl e alt, ATMPARAM *prm

Parameters:
alt altitude [m]
prm structure to be filled with atmospheric parameters

Notes:

» The ATMPARAM structure contains the following fields:
double T absolute temperature [K]
double p pressure [N/m?]
double rho density [kg/m°]

19 API function reference

This is the reference list for the Orbiter API functions which can be used by modules to obtain
and set simulation parameters from the Orbiter kernel. See index for alphabetical listing.

19.1 General functions

oapiGetOrbiterinstance
Returns the instance handle for the running Orbiter application.

Synopsis:
Hl NSTANCE oapi Get Orbiterlnstance ()

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 155

Return value:
Orbiter instance handle

oapiGetCmdLine
Returns a pointer to the command line with which Orbiter was invoked.

Synopsis:
const char *oapi Get CndLi ne ()

Return value:
Pointer to orbiter command line string.

Notes:
» This method can be used to pass custom parameters to a module directly
from the orbiter command line.

19.2 Obtaining object handles

oapiGetObjectByName
Retrieve the handle for an object from its name. Objects may be vessels, planets,
moons or suns. The handle remains valid until the object is deleted or the simulation
terminates.

Synopsis:
OBJHANDLE oapi Get Obj ect ByNarme (char *name)

Parameters:
name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

Notes:
» This function can not be used to obtain handles for surface bases. Use
oapi Get BaseByNane or oapi Get BaseByl ndex instead.

oapiGetObjectByIndex
Retrieve the handle for an object from its index. This is useful to construct loops over a
series of objects. The handle remains valid until the object is deleted or the simulation
terminates.

Synopsis:
OBJHANDLE oapi CGet Obj ect Byl ndex (i nt index)

Parameters:
index object index (>= 0)

Return value:
object handle. (NULL indicates that the object does not exist)

Notes:
0 <= index < oapiGetObjectCount() is required. The function does not perform a
range check!

oapiGetObjectCount
Returns the number of objects currently present in the simulation.

Synopsis:
DWORD oapi Get Obj ect Count (voi d)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 156

Return value:
object count

oapiGetObjectType
Returns the type of an object identified by a handle.

Synopsis:

i nt oapi Get Obj ect Type (OBIJHANDLE hQbj)
Parameters:

hObj object handle

Return value:
integer code identifying the vessel type (see notes)

Notes:
* The following type identifiers are currently supported:
OBJTP_INVALID invalid object handle
OBJTP_GENERIC generic object (not currently used)
OBJTP_CBODY generic celestial body (not currently used)
OBJTP_STAR star
OBJTP_PLANET planet (used for all celestial bodies that are not
stars, including moons, comets, etc.)
OBJTP_VESSEL vessel (spacecraft, space stations, etc.)
OBJTP_SURFBASE | surface base (spaceport)

oapiGetVesselByName
Retrieve the handle for a vessel from its name. The handle remains valid until the
object is deleted or the simulation terminates.

OBJHANDLE oapi CGet Vessel ByNarme (char *nane)
Parameters:
name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the vessel does not exist)

oapiGetVesselBylndex
Retrieve the handle for a vessel from its index. This is useful to construct loops over a
series of vessels. The handle remains valid until the object is deleted or the simulation
terminates.

Synopsis:
OBJHANDLE oapi Get Vessel Byl ndex (int index)

Parameters:
index object index (>= 0)

Return value:
vessel handle. (NULL indicates that the vessel does not exist)

Notes:
0 <= index < oapiGetVesselCount() is required. The function does not perform a
range check!

oapiGetVesselCount
Returns the number of vessels currently present in the simulation.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 157

Synopsis:
DWORD oapi Get Vessel Count (voi d)

Return value:
vessel count

oapilsVessel
Checks if the provided handle is a valid vessel handle.

Synopsis:

bool oapilsVessel (OBIJHANDLE hVessel)
Parameters:

hVessel handle to be tested

Return value:
true if hVessel is a valid vessel handle, false otherwise.

Notes:
» This function can be used to test if a previously obtained vessel handle is still
valid. A handle becomes invalid if the associated vessel is deleted.
* An alternative to using oapilsVessel is monitoring vessel deletions by
implementing the opcDeleteVessel callback function in the plugin module.

oapiGetStationByName
Ol JEis. Returns NULL.

Synopsis:
OBJHANDLE oapi Get St ati onByNane (char *nane)

oapiGetStationBylndex
OJsFeJEIs. Returns NULL.

Synopsis:
OBJHANDLE oapi Get St ati onByl ndex (int index)

oapiGetStationCount

@]of{e]Eifs. Returns 0.

Synopsis:
DWORD oapi Get St ati onCount (voi d)

oapiGetGbodyByName
Retrieves the handle of a “massive” object (a gravitational field source: sun, planet or
moon) from its name.

Synopsis:

OBJHANDLE oapi Get GhodyByNane (char *nane)
Parameters:

name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

oapiGetGbodyBylIndex
Retrieves the handle of a massive object from its list index.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 158

Synopsis:
OBJHANDLE oapi Get GhodyByl ndex (i nt index)

Parameters:
index object index (= 0)

Return value:
object handle. (NULL indicates that the index is out of range)

oapiGetGbodyCount
Returns the number of massive objects (suns, planets and moons) currently in the
simulation.

Synopsis:
DWORD oapi Get GhodyCount ()

Return value:
Number of objects

oapiGetBaseByName
Returns the handle of a surface base on a given planet or moon.

Synopsis:

OBJHANDLE oapi Get BaseByNane (OBJHANDLE hPl anet, char *nane)
Parameters:

hPlanet handle of the planet or moon on which the base is located

name base name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

oapiGetBaseBylndex
Returns the handle of a surface base on a given planet or moon from its list index.

Synopsis:

OBJHANDLE oapi Get BaseByl ndex (OBJHANDLE hPl anet, int index)
Parameters:

hPlanet handle of the planet or moon on which the base is located.

index object index (= 0)

Return value:
object handle. (NULL indicates that the index is out of range)

oapiGetBaseCount
Returns the number of surface bases located on the specified planet.

Synopsis:

DWORD oapi Get BaseCount (OBJHANDLE hPI anet)
Parameters:

hPlanet handle of a planet or moon.

Return value:
Number of surface bases.

oapiGetObjectName
Returns the name of an object.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 159

Synopsis:
voi d oapi Get Obj ect Nare (
OBJHANDLE hQvj,
char *nane,

int n)
Parameters:
hObj object handle
name pointer to character array to receive object name
n length of string buffer
Notes:

name must be allocated to at least size n by the calling function.
If the string buffer is not long enough to hold the object name, the name is
truncated.

oapiGetFocusObject
Retrieve the handle for the current focus object. The focus object is the user-controlled
vessel which receives keyboard and joystick input.

OBJHANDLE oapi Get FocusObj ect (voi d)

Return value:
focus object handle. This is guaranteed to exist during the simulation (between
opcOpenRenderViewport and opcCloseRenderViewport)

Notes:
Currently the focus object is guaranteed to be a vessel. This may change in
future versions.

oapiSetFocusObject
Switches the input focus to a different vessel object.

Synopsis:
OBJHANDLE oapi Set FocusObj ect (OBJHANDLE hVessel)

Parameters:
hVessel handle of vessel to receive the focus

Return value:
handle of vessel losing focus, or NULL if focus did not change

Notes:
hVessel must refer to a vessel object. Trying to set the focus to a different object
type (e.g. a planet or moon) will fail.

oapiGetVessellnterface
Returns the VESSEL class interface for a vessel handle.

Synopsis:

VESSEL *oapi Get Vessel I nterface (OBJHANDLE hVessel)
Parameters:

hVessel vessel handle

Return value:
Pointer to VESSEL class interface for this vessel (see section 11).

oapiGetFocusinterface

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 160

Returns the VESSEL class interface for the current focus object.

Synopsis:
VESSEL *oapi Get Focusl nterface ()

Return value:
Pointer to VESSEL class interface for focus object (see section 11).

oapiGetCelbodylinterface

Returns the CELBODY class interface for a celestial body, if available.

Synopsis:

QAPI FUNC CELBODY *oapi Get Cel bodyl nterface (OBJHANDLE hBody)
Parameters:

hBody celestial body handle

Return value:
Pointer to the CELBODY class instance for the body, or NULL if the body is not
controlled by an external module.

Notes:
» hBody must be a valid handle for a celestial body (star, planet, moon, etc.),
e.g. as obtained from oapiGetGbodyByName). Passing a handle of any
other type will result in undefined behaviour.
» Only celestial bodies controlled by external plugin modules have access to a
CELBODY instance. Celestial bodies that are updated internally by Orbiter
(e.g. using 2-body orbital elements, or dynamic updates) return NULL here.

oapiCreateVessel

Creates a new vessel. This version uses the original VESSELSTATUS interface.

Synopsis:
OBJHANDLE oapi Creat eVessel (

const char *nane,
const char *cl assnane,
const VESSELSTATUS &st at us)

Parameters:
name vessel name
classname vessel class name
status status parameters

Return value:
handle of the newly created vessel

Notes:
e A configuration file for the specified vessel class must exist in the Config
subdirectory.
e This function replaces VESSEL.::Create().
See also:

oapiCreateVesselEx, ovcSetState, VESSELSTATUS

oapiCreateVesselEx

Creates a new vessel. This version allows to use a VESSELSTATUSKX interface
(version x = 2).

Synopsis:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 161

OBJHANDLE oapi Cr eat eVessel Ex (
const char *nane,
const char *cl assnane,
const void *status)

Parameters:
name vessel name
classname vessel class name
status pointer to a VESSELSTATUSKX structure

Return value:

» A configuration file for the specified vessel class must exist in the Config
subdirectory.

e status must point to a VESSELSTATUSX structure. Currently only
VESSELSTATUS?2 is supported, but future Orbiter versions may add new
interfaces.

» During the vessel creation process Orbiter will call the module’s
ovcSetStateEx callback function if it exists. Orbiter will not try to call the
ovcSetState function.

See also:
oapiCreateVessel, ovcSetStateEx, VESSELSTATUS2

oapiDeleteVessel
Deletes an existing vessel.

Synopsis:
bool oapi Del et eVessel (

OBJHANDLE hVessel ,
OBJHANDLE hAl't ernati veCaneraTarget = 0)

Parameters:
hVessel vessel handle
hAlternativeCameraTarget optional new camera target

Return value:
true if vessel could be deleted.

Notes:

» If the current focus vessel is deleted, Orbiter will switch focus to the closest
focus-enabled vessel. If the last focus-enabled vessel is deleted, Orbiter
returns to the launchpad.

» If the current camera target is deleted, a new camera target can be provided
in hAlternativeCameraTarget. If not specified, the focus object is used as
default camera target.

e The actual vessel destruction does not occur until the end of the current
frame. Self-destruct calls are therefore permitted.

« Avessel will undock all its docking ports before being destructed.

oapiObjectVisualPtr
Returns a pointer storing the objects visual handle.

Synopsis:
VI SHANDLE *oapi Obj ect Vi sual Ptr (OBJHANDLE hnj ect)

Parameters:
hObject object handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 162

Return value:
pointer to visual handle

Notes:

* Returns a pointer that stores the object’s visual handle whenever the object
is within visual range of the camera. When the object is out of range, the
pointer is set to NULL.

» This function currently only works for vessel objects. All other object types
return a pointer to NULL.

19.3 Generic object parameters

oapiGetSize
Returns the size (mean radius) of an object.

Synopsis:

doubl e oapi Get Si ze (OBJHANDLE hQbj)
Parameters:

hObj object handle

Return value:
Object size (mean radius) in meter.

oapiGetMass
Returns the mass [kg] of an object. For vessels, this is the total mass, including current
fuel mass.

Synopsis:
doubl e oapi Get Mass (OBJHANDLE hQObj)

Parameters:
hObj object handle

Return value:
object mass [kg]

19.4 Vessel fuel management

oapiGetEmptyMass
Returns empty mass of a vessel, excluding fuel.

Synopsis:
doubl e oapi Get Enpt yMass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
empty vessel mass [kg]

Notes:
» hVessel must be a vessel handle. Other object types are invalid.
e Do not rely on a constant empty mass. Structural changes (e.g. discarding a
rocket stage) will affect the empty mass.
» For multistage configurations, the fuel mass of all currently inactive stages
contributes to the empty mass. Only the fuel mass of active stages is
excluded.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 163

oapiGetPropellantHandle
Returns an identifier of a vessel's propellant resource.

Synopsis:
PROPELLANT _HANDLE oapi Get Propel | ant Handl e (
OBJHANDLE hVessel ,

DWORD i dx)
Parameters:
hVessel vessel handle
idx propellant resource index (= 0)

Return value:
propellant resource id, or NULL if idx = # propellant resources

oapiGetPropellantMaxMass
Returns the maximum capacity [kg] of a propellant resource.

Synopsis:

doubl e oapi Get Propel | ant MaxMass (PROPELLANT_HANDLE ph)
Parameters:

ph propellant resource identifier

Return value:
maximum fuel capacity [kg] of the resource.

See also:
oapiGetPropellantHandle(), VESSEL::GetPropellantMaxMass()

oapiGetPropellantMass
Returns the current fuel mass [kg] of a propellant resource.

Synopsis:

doubl e oapi Get Propel | ant Mass (PROPELLANT_HANDLE ph)
Parameters:

ph propellant resource identifier

Return value:
current fuel mass [kg] of the resource.

oapiGetFuelMass
Returns current fuel mass of the first propellant resource of a vessel.

Synopsis:
doubl e oapi Get Fuel Mass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
Current fuel mass [kg]

Notes:

« This function is equivalent to
oapi Get Propel | ant Mass (oapi Get Propel | ant Handl e (hVessel, 0))

» hVessel must be a vessel handle. Other object types are invalid.

» For multistage configurations, this returns the current fuel mass of active
stages only.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 164

oapiGetMaxFuelMass
Returns maximum fuel capacity of the first propellant resource of a vessel.

Synopsis:
doubl e oapi Get MaxFuel Mass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
Maximum fuel mass [kg]

Notes:

« This function is equivalent to
oapi Get Propel | ant MaxMass (oapi Get Propel | ant Handl e (hVessel, 0))

» hVessel must be a vessel handle. Other object types are invalid.

» For multistage configurations, this returns the sum of the max fuel mass of
active stages only.

oapiSetEmptyMass
Set the empty mass of a vessel (excluding fuel)

Synopsis:

voi d oapi Set Enpt yMass (OBJHANDLE hVessel, doubl e nass)
Parameters:

hVessel vessel handle

mass empty mass [kg]
Notes:

» Use this function to register structural mass changes, for example as a result
of jettisoning a fuel tank, etc.

19.5 Object state vectors

oapiGetGlobalPos
Returns the position of an object in the global reference frame.

Synopsis:

voi d oapi Get A obal Pos (OBJHANDLE hObj, VECTOR3 *pos)
Parameters:

hObj object handle

pos pointer to vector receiving coordinates
Notes:

e The global reference frame is the heliocentric ecliptic system at ecliptic and
equinox of J2000.

e Units are meters.

oapiGetGlobalVel
Returns the velocity of an object in the global reference frame.

Synopsis:

voi d oapi Get d obal Vel (OBJHANDLE hObj, VECTOR3 *vel)
Parameters:

hObj object handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 165

vel pointer to vector receiving velocity data

Notes:
The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.
e Units are meters/second.

oapiGetFocusGlobalPos
Returns the position of the current focus object in the global reference frame.

voi d oapi Get Focusd obal Pos (VECTOR3 *pos)

Parameters:

pos pointer to vector receiving coordinates

Notes:
The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.0.
e Units are meters.

oapiGetFocusGlobalVel
Returns the velocity of the current focus object in the global reference frame.

Synopsis:
voi d oapi Get Focusd obal Vel (VECTOR3 *vel)

Parameters:

vel pointer to vector receiving velocity data

Notes:
The global reference frame is the heliocentric ecliptic system at ecliptic and

equinox of J2000.
e Units are meters/second.

oapiGetRelativePos
Returns the distance vector from hRef to hObj in the ecliptic reference frame.

Synopsis:
voi d oapi Cet Rel ati vePos (

OBJHANDLE hObj ,
OBJHANDLE hRef,

VECTOR3 *pos)
Parameters:
hObj object handle
hRef reference object handle

pos pointer to vector receiving distance data

Notes:
Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetRelativeVel
Returns the velocity difference vector of hObj relative to hRef in the ecliptic reference
frame.
Synopsis:
voi d oapi Get Rel ativeVel (
OBJHANDLE hQbj ,

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 166

OBJHANDLE hRef ,
VECTOR3 *vel)

Parameters:

hObj object handle

hRef reference object handle

vel pointer to vector receiving velocity difference data
Notes:

Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetFocusRelativePos
Returns the distance vector from hRef to the current focus object.

Synopsis:

voi d oapi Get FocusRel ati vePos (OBJHANDLE hRef, VECTOR3 *pos)
Parameters:

hRef reference object handle

pos pointer to vector receiving distance data
Notes:

Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetFocusRelativeVel
Returns the velocity difference vector of the current focus object relative to hRef.

voi d oapi Get FocusRel ati veVel (OBJHANDLE hRef, VECTOR3 *vel)
Parameters:

hRef reference object handle

vel pointer to vector receiving velocity difference data
Notes:

Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetBarycentre
Returns the global position of the barycentre of a complete planetary system or a single
planet-moons system.

Synopsis:

voi d oapi Get Barycentre (OBJHANDLE hQnj, VECTOR3 *bary)
Parameters:

hObj celestial body handle

bary pointer to vector receiving barycentre data
Notes:

* The barycentre is the centre of mass of a distribution of objects. In this case,
all involved celestial bodies are considered point masses, and the barycentre
is defined as

*<[zn] 2

* hObj must be the handle of a celestial body.

» The summation involves the body itself and all its secondaries, e.g. a planet
and its moons.

* The barycentre of a star (0th level object) is always the origin (0,0,0).

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 167

* The barycentre of an object without associated secondaries is identical to its
position.

19.6 Surface-relative parameters

oapiGetAltitude
Returns the altitude of a vessel over a planetary surface.

Synopsis:

BOOL oapi Get Al titude (OBJHANDLE hVessel, double *alt)
Parameters:

hVessel vessel handle

alt pointer to variable receiving altitude value

Return value:
Error flag (FALSE on failure)

Notes:
e Unitis meter [m]
* Returns altitude above closest planet.
* Altitude is measured above mean planet radius (as defined by SIZE
parameter in planet’s cfg file)
* The handle passed to the function must refer to a vessel.

oapiGetFocusAltitude
Returns the altitude of the current focus vessel over a planetary surface.

Synopsis:

BOOL oapi Get FocusAltitude (double *alt)
Parameters:

alt pointer to variable receiving altitude value [m]

Return value:
Error flag (FALSE on failure)

oapiGetPitch
Returns a vessel's pitch angle w.r.t. the local horizon.

BOCOL oapi Get Pitch (OBJHANDLE hVessel , double *pitch)
Parameters:

hVessel vessel handle

pitch pointer to variable receiving pitch value

Return value:
Error flag (FALSE on failure)

Notes:
e Unitis radian [rad]
e Returns pitch angle w.r.t. closest planet
* The local horizon is the plane whose normal is defined by the distance
vector from the planet centre to the vessel.
* The handle passed to the function must refer to a vessel.

oapiGetFocusPitch
Returns the pitch angle of the current focus vessel w.r.t. the local horizon.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 168

Synopsis:
BOOL oapi Get FocusPitch (double *pitch)

Parameters:
pitch pointer to variable receiving pitch value

Return value:
Error flag (FALSE on failure)

oapiGetBank
Returns a vessel's bank angle w.r.t. the local horizon.

Synopsis:

BOOL oapi Get Bank (OBJHANDLE hVessel , doubl e *bank)
Parameters:

hVessel vessel handle

bank pointer to variable receiving bank value

Return value:
Error flag (FALSE on failure)

Notes:
* Unit is radian [rad]
* Returns bank angle w.r.t. closest planet

» The local horizon is the plane whose normal is defined by the distance

vector from the planet centre to the vessel.
* The handle passed to the function must refer to a vessel.

oapiGetFocusBank
Returns the bank angle of the current focus vessel w.r.t. the local horizon.

Synopsis:

BOOL oapi Get FocusBank (doubl e *bank)
Parameters:

bank pointer to variable receiving bank angle [rad]

Return value:
Error flag (FALSE on failure)

oapiGetHeading

Returns a vessel's heading (against geometric north) calculated for the local horizon

plane.

Synopsis:

BOOL oapi Get Headi ng (OBJHANDLE hVessel, doubl e *headi ng)

Parameters:
hVessel vessel handle
heading pointer to variable receiving heading value [rad]

Return value:
Error flag (FALSE on failure)

Notes:

e Unitis radian [rad] O=north, W2=east, etc.
e The handle passed to the function must refer to a vessel.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

169

oapiGetFocusHeading
Returns the heading (against geometric north) of the current focus vessel calculated for
the local horizon plane.

Synopsis:
BOOL oapi Get FocusHeadi ng (doubl e *headi ng)

Parameters:
heading pointer to variable receiving heading value [rad]

Return value:
Error flag (FALSE on failure)

oapiGetEquPos
Returns a vessel's spherical equatorial coordinates (longitude, latitude and radius) with
respect to the closest planet or moon.

Synopsis:
BOOL oapi Get EQuPos (

OBJHANDLE hVessel
doubl e *| ongi t ude,
doubl e *l atitude,
doubl e *radi us)

Parameters:
hVessel vessel handle
longitude pointer to variable receiving longitude value [rad]
latitude pointer to variable receiving latitude value [rad]
radius pointer to variable receiving radius value [m]

Return value:
Error flag (FALSE on failure)

Notes:
* The handle passed to the function must refer to a vessel.

oapiGetFocusEquPos
Returns the current focus vessel’s spherical equatorial coordinates (longitude, latitude
and radius) with respect to the closest planet or moon.

Synopsis:
BOOL oapi Get FocusEquPos (

doubl e *1 ongi t ude,
doubl e *l atitude,
doubl e *radi us)

Parameters:
longitude pointer to variable receiving longitude value [rad]
latitude pointer to variable receiving latitude value [rad]
radius pointer to variable receiving radius value [m]

Return value:
Error flag (FALSE on failure)

19.7 Aerodynamics

oapiGetAirspeed

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 170

Returns a vessel's airspeed w.r.t. the closest planet or moon.

Synopsis:
BOOL oapi Get Ai rspeed (OBJHANDLE hVessel, doubl e *airspeed)

Parameters:
hVessel vessel handle
airspeed pointer to variable receiving airspeed value [m/s]

Return value
Error flag (FALSE on failure)

Notes:
* This function works even for planets or moons without atmosphere. It returns
an “airspeed-equivalent” value.

oapiGetFocusAirspeed
Returns the current focus vessel’'s airspeed w.r.t. the closest planet or moon.

Synopsis:
BOOL oapi Get FocusAi rspeed (doubl e *airspeed)

Parameters:
airspeed pointer to variable receiving airspeed value [m/s]

Return value:
Error flag (FALSE on failure)

oapiGetAirspeedVector
Returns a vessel's airspeed vector w.r.t. the closest planet or moon in the local
horizon’s frame of reference.

Synopsis:
BOOL oapi Get Ai rspeedVector (

OBJHANDLE hVessel ,
VECTOR3 *speedvec)

Parameters:
hVessel vessel handle
speedvec pointer to variable receiving airspeed vector [m/s in Xx,y,z]

Return value:
Error flag (FALSE on failure)

Notes:
» This function returns the airspeed vector with respect to the local horizon
reference frame. To get the vector with respect to the local vessel
coordinates, use oapiGetShipAirspeedVector.

oapiGetFocusAirspeedVector

Returns the current focus vessel's airspeed vector w.r.t. the closest planet or moon in
the local horizon’s frame of reference.

Synopsis:
BOOL oapi Get FocusAi r speedVect or (VECTOR3 *speedvec)

Parameters:
speedvec pointer to variable receiving airspeed vector [m/s in X,y,Z]

Return value:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 171

Error flag (FALSE on failure)

oapiGetShipAirspeedVector
Returns a vessel's airspeed vector w.r.t. the closest planet or moon in the vessel’s local

frame of reference.

Synopsis:
BOOL oapi Get Shi pAi rspeedVect or (
OBJHANDLE hVessel ,

VECTOR3 *speedvec)

Parameters:
hVessel vessel handle
speedvec pointer to variable receiving airspeed vector [m/s in X,y,Z]

Return value:
Error flag (FALSE on failure)

Notes:
» This function returns the airspeed vector with respect to the vessel's frame of
reference. The get the vector with respect to the local horizon’s frame of

reference, use oapiGetAirspeedVector.

oapiGetFocusShipAirspeedVector
Returns the current focus vessel’s airspeed vector w.r.t. closest planet or moon in the

vessel’s local frame of reference.

Synopsis:
BOOL oapi Get FocusShi pAi r speedVect or (VECTOR3 *speedvec)

Parameters:
speedvec pointer to variable receiving airspeed vector [m/s in Xx,y,z]

Return value:
Error flag (FALSE on failure)

oapiGetAtmPressureDensity
Returns the atmospheric pressure and density caused by a planetary atmosphere at

the current vessel position.

Synopsis:
voi d oapi Get At mPressurebDensity (

OBJHANDLE hVessel ,
doubl e *pressure,
doubl e *density)

Parameters:
hVessel vessel handle
pressure pointer to variable receiving pressure value [Pa]

density pointer to variable receiving density value [kg/m3]

Notes:

Pressure and density are calculated using an exponential barometric
equation, without accounting for local variations.

oapiGetFocusAtmPressureDensity
Returns the atmospheric pressure and density caused by a planetary atmosphere at

the current focus vessel’'s position.

Synopsis:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 172

voi d oapi Get FocusAt nPressureDensity (
doubl e *pressure,
doubl e *density)

Parameters:
pressure pointer to variable receiving pressure value [Pa]
density pointer to variable receiving density value [kg/m3]

oapiGetinducedDrag
This is a helper function which is useful when implementing the callback function
calculating the aerodynamics coefficients for an airfoil (see VESSEL::CreateAirfoil). It
computes the lift-induced component cp; of the drag coefficient as a function of lift
coefficient c_, wing aspect ratio A, and wing efficiency factor e, as

¢l

e

D,i

Synopsis:
doubl e oapi Get | nducedDrag (double cl, double A double e)

Parameters:
cl lift coefficient
A wing aspect ratio
e wing efficiency factor

Return value:
Induced drag coefficient cp

Notes:

» The full drag coefficient required by the airfoil callback function consists of
several components: profile drag cp e, induced drag cp; and wave drag Cp
CD = CD,e +CD,i +CD,W
where cp ¢ is caused by skin friction and pressure components, and cp, iS a
result of the shock wave and flow separation in transonic and supersonic
flight.

« The wing aspect ratio is defined as b%S, where b is the wing span, and Sis
the wing area.

» The efficiency factor depends on the wing shape. The most efficient wings
are elliptical, with e = 1. For all other shapes, e< 1.

» This function can be interpreted slightly differently by moving the angle of
attack-dependency of the profile drag into the induced drag component:
CD = CD,O + CI'),i + CD,W
where cp is the zero-lift component of the profile drag, and c'p; is a modified
induced drag obtained by replacing the shape factor e with the Oswald
efficiency factor. See Programmer’s Guide for more details.

oapiGetWaveDrag
This is a helper function which is useful when implementing the callback function
calculating the aerodynamics coefficients for an airfoil (see VESSEL::CreateAirfoil). It
uses a simple model to compute the wave drag component of the drag coefficient, cp .
Wave drag significantly affects the vessel drag around Mach 1, and falls off towards
lower and higher airspeeds.
This function uses the following model:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 173

0 it M <M,
cmM if M, <M <M,
Cow = M, -M,
c., it M, <M <M,
M2-1¥2
cmﬁ if M >M,

where 0 < M; < M, < 1 < M3 are characteristic Mach numbers, and cm is the maximum
wave drag coefficient at transonic speeds.

Synopsis:
doubl e oapi Get WaveDrag (

double M
doubl e ML, double M, double M3,
doubl e crax)

Parameters:
M current Mach number
M1, M2, M3 characteristic Mach numbers
cmax maximum wave drag coefficient

Return value:
Wave drag coefficient cp

Notes:
* The model underlying this function assumes a piecewise linear wave drag
profile for M < M3, and a decay with (M%-1)™? for M > M. If this profile is not

suitable for a given airfoil, the programmer must implement wave drag
manually.

19.8 Engine status

oapiGetEngineStatus
Retrieve the status of main, retro and hover thrusters for a vessel.

Synopsis:
voi d oapi Get Engi neSt at us (
OBJHANDLE hVessel ,
ENG NESTATUS *es)

Parameters:
hVessel vessel handle
es pointer to an ENGINESTATUS structure which will receive the
engine level parameters
Notes:

The main/retro engine level has a range of [-1,+1]. A positive value indicates
engaged main/disengaged retro thrusters, a negative value indicates engaged
retro/disengaged main thrusters. Main and retro thrusters cannot be engaged
simultaneously. For vessels without retro thrusters the valid range is [0,+1]. The
valid range for hover thrusters is [0,+1].

oapiGetFocusEngineStatus
Retrieve the engine status for the focus vessel.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 174

Synopsis:
voi d oapi Get FocusEngi neSt at us (ENG NESTATUS *es)

Parameters:
es pointer to an ENGINESTATUS structure which will receive the

engine level parameters

Notes:
See oapiGetEngineStatus

oapiSetEngineLevel
Engage the specified engines.

Synopsis:
voi d oapi Set Engi neLevel (

OBJHANDLE hVessel ,
ENG NETYPE engi ne,
doubl e | evel)

Parameters:
hVessel vessel handle
engine identifies the engine to be set
level engine thrust level [0,1]
Notes:

» Not all vessels support all types of engines.
e Setting main thrusters > 0 implies setting retro thrusters to 0 and vice versa.

» Setting main thrusters to —level is equivalent to setting retro thrusters to
+level and vice versa.

oapiGetAttitudeMode
Returns a vessel's current attitude thruster mode.

Synopsis:
i nt oapi GetAttitudeMode (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
Current attitude mode (O=disabled or not available, 1=rotational, 2=linear)

Notes:
* The handle must refer to a vessel. This function does not support other

object types.

oapiToggleAttitudeMode
Flip a vessel's attitude thruster mode between rotational and linear.

Synopsis:
i nt oapi Toggl eAttitudeMode (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
The new attitude mode (1=rotational, 2=linear, 0O=unchanged disabled)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 175

Notes:

» The handle must refer to a vessel. This function does not support other
object types.

» This function flips between linear and rotational, but has no effect if attitude
thrusters were disabled.

oapiSetAttitudeMode
Set a vessel’s attitude thruster mode.

bool oapi Set AttitudeMbde (OBJHANDLE hVessel, int node)
Parameters:

hVessel vessel handle

mode attitude mode (O=disable, 1=rotational, 2=linear)

Return value:
Error flag; false indicates failure (requested mode not available)

Notes:

* The handle must refer to a vessel. This function does not support other
object types.

oapiGetFocusAttitudeMode
Returns the current focus vessel's attitude thruster mode (rotational or linear)

i nt oapi Get FocusAttitudeMde ()

Return value:
Current attitude mode (0=disabled or not available, 1=rotational, 2=linear)

oapiToggleFocusAttitudeMode
Flip the current focus vessel’s attitude thruster mode between rotational and linear.

Synopsis:
i nt oapi Toggl eFocusAttitudeMde ()

Return value:
The new attitude mode (1=rotational, 2=linear, 0O=unchanged disabled)

Notes:

* This function flips between linear and rotational, but has no effect if attitude
thrusters were disabled.

oapiSetFocusAttitudeMode
Set the current focus vessel’s attitude thruster mode.

Synopsis:

bool oapi Set FocusAttitudeMde (int node)
Parameters:

mode attitude mode (O=disable, 1=rotational, 2=linear)

Return value:
Error flag; false indicates error (requested mode not available)

oapiRegisterExhaustTexture
Request a custom texture for vessel exhaust rendering.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 176

SURFHANDLE oapi Regi st er Exhaust Texture (char *nane)

Parameters:
name exhaust texture file name (without path and extension)

Return value:
texture handle

Notes:

* The exhaust texture must be stored in DDS format in Orbiter’s default texture
directory.

» If the texture is not found the function returns NULL.
The texture can be used to define custom textures in VESSEL::AddExhaust.

See also:
VESSEL::AddExhaust

oapiRegisterReentryTexture
Request a custom texture for vessel reentry flame rendering.

Synopsis:

SURFHANDLE oapi Regi st er ReentryTexture (char *nane)
Parameters:

name reentry texture file name (without path and extension)

Return value:
texture handle

Notes:
» The exhaust texture must be stored in DDS format in Orbiter’s default texture
directory.
e If the texture is not found the function returns NULL.
e The texture can be used to define custom textures in
VESSEL::SetReentryTexture.
See also:

VESSEL::SetReentryTexture

19.9 Functions for planetary bodies

All OBJHANDLE function parameters used in this section must refer to planetary bodies

(planets, moons, astereoids, etc.) unless stated otherwise. Invalid handles may lead to
crashes.

Currently, the orientation of planetary rotation axes is assumed time-invariant. Precession,
nutation and similar effects are not currently simulated.

oapiGetPlanetPeriod
Returns the rotation period (the length of a siderial day) of a planet.

Synopsis:

doubl e oapi Get Pl anet Peri od (OBJHANDLE hPI anet)
Parameters:

hPlanet planet handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 177

Return value:
planet rotation period [seconds]

oapiGetPlanetObliquity
Returns the obliquity of the planet’s rotation axis (the angle between the rotation axis
and the ecliptic zenith).

Synopsis:

doubl e oapi Get Pl anet Qbl i quity (OBJHANDLE hPI anet)
Parameters:

hPlanet planet handle

Return value:
obliquity [rad]

Notes:
* In Orbiter, the ecliptic zenith (at epoch J2000) is the positive y-axis of the
global frame of reference.

oapiGetPlanetTheta
Returns the longitude of the ascending node of the equatorial plane (denoted by 6),
that is, the angle between the vernal equinox and the ascending node of the equator
w.r.t. the ecliptic.

Synopsis:

doubl e oapi Get Pl anet Theta (OBJHANDLE hPI anet)
Parameters:

hPlanet planet handle

Return value:
longitude of ascending node of the equator [rad]

Notes:
* For Earth, this function will return 0. (The ascending node of Earth’s
equatorial plane is the definition of the vernal equinox).

oapiGetPlanetObliquityMatrix
Returns a rotation matrix which performs the transformation from the planet’s tilted
coordinates into global coordinates.

Synopsis:
voi d oapi Get Pl anet Qbl i quityMatrix (

OBJHANDLE hPI anet
MATRI X3 *rmat)

Parameters:

hPlanet planet handle

mat pointer to a matrix receiving the rotation data
Notes:

e The returned matrix is given by
cosd 0 -snd|f1 O 0

R,=| 0 1 0 0 cos¢g -sng
sngd 0 cosf |0 sng cos¢

where Fis the longitude of the ascending node of the equator, as returned by

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 178

oapiGetPlanetTheta, and ¢ is the obliquity as returned by
oapiGetPlanetObliquity.

* Ry does notinclude the current rotation of the planet around its axis. Ry is
therefore time-independent.

oapiGetPlanetCurrentRotation
Returns the current rotation angle of the planet around its axis.

Synopsis:

doubl e oapi Get Pl anet Current Rotati on (OBJHANDLE hPl anet)
Parameters:

hPlanet planet handle

Return value:
Rotation angle [rad]

Notes:
* The complete rotation matrix from planet local to global (ecliptic) coordinates
is given by
cosw 0 -shw
R=R,/] 0 1 0
snw 0 cosw
where R, is the obliquity matrix as returned by oapiGetPlanetObliquityMatrix,
and wis the rotation angle returned by oapiGetPlanetCurrentRotation.

oapiPlanetHasAtmosphere
Test for existence of planetary atmosphere.

Synopsis:

doubl e oapi Pl anet HasAt nosphere (OBJHANDLE hPIl anet)
Parameters:

hPlanet planet handle

Return value:
true if an atmosphere has been defined for the planet, false otherwise.

oapiGetPlanetAtmConstants
Returns atmospheric constants for a planet.

Synopsis:
const ATMCONST *oapi Get Pl anet At nConst ants (

OBJHANDLE hPl anet)

Parameters:
hPlanet planet handle

Return value:
pointer to ATMCONST structure containing atmospheric coefficients for the
planet (see notes)

Notes:
» ATMCONST has the following components:

typedef struct {
doubl e poO; /I pressure at mean radius (‘sea level’) [Pa]
doubl e rhoO; /I density at mean radius [kg/m’]
doubl e R; Il specific gas constant [J/(K kg)]
doubl e gammsg; /Il ratio of specific heats, c_p/c_v

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 179

doubl e G /I exponent for pressure equation (temporary)
doubl e 2pp; Il partial pressure of oxygen
double altlimt; /I atmosphere altitude limit [m]
double radlimt; /I radius limit (altlimit + mean radius)
doubl e hori zonalt; // horizon rendering altitude
VECTOR3 col or0; Il sky colour at sea level during daytime
} ATMCONST;

» If the specified planet does not have an atmosphere, return value is NULL.

oapiGetPlanetAtmParams
Returns atmospheric parameters as a function of distance from the planet centre.

voi d oapi Get Pl anet At nPar ans (

OBJHANDLE hPI anet,
doubl e rad,
ATMPARAM * pr m

Parameters:

hPlanet planet handle

rad radius from planet centre [m]

prm pointer to ATMPARAM structure receiving parameters
Notes:

» See section 8 for definition of ATMPARAM structure.
» If the planet has no atmosphere, or if the defined radius is beyond the
defined upper atmosphere limit, all parameters are set to 0.

oapiGetPlanetJCoeffCount
Returns the number of perturbation coefficients defined for a planet to describe the
latitude-dependent perturbation of its gaviational potential. A return value of O indicates
that the planet is considered to have a spherically symmetric gravity field.

Synopsis:
DWORD oapi Get Pl anet JCoef f Count (OBJHANDLE hPl anet)

Parameters:
hPlanet planet handle

Return value:
Number of perturbation coefficients.

Notes:

» Even if a planet defines perturbation coefficients, its gravity perturbation may
be ignored, if the user disabled nonspherical gravity sources, or if orbit
stabilisation is active at a given time step. Use the
VESSEL::NonsphericalGravityEnabled function to check if a vessel uses the
perturbation terms in the update of its state vectors.

» Depending on the distance to the planet, Orbiter may use fewer perturbation
terms than defined, if their contribution is negligible:

If Jn(Bj <&, (n=2),ignore all terms = n,
r

where R s the planet radius, r is the distance from the planet, and J, is the n-
2" perturbation term defined for the planet. Orbiter uses = 10,

oapiGetPlanetJCoeff
Returns a perturbation coefficient for the calculation of a planet’s gravitational potential.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 180

Synopsis:
doubl e oapi Get Pl anet JCoeff (OBJHANDLE hPl anet, DWORD n)

Parameters:
hPlanet planet handle
n coefficient index

Return value:
Perturbation coefficient J,..

Notes:
» Valid indices n are 0 to oapiGetPlanetJCoeffCount()-1.
» Orbiter calculates the planet’s gravitational potential U for a given distance r
and latitude @by

u(r,@:@[l-ia{;j Pn(snw)}

where Ris the planet’s equatorial radius, M is its mass, G is the gravitational
constant, and P, is the Legendre polynomial of order n.

» Orbiter currently considers perturbations to be only a function of latitude
(polar), not of longitude.

» The first coefficient, n = 0, returns J,, which accounts for the ellipsoid shape
of a planet (flattening). Higher perturbation terms are usually small compared
to J, (and not known for most planets).

19.10 Surface base functions

oapiGetBaseEquPos
Returns the equatorial coordinates (longitude, latitude and radius) of the location of a
surface base.

Synopsis:
voi d oapi CGet BaseEquPos (

OBJHANDLE hBase,
doubl e *I ng,
doubl e *I at,
doubl e *rad = 0)

Parameters:
hBase surface base handle
Ing pointer to variable to receive longitude value [rad]
lat pointer to variable to receive latitude value [rad]
rad pointer to variable to receive radius value [m]
Notes:

 hBase must be a valid base handle (e.g. from oapiGetBaseByName)
e The radius pointer can be omitted if not required.
e Currently, rad will always return the planet mean radius.

oapiGetBasePadCount
Returns the number of VTOL landing pads owned by the base.

Synopsis:

DWORD oapi Get BasePadCount (OBJHANDLE hBase)
Parameters:

hBase surface base handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 181

Return value:
Number of landing pads

Notes:
» hBase must be a valid base handle (e.g. from oapiGetBaseByName)
e This function only counts VTOL pads, not runways.

oapiGetBasePadEquPos
Returns the equatorial coordinates (longitude, latitude and radius) of the location of a
VTOL landing pad.

Synopsis:
bool oapi Get BasePadEquPos (

OBJHANDLE hBase,
DWORD pad,

doubl e *I ng,
doubl e *I at,
double *rad = 0)

Parameters:
hBase surface base handle
pad pad index
Ing pointer to variable to receive longitude value [rad]
lat pointer to variable to receive latitude value [rad]
rad pointer to variable to receive radius value [m]

Return value:
false indicates failure (pad index out of range). In that case, the return values are
undefined.

Notes:
* hBase must be a valid base handle (e.g. from oapiGetBaseByName)
» 0 <pad < oapiGetBasePadCount() is required.
* The radius pointer can be omitted if not required.

oapiGetBasePadStatus
Returns the status of a VTOL landing pad (free, occupied or cleared).

Synopsis:
bool oapi Get BasePadSt at us (

OBJHANDLE hBase,
DWORD pad,
int *status)

Parameters:
hBase surface base handle
pad pad index
status pointer to variable to receive pad status

Return value:
false indicates failure (pad index out of range)

Notes:
e hBase must be a valid base handle (e.g. from oapiGetBaseByName)
e 0 < pad < oapiGetBasePadCount() is required.
e status can be one of the following:
0 = pad is free
1 = pad is occupied
2 = pad is cleared for an incoming vessel

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 182

oapiGetBasePadNav
Returns a handle to the ILS transmitter of a VTOL landing pad, if available.

Synopsis:

NAVHANDLE oapi Get BasePadNav (OBJHANDLE hBase, DWORD pad)
Parameters:

hBase surface base handle

pad pad index

Return value:

Handle of a ILS transmitter, or NULL if the pad index is out of range or the pad
has no ILS.

Notes:

» hBase must be a valid base handle (e.g. from oapiGetBaseByName)
e 0 <pad < oapiGetBasePadCount() is required.

19.11 Navigation radio transmitter functions

oapiGetNavPos

Returns the current position of a NAV transmitter (in global coordinates, i.e. heliocentric
ecliptic).

Synopsis:
voi d oapi Get NavPos (NAVHANDLE hNav, VECTOR3 *gpos)

Parameters:
hNav NAV transmitter handle
gpos pointer to variable to receive global position

oapiGetNavChannel
Returns the channel number of a NAV transmitter.

Synopsis:

DWORD oapi Get NavChannel (NAVHANDLE hNav)
Parameters:

hNav NAV transmitter handle

Return value:
channel number

Notes:
» Channel numbers range from 0 to 639.

* To convert a channel number ch into a frequency, use
f=(108.0 + 0.05 ch) MHz

oapiGetNavFreq
Returns the frequency of a NAV transmitter.

Synopsis:

fl oat oapi Get NavFreq (NAVHANDLE hNav)
Parameters:

hNav NAV transmitter handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 183

Return value:
Transmitter frequency [MHz]

Notes:

* In Orbiter, NAV transmitter frequencies range from 108.0 to 139.95 MHz and
are incremented in 0.05 MHz steps.

oapiGetNavRange

Returns the range of a NAV transmitter.

Synopsis:

fl oat oapi Get NavRange (NAVHANDLE hNav)
Parameters:

hNav NAV transmitter handle

Return value:
Transmitter range [m]

Notes:
* A NAV receiver will only receive a signal when within the range of a
transmitter.
» Variable receiver sensitivity is not currently implemented.

» Shadowing of a transmitter by obstacles between transmitter and receiver is
not currently implemented.

oapiGetNavType

Returns the type id of a NAV transmitter.

Synopsis:

DWORD oapi Get NavType (NAVHANDLE hNav)
Parameters:

hNav NAV transmitter handle

Return value:
transmitter type identifier

Notes:

» The following transmitter types are currently supported:
TRANSMITTER_VOR (omnidirectional beacon)
TRANSMITTER_VTOL (launchpad homing beacon)
TRANSMITTER_ILS (instrument landing system)
TRANSMITTER_IDS (instrument docking system)
TRANSMITTER_XPDR (transponder)

oapiGetNavDescr

Returns a descriptive string for a NAV transmitter.

Synopsis:
i nt oapi Get NavDescr (
NAVHANDLE hNav,
char *descr,

i nt maxl en)
Parameters:
hNav NAV transmitter handle
descr pointer to string receiving description
maxlen string buffer length

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 184

Return value:
Number of characters returned (excluding terminating NULL character). If
maxlen was not sufficient to store the complete description, the return value is
negative.

Notes:

* This function fills string descr with a description of the NAV radio transmitter
of length < maxlen. If the buffer length is greater than required for the
description, a NULL character is appended.

» The description format for the different transmitter types is as follows:

VOR: “VOR <id>", where <id> is a 3-4 letter sequence.
VTOL: “VTOL Pad-<#> <base>", where <#> is the pad number, and
<base> is the base name.

ILS: “ILS Rwy <#> <base>", where <#> is the runway id, and <base> is
the base name.
IDS: “IDS D-<#> <vessel>", where <#> is the dock number, and <vessel>

is the vessel name.
XPDR: “XPDR <vessel>", where <vessel> is the vessel name.

oapiNavinRange
Determines whether a given global coordinate is within the range of a NAV transmitter.

Synopsis:

bool oapi Navl nRange (NAVHANDLE hNav, const VECTOR3 &gpos)
Parameters:

hNav NAV transmitter handle

gpos Global coordinates [m,m,m] of a point (cartesian heliocentric

ecliptic)

Return value:
true if the point is within range of the transmitter.

19.12 Simulation time

oapiGetSimTime
Retrieve simulation time (in seconds) since simulation start.

Synopsis:
doubl e oapi Get Si mTi me ()

Return value:
Simulation up time (seconds)

Notes:
Since the simulation up time depends on the simulation start time, this parameter
is useful mainly for time differences. To get an absolute time parameter, use
0apiGetSimMJD.

oapiGetSimStep
Retrieve length of last simulation time step (from previous to current frame) in seconds.

doubl e oapi Get Si nStep ()

Return value:
Simulation time step (seconds)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 185

Notes:
This parameter is useful for numerical (finite difference) calculation of time
derivatives.

oapiGetSysTime
Retrieve system (real) time since simulation start.

Synopsis:
doubl e oapi Get SysTinme ()

Return value:
Real-time simulation up time (seconds)

Notes:
» This function measures the real time elapsed since the simulation was
started. Unlike oapiGetSimTime, it doesn’t take into account time
acceleration.

oapiGetSysStep
Retrieve length of last system time step in seconds.

Synopsis:
QAPI FUNC doubl e oapi Get SysStep ()

Return value:
System time step (seconds)

Notes:
» Unlike oapiGetSimStep, this function does not include the time compression
factor. It is useful to control actions which do not depend on the simulation
time acceleration.

oapiGetSimMJD
Retrieve absolute time measure (Modified Julian Date) for current simulation state.

Synopsis:
doubl e oapi Get Si mMID ()

Return value:
Current Modified Julian Date (days)

Notes:
Orbiter defines the Modified Julian Date (MJD) as JD — 240 0000.5, where JD is
the Julian Date. JD is the interval of time in mean solar days elapsed since 4713
BC January 1 at Greenwich mean noon.

oapiGetSysMJID
Retrieve the current computer system time in Modified Julian Date (MJD) format.

Synopsis:
doubl e oapi Get SysMID ()

Return value:
Computer system time in MJD format

oapiSetSimMJD
Set the current simulation time. The simulation session performs a jump to the new
time.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 186

Synopsis:

bool oapi Set Si mMID (doubl e njd, int pnode = 0)
Parameters:

mjd new simulation time

pmode vessel propagation modes (see notes)

Return value:

Currently this function always returns true.

Notes:
* The new time can be set before or after the current simulation time.
» Deterministic objects (planets controlled by Keplerian elements or
perturbation code) are propagated directly. Vessels are propagated
according to pmode, which can be a combination of

orbital vessels

PROP_ORBI TAL_ELEMENTS

Move the vessel along its current
orbital trajectory, assuming that no
forces other than the central body’s
gravitational force are acting on the
vessel.

PROP_ORBI TAL_FI XEDSTATE

Keep the vessel’s relative position and
velocity with respect to the central body
fixed in a non-rotating frame.

PROP_ORBI TAL_FI XEDSURF

Keep the vessel's position velocity and
attitude fixed relative to the planet

surface.

suborbital vessels

PROP_SORBI TAL_ELEMENTS As PROP_ORBI TAL_ELEMENTS

PROP_SORBI TAL_FI XEDSTATE

As PROP_ORBI TAL_FI XEDSTATE

PROP_SORBI TAL_FI XEDSURF | As PROP_ORBI TAL_FI XEDSURF

PROP_SORBI TAL_DESTROY

Destroy any suborbital vessels (i.e.
assume that the vessels impacted on
the ground during time propagation).

pmode can be a bitwise combination of one of the orbital and one of the

suborbital modes. Default is propagation along osculating elements for both.

oapiTime2MJD
Convert a simulation up time value into a Modified Julian Date.

Synopsis:

doubl e oapi Ti me2MID (doubl e sint)
Parameters:

simt simulation time (seconds)

Return value:
Modified Julian Date (MJD) corresponding to simt.

oapiGetTimeAcceleration
Returns simulation time acceleration factor.

Synopsis:
doubl e oapi Get Ti meAccel eration (voi d)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

187

Return value:
time acceleration factor

Notes:

This function will not return 0 when the simulation is paused. Instead it will
return the acceleration factor at which the simulation will resume when
unpaused. Use oapiGetPause to obtain the pause/resume state.

oapiSetTimeAcceleration
Set the simulation time acceleration factor

Synopsis:

voi d oapi Set Ti meAccel eration (doubl e warp)
Parameters:

warp new time acceleration factor
Notes:

Warp factors will be clamped to the valid range [1,100000]. If the new warp
factor is different from the previous one, all DLLs (including the one that

called oapiSetTimeAcceleration) will be sent a opcTimeAccChanged
message.

oapiGetPause
Returns the current simulation pause state.

Synopsis:
bool oapi Get Pause (voi d)

Return value:
true if simulation is currently paused, false if it is running.

oapiSetPause
Sets the simulation pause state.

Synopsis:
voi d oapi Set Pause (bool pause)
Parameters:
pause true to pause the simulation, false to resume.

oapiGetFrameRate
Returns current simulation frame rate (frames/sec).

Synopsis:
doubl e oapi Get FraneRate (voi d)

Return value:
Current frame rate (fps)

19.13 Camera functions
oapiCameralnternal
Returns flag to indicate internal/external camera mode.

Synopsis:
bool oapi Caneral nternal (void)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 188

Return value:
true indicates an internal camera mode, i.e. the camera is located inside a vessel
cockpit. In this case, the camera target is always the current focus object.
false indicates an external camera mode, i.e. the camera points toward an object
from outside. The camera target may be a vessel, planet, spaceport, etc.

oapiCameraMode
Returns the current camera view mode.

Synopsis:
i nt oapi Carmer aMbde ()

Return value:

CAM_COCKPIT cockpit (internal) mode
CAM_TARGETRELATIVE tracking mode (relative direction)
CAM_ABSDIRECTION tracking mode (absolute direction)
CAM_GLOBALFRAME tracking mode (global frame)

CAM_TARGETTOOBJECT tracking mode (target to object)
CAM_TARGETFROMOBJECT tracking mode (object to target)
CAM_GROUNDOBSERVER ground observer mode

oapiCockpitMode
Returns the current cockpit display mode.

Synopsis:
i nt oapi CockpitMde ()

Return value:
COCKPIT_GENERIC (generic cockpit mode: left+right MFD and HUD)
COCKPIT_PANELS (2D panel mode)
COCKPIT_VIRTUAL (virtual cockpit mode)

Notes:
» This function also works if the camera is not currently in cockpit mode.

oapiCameraTarget
Returns a handle to the current camera target.

Synopsis:
OBJHANDLE oapi CaneraTar get (voi d)

Return value:
Handle to the current camera target (i.e. the object the camera is pointing at in
external mode, or the handle of the vessel in cockpit mode)

Notes:
* The camera target is not necessarily a vessel, and if it is a vessel, it is not
necessarily the focus object (the vessel receiving user input).

oapiCameraGlobalPos
Returns current camera position in global coordinates.

Synopsis:

voi d oapi Caner ad obal Pos (VECTOR3 *gpos)
Parameters:

gpos pointer to vector to receive global camera coordinates

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 189

Notes:
* The global coordinate system is the heliocentric ecliptic frame at epoch
J2000.0.

oapiCameraGlobalDir
Returns current camera direction in global coordinates.

Synopsis:

voi d oapi Canmerad obal Dir (VECTOR3 *gdir)
Parameters:

gdir pointer to vector to receive global camera direction

oapiCameraTargetDist
Returns the distance between the camera and its target [m].

Synopsis:
doubl e oapi CanmeraTarget Di st (voi d)

Return value:
Distance between camera and camera target [m].

oapiCameraAzimuth
Returns the current camera azimuth angle with respect to the target.

Synopsis:
doubl e oapi Caner aAzi nuth ()

Return value:
Camera azimuth angle [rad]. Value O indicates that the camera is behind the
target.

Notes:
* This function is useful only in external camera mode. In internal mode, it will
always return 0.

oapiCameraPolar
Returns the current camera polar angle with respect to the target.

Synopsis:
doubl e oapi Caner aPol ar ()

Return value:
Camera polar angle [rad]. Value 0 indicates that the camera is at the same
elevation as the target.

Notes:
e This function is useful only in external camera mode. In internal mode, it will
always return 0.

oapiCameraAperture
Returns the current camera aperture (the field of view) in rad.

Synopsis:
doubl e oapi Caner aAperture (void)

Return value:
camera aperture [rad]

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 190

Notes:
» Orbiter defines the the aperture as % of the vertical field of view, between
the viewport centre and the top edge of the viewport.

oapiCameraSetAperture
Change the camera aperture (field of view).

Synopsis:
voi d oapi Caner aSet Aperture (double aperture)

Parameters:
aperture new aperture [rad]

Notes:

» Orbiter restricts the aperture to the range from RAD*5 to RAD*80 (i. e. field
of view between 10° and 160°. Very wide angles (> 90°) should only be used
to implement specific optical devices, e.g. wide-angle cameras, not for
standard observer views.

» The Orbiter user interface does not accept fields of view > 90°. As soon as
the user manipulates the aperture manually, it will be clamped back to the
range from 10° to 90°.

oapiCameraScaleDist
Moves the camera closer to the target or further away.

Synopsis:

voi d oapi CaneraScal eDi st (doubl e dscal e)
Parameters:

dscale distance scaling factor
Notes:

» Setting dscale < 1 will move the camera closer to its target. dscale > 1 will
move it further away.
* This function is ignored if the camera is in internal mode.

oapiCameraRotAzimuth
Rotate the camera around the target (azimuth angle).

Synopsis:
voi d oapi Caner aRot Azi nut h (doubl e dazi nut h)

Parameters:
dazimuth change in azimuth angle [rad]

Notes:
e This function is ignored if the camera is in internal mode.

oapiCameraRotPolar
Rotate the camera around the target (polar angle).

Synopsis:

voi d oapi Caner aRot Pol ar (doubl e dpol ar)
Parameters:

dpolar change in polar angle [rad]
Notes:

e This function is ignored if the camera is in internal mode.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 191

oapiCameraSetCockpitDir
Set the camera direction in cockpit mode.

Synopsis:
voi d oapi Caner aSet CockpitDir (

doubl e pol ar,
doubl e azi nut h,
bool transition = fal se)

Parameters:
polar polar angle [rad]
azimuth azimuth angle [rad]
transition transition flag (see notes)

Notes:

» This function is ignored if the camera is not currently in cockpit mode.

» The polar and azimuth angles are relative to the default view direction (see
VESSEL::SetCameraDefaultDirection)

* The requested direction should be within the current rotation ranges (see
VESSEL::SetCameraRotationRange), otherwise the result is undefined.

» If transition==false, the new direction is set instantaneously; otherwise the
camera swings from the current to the new direction (not yet implemented).

oapiCameraAttach
Attach the camera to a new target, or switch between internal and external camera

mode.

voi d oapi CaneraAttach (OBJHANDLE hObj, int node)
Parameters:

hObj handle of the new camera target

mode camera mode (O=internal, 1=external, 2=don’t change)
Notes:

» If the new target is not a vessel, the camera mode is always set to external,
regardless of the value of mode.

19.14 Keyboard input

oapiAcceptDelayedKey
IR, This function is should no longer be used. See ovcConsumeBufferedKey for
handling buffered key events. May be removed in a future version.

19.15 Mesh and texture management

oapiLoadMesh
Loads a mesh from file and returns a handle to it.

Synopsis:

MESHHANDLE oapi LoadMesh (const char *fnane)
Parameters:

fname mesh file name

Return value:
Handle to the loaded mesh. (NULL indicates load error)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 192

Notes:
» The file name should not contain a path or file extension. Orbiter appends
extension .msh and searches in the default mesh directory.
* Meshes should be deallocated with oapiDeleteMesh when no longer
needed.

See also:
oapiDeleteMesh, VESSEL::AddMesh

oapiLoadMeshGlobal
Retrieves a mesh handle from the global mesh manager. When called for the first time
for any given file name, the mesh is loaded from file and stored as a system resource.
Every further request for the same mesh directly returns a handle to the stored mesh
without additional file 1/O.

Synopsis:

const MESHHANDLE oapi LoadMeshd obal (const char *fname)
Parameters:

fname mesh file name

Return value:
mesh handle

Notes:

* Once a mesh is globally loaded it remains in memory until the user closes
the simulation window.

» This function can be used to pre-load meshes to avoid load delays during
the simulation. For example, parent objects may pre-load meshes for any
child objects they may create later.

* Do NOT delete any meshes obtained by this function with oapiDeleteMesh!
Orbiter takes care of deleting globally managed meshes.

» If you assign the mesh to a vessel with a subsequent VESSEL::AddMesh
call, a copy of the global mesh is created every time the vessel creates its
visual, and discarded as soon as the visual is deleted. The global mesh can
therefore be regarded as a template from which individual vessel instances
make copies whenever they need to initialise their visual representation.
Handles for the individual mesh copies can be obtained within the
VESSEL2::clbkVisualCreated callback function, using the
VESSEL::GetMesh method. Vessels should only modify their individual
meshes, never the global template, since the latter is shared across all
vessel instances.

oapiDeleteMesh
Removes a mesh from memory.

Synopsis:

voi d oapi Del et eMesh (MESHHANDLE hMesh)
Parameters:

hMesh mesh handle

oapiMeshGroupCount
Returns the number of mesh groups defined in a mesh.

Synopsis:
DWORD oapi MeshG oupCount (MESHHANDLE hMesh)

Parameters:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 193

hMesh mesh handle

Return value:
number of mesh groups defined in the mesh

Notes:
» Each mesh is subdivided into mesh groups, defining a part of the 3-D object
represented by the mesh.
» A group consists of a list of vertex coordinates and vertex indices,
representing its geometry, and optionally a material and a texture reference.
* See 3DModel document for details of the mesh format.

oapiMeshGroup
Returns a pointer to the group specification of a mesh group.

Synopsis:

MESHGROUP *oapi MeshGroup (MESHHANDLE hMesh, DWORD i dx)
Parameters:

hMesh mesh handle

idx group index (= 0)

Return value:
pointer to mesh group specification (or NULL if idx out of range)

Notes:
» MESHGROUP is a structure defined as follows:
typedef struct { /I mesh group definition
NTVERTEX *Wt x; I vertex list
WORD *| dx; Il index list
DWORD n\t x; /I vertex count
DWORD nl dx; /I index count
DWORD Ml | dx; /I material index (>= 1, O=none)
DWORD Tex| dx; /I texture index (>= 1, O=none)
DWORD Usr Fl ag; /I user-defined flag
WORD zBi as; /I z bias
WORD Fl ags; I internal flags
} MESHGROUP;
where NVERTEX defines a vertex with normals and texture coordinates:
typedef struct { /I vertex definition including normals and texture coordinates
float x, y, z; /I position
float nx, ny, nz; // normal
float tu, tv; /I texture coordinates
} NTVERTEX;

» This method can be used to edit the a mesh group directly (for geometry
animation, texture animation, etc.)

oapiMeshMaterialCount
Returns the number of materials defined in the mesh.

Synopsis:

DWORD oapi MeshMat eri al Count (MESHHANDLE hMesh)
Parameters:

hMesh mesh handle

Return value:
number of materials defined in the mesh

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 194

Notes:

A mesh can contain a number of material specifications, and individual mesh
groups can be linked to a material via the Mtrlidx entry in the group
specification.

» A material defines the diffuse, ambient, specular and emissive colour
components of a mesh group, and also its level of transparency.

» See 3DModel document for details of the mesh format.

oapiMeshMaterial
Returns a pointer to a material specification in the material list of the mesh.

Synopsis:

MATERI AL *oapi MeshiMat eri al (MESHHANDLE hMesh, DWORD i dx)
Parameters:

hMesh mesh handle

idx material index (= 0)

Return value:
pointer to material specification (or NULL if idx out of range)

Notes:
» MATERIAL is a structure defined as follows:

typedef struct { /I material definition
COLOUR4 di ffuse; /I diffuse component
COLOUR4 anbi ent ; /I ambient component
COLOUR4 specul ar; // specular component
COLOUR4 emi ssive; // emissive component
fl oat power; /I specular power

} MATERI AL;

where COLOURA4 defines a 4-valued (RGBA) colour component (red, green,
blue, opacity):

typedef struct { /I vertex definition including normals and texture coordinates
float r; /I red component
float g; /I green component
float b; /I blue component
float a; /I opacity
} COLOUR4;

» colour component entries are in the range 0..1. Values > 1 may sometimes
be used to obtain special effects.

* This method can be used to edit mesh materials directly.

oapiGetTextureHandle
Retrieve a surface handle for a mesh texture.

Synopsis:
QAPI FUNC SURFHANDLE oapi Get Text ur eHandl e (

MESHHANDLE hMesh,
DWORD t exi dx)

Parameters:
hMesh mesh handle
texidx texture index (= 1)

Return value:
surface handle

Notes:

e This function can be used for dynamically updating textures during the
simulation.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 195

» the texture index is given by the order in which the textures appear in the
texture list at the end of the mesh file.

* Important: Any textures which are to be dynamically modified should be
listed with the ‘D’ flag (“dynamic”) in the mesh file. This causes Orbiter to
decompress the texture when it is loaded. Blitting operations to compressed
surfaces is very inefficient on most graphics hardware.

oapiLoadTexture
Load a texture from a file.

Synopsis:
SURFHANDLE oapi LoadTexture (

const char *fnane,
bool dynamic = false);

Parameters:
fname texture file name
dynamic allow dynamic modification

Return value:
Surface handle for the loaded texture, or NULL if not found.

Notes:

» Textures loaded by this function should be in DDS format and conform to the
DirectX restrictions for texture surfaces, typically square bitmaps with
dimensions of powers of 2 (128x128, 256x256, etc.).

» File names can contain search paths. Orbiter searches for textures in the
standard way, i.e. first searches the HitexDir directory (usually Textures?2),
then the TextureDir directory (usually Textures). All search paths are relative
to the texture root directories. For example, oapiLoadTexture
(“myvesse\\mytex.dds”) would first search for
Textures2\myvessel\mytex.dds, then for Textures\myvessel\mytex.dds.

oapiSetTexture
Replace a mesh texture.

Synopsis:
bool oapi Set Texture (

MESHHANDLE hMesh,
DWORD t exi dx,
SURFHANDLE t ex)

Parameters:
hMesh mesh handle
texidx texture index (= 1)
tex texture handle

Return value:
true if texture was set successfully, false if texidx is out of range.

Notes:
e This function replaces one of the mesh textures. All mesh groups referencing
the corresponding texture index will show the new texture.
» texidx must be in the range [1..n] where n is the length of the texture list in
the mesh, i.e. textures can be replaced, but no new textures added.
e To point an individual mesh group to a different texture, use oapiMeshGroup
to retrieve a MESHGROUP pointer, and modify the Texldx entry.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 196

oapiSetMeshProperty
Set custom properties for a mesh.

Synopsis:
bool oapi Set MeshProperty (

MESHHANDLE hMesh,
DWORD property,

DWORD val ue)
Parameters:
hMesh mesh handle
property property tag
value new mesh property value

Return value:
true if the property tag was recognised and the request could be executed, false
otherwise.

Notes:
* Currently only a single mesh property is recognised, but this may be
extended in future versions:

property tag value
MESHPROPERTY_MODULAT | = 0 (default): disable material alpha
EMATAL PHA information in textured mesh groups (only

use texture alpha channel)
0: modulate (mix) material alpha values
with texture alpha maps.

19.16 Particle stream management

oapiParticleSetLevelRef
Reset the reference pointer used by the particle stream to calculate the intensity
(opacity) of the generated particles.

Synopsis:
voi d oapi Particl eSet Level Ref (

PSTREAM HANDLE ph,
doubl e *1vl)

Parameters:

ph particle stream handle

vl pointer to variable defining particle intensity
Notes:

e The variable pointed to by Ivl should be set to values between 0 (lowest
intensity) and 1 (highest intensity).

* By default, exhaust streams are linked to the thrust level setting of the
thruster they are associated with. Reentry streams are set to a fixed level of
1 by default.

e This function allows to customise the appearance of the particle streams
directly by the module.

» Other parameters besides the intensity level, such as atmospheric density
can also have an effect on the particle intensity.

19.17 HUD, panel, virtual cockpit and MFD management

oapiSetHUDMode
Set HUD (head up display) mode.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 197

Synopsis:
bool oapi Set HUDMbde (i nt node)

Parameters:
mode new HUD mode

Return value:
true if mode has changed, false otherwise.

Notes:
* Mode HUD_NONE will turn off the HUD display.
» See constants HUD_xxx (section 9) for currently supported HUD modes.

oapiGetHUDMode
Query current HUD (head up display) mode.

Synopsis:
i nt oapi Get HUDMbde (voi d)

Return value:
Current HUD mode

oapiToggleHUDColour
Switch the HUD display to a different colour.

Synopsis:
voi d oapi Toggl eHUDCol our (void)

Notes:

» Orbiter currently defines 3 HUD colours: green, red, white. Calls to
oapiToggleHUDColour will cycle through these.

oapilncHUDIntensity
Increase the brightness of the HUD display.

Synopsis:
voi d oapi |l ncHUDI ntensity (void)

Notes:

» Calling this function will increase the intensity (in virtual cockpit modes) or
brightness (in other modes) of the HUD display up to a maximum value.
» This function should be called repeatedly (e.g. while the user presses a key).

oapiDecHUDIntensity
Decrease the brightness of the HUD display.

Synopsis:
voi d oapi DecHUDI ntensity (void)

Notes:
e Calling this function will decrease the intensity (in virtual cockpit modes) or
brightness (in other modes) of the HUD display down to a minimum value.
e This function should be called repeatedly (e.g. while the user presses a key).

oapiOpenMFD
Set an MFD (multifunctional display) to a specific mode.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 198

Synopsis:
voi d oapi OpenMFD (i nt node, int id)

Parameters:

mode MFD mode (see Section 9)

id MFD identifier (see Section 9)
Notes:

« mode MFD_NONE will turn off the MFD.
» For the on-screen instruments, only MFD_LEFT and MFD_RIGHT are
supported. Custom panels may support (up to 3) additional MFDs.

oapiGetMFDMode
Get the current mode of the specified MFD.

i nt oapi Get M-DMvbde (int id)
Parameters:
id MFD identifier (see Section 9)

Return value:
MFD mode (see Section 9)

oapiRefreshMFDButtons
Sends a clbkMFDMode call to the current focus vessel to allow it to dynamically update
its button labels.

Synopsis:

voi d oapi RefreshMFDButtons (int nfd, OBJHANDLE hVessel = 0)
Parameters:

mfd MFD identifier

hVessel recipient vessel handle
Notes:

» This message will only be sent to the current input focus vessel. If hVessel !=
0, the function will not have any effect unless hVessel points to the focus
vessel.

* The recipient vessel will receive a clokMFDMode call, with the mode
parameter set to MFD_REFRESHBUTTONS.

» This function can be used to force an MFD to refresh its button labels even if
the mode has not changed. This is useful to update the labels for modes that
dynamically update their labels.

* You don't need to call oapiRefreshMFDButtons after an actual mode
change, because a clbkMFDMode call will be sent automatically by Orbiter.

oapiSendMFDKey
Sends a keystroke to an MFD.

Synopsis:
i nt oapi SendMFDKey (int id, DWORD key)
Parameters:
id MFD identifier (see Section 9)
key key code (see OAPI_KEY_xxx constants in orbitersdk.h)

Return value:
nonzero if the MFD understood and processed the key.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 199

Notes:
» This function can be used to interact with the MFD as if the user had pressed
Shift-key, for example to select a different MFD mode, to select a target
body, etc.

oapiProcessMFDButton
Requests a default action as a result of a MFD button event.

Synopsis:
bool ProcessMFDButton (
int nfd,
int bt,
int event) const
Parameters:
mfd MFD identifier (see Section 9)
bt button number (= 0)
event mouse event (a combination of PANEL_MOUSE_ xxx flags)

Return value:
Returns true if the button was processed, false if no action was assigned to the
button.

Notes:
» Orbiter assigns default button actions for the various MFD modes. For
example, in Orbit mode the action assigned to button O is Select reference.
Calling oapiProcessMFDButton (for example as a reaction to a mouse button
event) will execute this action.

oapiMFDButtonLabel
Retrieves a default label for an MFD button.

const char *oapi MFDButtonLabel (int nfd, int bt)
Parameters:

mfd MFD identifier (see Section 9)

bt button number (= 0)

Return value:
pointer to static string containing the label, or NULL if the button is not assigned.

Notes:
e Labels contain 1 to 3 characters.
e This function can be used to paint the labels on the MFD buttons of a custom
panel.
* The labels correspond to the default button actions executed by
VESSEL::ProcessMFDButton.

oapiRegisterMFD (1)
Registers an MFD position for a custom panel.

Synopsis:

voi d oapi Regi sterMD (int id, const MFDSPEC &spec)
Parameters:

id MFD identifier (see Section 9)

spec MFD parameters (see below)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 200

Notes:
» Should be called in the body of VESSELZ2::clbkLoadPanel for panels which
define MFDs.
» Defining more than 2 or 3 MFDs per panel can degrade performance.
« MFDSPEC is a structure with the following interface:

typedef struct {
RECT pos; /I position of MFD in panel (pixel)
int nbt_left; /I number of buttons on left side of MFD display
int nbt_right; /I number of buttons on right side of MFD display
int bt_yofs; /I y-offset of top button from top display edge (pixel)
int bt_ydist; /I y-distance between buttons (pixel)

} MFDSPEC,

oapiRegisterMFD (2)
Registers an MFD position for a custom panel or virtual cockpit. This version has an
extended parameter list.

Synopsis:

voi d oapi Regi ster M~D (int id, const EXTMFDSPEC *spec)
Parameters:

id MFD identifier

spec extended MFD parameters (see below)
Notes:

* Should be called in the body of VESSELZ2::clbkLoadPanel or
VESSEL2:.clbkLoadVC to define MFD instruments for 2-D instrument panels
or 3-D virtual cockpits.

« EXTMFDSPEC is a structure with the following interface:

typedef struct {
RECT pos; /I position of MFD in panel (pixel)
DWORD nnesh; / mesh index (= 0)
DWORD ngr oup; /I mesh group index (= 0)
DWORD f I ag; /I parameter flags (see below)
int nbtl; /I number of buttons in array 1 (e.g. left side of MFD display)
int nbt2; /I number of buttons in array 2 (e.g. right side of MFD display)
int bt_yofs; /I y-offset of top button from top display edge (pixel)
int bt_ydist; /I y-distance between buttons (pixel)
} MFDSPEC,

» flag is a bitmask which can be set to a combination of the following options:

MFD_SHOWMODELABELS | Show 3-letter abbreviations for MFD modes when displaying the
mode selection page (default: only show carets >’). This is useful
if the buttons are not located next to the list display.

« If this function is used during initialisation of a 2-D instrument panel, pos
defines the rectangle of the MFD display in the panel bitmap (in pixels), while
nmesh and ngroup are ignored.

If it is used during initialisation of a virtual cockpit, nmesh and ngroup define
the mesh and group index of the mesh element which will receive the MFD
display texture, while pos is ignored.

oapiRegisterPanelBackground
Register the background bitmap for a custom panel.

voi d oapi Regi st er Panel Backgr ound (

HBI TMAP hBnp,
DWORD flag = PANEL_ATTACH_BOTTOM PANEL_MOVEOUT BOTTOM
DWORD ck = (DWORD) - 1)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 201

Parameters:
hBmp bitmap handle

flag
ck

Notes:

property bit flags (see notes)
transparency colour key

This function will normally be called in the body of ovcLoadPanel.

Typically the bitmap will be stored as a resource in the DLL and obtained by
a call to the Windows function LoadBitmap(...).

flag defines panel properties and can be a combination of the following
bitmasks:

PANEL_ATTACH_{LEFT/RIGHT/TOP/BOTTOM}

PANEL_MOVOUT _{LEFT/RIGHT/TOP/BOTTOM}

where PANEL_ATTACH_BOTTOM means that the bottom edge of the panel
cannot be scrolled above the bottom edge of the screen (other directions
work equivalently) and PANEL_MOVEOUT_BOTTOM means that the panel
can be scrolled downwards out of the screen (other directions work
equivalently)

The colour key, if defined, specifies a colour which will appear transparent
when displaying the panel. The key is in (hex) OXRRGGBB format. If no key
is specified, the panel will be opaque. It is best to use black (0x000000) or
white (Oxffffff) as colour keys, since other values may cause problems in
16bit screen modes. Of course, care must be taken that the keyed colour
does not appear anywhere in the opaque part of the panel.

oapiRegisterPanelArea

Defines a rectangular area within a panel to receive mouse or redraw notifications.
Synopsis:
voi d oapi Regi st er Panel Area (
int aid,
const RECT &pos,
int draw_event = PANEL_REDRAW NEVER,
i nt nouse_event = PANEL_MOUSE | GNORE,
int bknmode = PANEL_MAP_NONE)
Parameters:
aid area identifier
pos bounding box of the marked area

draw_event defines redraw events
mouse_event defines mouse events
bkmode redraw background mode

Notes:

Each panel area must be defined with an identifier aid which is unique within
the panel.

draw_event can have the following values:

PANEL_REDRAW_NEVER: do not generate redraw events.
PANEL_REDRAW_ALWAYS: generate a redraw event at every time step.
PANEL_REDRAW_MOUSE: mouse events trigger redraw events.

For possible values of mouse_event see orbitersdk.h.
PANEL_MOUSE_IGNORE prevents mouse events from being triggered.
By default, no mouse events are sent during a playback session. You can
force Orbiter to trigger mouse events during a playback (e.g. to allow the
user to operate MFD buttons) by using PANEL_MOUSE_ONREPLAY in
combination with any of the other mouse event flags.

bkmode defines the bitmap handed to the redraw callback:
PANEL_MAP_NONE: provides an undefined bitmap. Should be used if the
whole area is repainted.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 202

PANEL_MAP_CURRENT: provides a copy of the current area.
PANEL_MAP_BACKGROUND: provides a copy of the panel background (as
defined by oapiRegisterPanelBackground).

PANEL_MAP_BGONREQUEST: like PANEL_MAP_BACKGROUND, this
stores the area background, but the user must request it explicitly with a call
to oapiBltPanelAreaBackground. This can improve performance if the area
does not need to be updated at each call of the repaint callback function.

oapiSetPanelNeighbours
Defines the neighbour panels of the current panels. These are the panels the user can
switch to via Ctrl-Arrow keys.

Synopsis:
voi d oapi Set Panel Nei ghbours (
int left,
int right,
int top,
int bottom
Parameters:
left panel id of left neighbour (or —1 if none)
right panel id of right neighbour (or —1 if none)
top panel id of top neighbour (or -1 if none)
bottom panel id of bottom neighbour (or -1 if none)
Notes:

» This function should be called during panel registration (in
VESSELZ2:.clbkLoadPanel) to define the neighbours of the registered panel.

» Every panel (except panel 0) must be listed as a neighbour by at least one
other panel, otherwise it is inaccessible.

oapiTriggerPanelRedrawArea
Triggers a redraw notification for a panel area.

Synopsis:

voi d oapi Tri gger Panel RedrawArea (int panel _id, int area_id)
Parameters:

panel_id panel identifier (=0)

area_id area identifier (=0)
Notes:

* The redraw notification is ignored if the requested panel is not currently

displayed.

oapiBltPanelAreaBackground
Copies the stored background of a panel area into the provided surface. This function
should only be called from within the repaint callback function of an area registered with
the PANEL_MAP_BGONREQUEST flag.

Synopsis:
bool oapi Bl t Panel AreaBackground (
int aid,
SURFHANDLE sur f)
Parameters:
aid area identifier
surf surface handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 203

Notes:

* Areas defined with the PANEL_MAP_BGONREQUEST receive a surface
with undefined contents when their repaint callback is called. They can use
oapiBltPanelAreaBackground to copy the area background into the surface.

* For areas not registered with the PANEL_MAP_BGONREQUEST, this
function will do nothing.

e Using PANEL_MAP_BGONREQUEST is more efficient than
PANEL_MAP_BACKGROUND if the area doesn’t need to be repainted at
each call of the callback function, because it delays blitting the background
until the module requests the background. This is particularly significant for
areas which are updated at each time step.

oapiSwitchPanel
Switch to a neighbour instrument panel in 2-D panel cockpit mode.

Synopsis:
i nt oapi Swi tchPanel (int direction)

Parameters:
direction neighbour direction (see notes)

Return value:
Identifier of the newly selected panel (= 0) or -1 if the requested panel does not

exist.
Notes:
« direction can be one of the following:
PANEL_LEFT (switch to panel left of current)
PANEL_RI GHT (switch to panel right of current)
PANEL _UP (switch to panel up from current)
PANEL_DOVWN (switch to panel down from current)

* The neighbourhood status between panels is established by the
oapiSetPanelNeighbours function.

» This function has no effect if the current view is not in 2-D panel cockpit
mode.

oapiSetPanel
Switch to a different instrument panel in 2-D panel cockpit mode.

Synopsis:
i nt oapi Set Panel (int panel _id)

Parameters:
panel_id panel identifier (= 0)

Return value:
panel_id if the panel was set successfully, or -1 if failed (camera not in 2-D panel
cockpit mode, or requested panel does not exist for the current vessel)

Notes:

e This function has no effect if the current view is not in 2-D panel cockpit
mode.

oapiVCSetNeighbours

Defines the neighbouring virtual cockpit camera positions in relation to the current
position. The user can switch to neighbour positions with Ctrl-Arrow keys.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 204

Synopsis:
voi

d oapi VCSet Nei ghbours (

int left,
int right,
int top,
int bottom
Parameters:
left panel id of left neighbour position (or —1 if none)
right panel id of right neighbour position (or —1 if none)
top panel id of top neighbour position (or —1 if none)
bottom panel id of bottom neighbour position (or —1 if none)
Notes:

This function should be called during virtual cockpit registration (in
VESSEL2::clbkLoadVC) to define the neighbouring cockpit camera
positions, if any.

The left, right, top and bottom values specify the (zero-based) identifiers of
the VC positions to switch to when the user presses Ctrl and an arrow
button, or -1 if no position is available in this direction.

The neighbour relations should normally be reciprocal, i.e. if position O
defines position 1 as its right neighbour, then position 1 should define
position 0 as its left neighbour.

If only a single VC position (id 0) is defined, this function doesn’t need to be
called.

Orbiter calls clbkLoadVC with the appropriate id whenever the user switches
to a new position.

oapiVCRegisterHUD
Define a render target for the head-up display (HUD) in a virtual cockpit.

Synopsis:

voi d oapi VCRegi st er HUD (const VCHUDSPEC *spec)
Parameters:

spec hud specification (see notes)
Notes:

This function should be placed in the body of the ovcLoadVC vessel module
callback function.
VCHUDSPEC is a structure defined as

struct VCHUDSPEC {

DWORD nnesh; /I mesh index
DWORD ngr oup; /I group index
VECTOR3 hudcnt ; /I HUD centre in vessel frame
doubl e si ze; /I physical size of the HUD [m]

}s

The mesh group specified by nmesh and ngroup should be a square panel in
front of the camera position in the virtual cockpit. This group is rendered
separately from the rest of the mesh and should therefore have FLAG 2 set
in the mesh file. The group material and texture can be set to 0.

The HUD centre position and size are required to allow Orbiter to correctly
scale the display.

Orbiter renders the HUD with completely transparent background. Rendering
the glass pane, brackets, etc. is up to the vessel designer.

oapiVCRegisterMFD
Define a render target for rendering an MFD display in a virtual cockpit.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 205

Synopsis:
voi d oapi VCRegi ster M~D (int nfd, const VCMFDSPEC *spec)

Parameters:

mfd MFD identifier

spec render target specification (see notes)
Notes:

* The render target specification is defined as a structure:
struct VCMFDSPEC { DWORD nnesh, ngroup };
where nmesh is the mesh index (= 0), and ngroup is the group index (= 0)
defining the render target.

e This function should be placed in the body of the ovcLoadVC vessel module
callback function.

* The addressed mesh group should define a simple square (4 vertices, 2
triangles). The group materials and textures can be set to 0.

oapiVCRegisterArea (1)
Define an active area in a virtual cockpit. Active areas can be repainted. This function is
similar to oapiRegisterPanelArea.

Synopsis:
voi d oapi VCRegi sterArea (
int aid,
const RECT &tgtrect,
int draw _event,
i nt nouse_event,
i nt bkrode,
SURFHANDLE t gt)
Parameters:
aid area identifier
tgtrect bounding box of the active area in the target texture (pixels)

draw_event redraw condition (see oapiRegisterPanelArea)
mouse_event mouse event (see oapiRegisterPanelArea)
bkmode background mode (see oapiRegisterPanelArea)
tgt target texture to be updated

Notes:

» The target texture can be retrieved from a mesh by using the
oapiGetTextureHandle method. Dynamic textures must be marked with flag
‘D’ in the mesh file.

* Redraw events can be used not only to update mesh textures dynamically,
but also to animate mesh groups, or edit mesh vertices or texture
coordinates.

e If no dynamic texture repaints are required during redraw events, use the
alternative version of oapiVCRegisterArea instead.

e To define a mouse-sensitive volume in the virtual cockpit, use one of the
oapiVCSetAreaClickmode XXX functions.

oapiVCRegisterArea (2)
Define an active area in a virtual cockpit. This version is used when no dynamic texture
update is required during redraw events.

Synopsis:
voi d oapi VCRegi sterArea (
int aid,
int draw_event,
i nt nouse_event)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 206

Parameters:
aid area identifier
draw_event redraw condition (see oapiRegisterPanelArea)
mouse_event mouse event (see oapiRegisterPanelArea)

Notes:
» This function is equivalent to
oapi VCRegi sterArea (aid, _R(0,0,0,0), draw_ event,
nouse_event, PANEL_MAP_NONE, NULL)

oapiVCTriggerRedrawArea
Triggers a redraw notification for a virtual cockpit area.

Synopsis:

voi d oapi VCTri gger RedrawArea (int vc_id, int area_id)
Parameters:

vc_id virtual cockpit identifier

area_id area identifier (as specified during area registration)
Notes:

» This function triggers a call to the ovcVCRedrawEvent callback function in
the vessel module.

* The redraw notification is normally only sent if vc_id is equal to the currently
active virtual cockpit position (= 0). To invoke the redraw notification
independent of the currently active position, set vc_id to —1.

oapiVCSetAreaClickmode_Spherical
Associate a spherical region in the virtual cockpit with a registered area to receive
mouse events.

Synopsis:
voi d oapi VCSet Aread i cknode_Spheri cal (
int id,
const VECTOR3 &cnt,
doubl e rad)
Parameters:
id area identifier (as specified during area registration)
cnt centre of active area in the local vessel frame
rad radius of active area [m]
Notes:

» The area identifier must refer to an area which has previously been
registered with a call to oapiVCRegisterArea, with the required mouse event
modes.

e This function can be called repeatedly, to change the mouse-sensitive area.

oapiVCSetAreaClickmode_Quadrilateral

Associate a quadrilateral region in the virtual cockpit with a registered area to receive
mouse events.

Synopsis:
voi d oapi VCSet Aread i cknmode_Quadril ateral (
int id,
const VECTOR3 &pl,
const VECTOR3 &p2,

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 207

const VECTOR3 &p3,
const VECTOR3 &p4)

Parameters:
id area identifier (as specified during area registration)
pl top left corner of region
p2 top right corner
p3 bottom left corner
p4 bottom right corner
Notes:

» This function will trigger mouse events when the user clicks within the
projection of the quadrilateral region on the render window. The mouse
event handler will receive the relative position within the area at which the
mouse event occurred, where the top left corner has coordinates (0,0), and
the bottom right corner has coordinates (1,1). See also
VESSEL2::clbkVCMouseEvent.

* The area can define any flat quadrilateral in space. It is not limited to
rectangles, but all 4 points should be in the same plane.

oapiTriggerRedrawArea
Triggers a redraw notification to either a 2D panel or a virtual cockpit.

Synopsis:
voi d oapi Tri gger Redr awAr ea (

i nt panel _id,
int vc_id,
int area_id)

Parameters:
panel_id identifier for the panel to receive the redraw message
vc_id identifier for the virtual cockpit to receive the redraw message
area_id area identifier

Notes:

* This function can be used to combine the functionality of the
oapiTriggerPanelRedrawArea and oapiVCTriggerRedrawArea methods.
Depending on the current cockpit mode, Orbiter sends the redraw request to
either ovcPanelRedrawEvent or ovcVCRedrawEvent.

» This method can only be used if the panel and virtual cockpit areas share a
common area identifier.

oapiSetDefNavDisplay
Defines how the navigation mode buttons will be displayed in a default cockpit view.

Synopsis:

voi d oapi Set Def NavDi spl ay (i nt node)
Parameters:

mode display mode (0 .. 2)
Notes:

* This function should usually be called in the body of the overloaded
VESSEL2::clbkLoadGenericCockpit.

« It defines if the buttons for navigation modes (e.g. “Killrot” or “Prograde”) are
displayed in the generic (non-panel) cockpit camera mode, and if the buttons
can be operated with the mouse.

e The following values for mode are defined:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 208

mode | result

0 buttons are not shown
1 buttons are shown and can be operated with the mouse (default)
2 only buttons representing active modes are shown, and can not

be operated with the mouse

oapiSetDefRCSDisplay
Enable or disable the display of the reaction control system indicators/controls in
default cockpit view.

Synopsis:

voi d oapi Set Def RCSDi spl ay (i nt node)
Parameters:

mode display mode (0 .. 1)
Notes:

» This function should usually be called in the body of the overloaded
VESSELZ2::clbkLoadGenericCockpit.

 The RCS display consists of three buttons in the engine status display at the
top left of the generic cockpit view. If displayed (mode=1), the buttons show
the RCS mode (off/rotational/linear), and can be clicked with the mouse to
switch modes.

» The following values for mode are defined:

mode | result
0 RCS buttons are not shown
1 RCS buttons are shown and can be operated with the mouse
(default)
oapiGetDC
Obtain a Windows device context handle (HDC) for a surface.
Synopsis:
HDC oapi Get DC (SURFHANDLE sur f)
Parameters:
surf surface handle

Return value:
device context handle for the surface

Notes:
» The device context can be used to perform standard Windows drawing
operations (such as LineTo, Rectangle, TextOut, etc.) on the surface.

* When the context is no longer needed it must be released with a call to
oapiReleaseDC.

oapiReleaseDC
Release a previously acquired device context for a surface.

Synopsis:

voi d oapi Rel easeDC (SURFHANDLE surf, HDC hDC)
Parameters:

surf surface handle

hDC device context to be released
Notes:

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 209

* Use this function to release a device context previously acquired with
oapiGetDC.

« Standard Windows device context rules apply. For example, any custom
device objects loaded via SelectObject must be unloaded before calling
oapiReleaseDC.

oapiGetColour
Returns a colour value adapted to the current screen colour depth for given red, green
and blue components.

Synopsis:

DWORD oapiGetColour (DWORD red, DWORD green, DWORD blue)
Parameters:

red red component (0-255)

green green component (0-255)

blue blue component (0-255)

Return value
colour value

Notes:

» Colour values are required for some surface functions like oapiClearSurface
or oapiSetSurfaceColourKey. The colour key for a given RGB triplet depends
on the screen colour depth. This function returns the colour value for the
closest colour match which can be displayed in the current screen mode.

* In 24 and 32 bhit modes the requested colour can always be matched. The
colour value in that case is (red << 16) + (green << 8) + blue.

» For 16 bit displays the colour value is calculated as
((red*31)/255) << 11 + ((green*63)/255 << 5 + (blue*31)/255
assuming a “565” colour mode (5 bits for red, 6, for green, 5 for blue). This
means that a requested colour may not be perfectly matched.

* These colour values should not be used for Windows (GDI) drawing
functions where a COLORREF value is expected.

oapiCreateSurface (1)
Create a surface of the specified dimensions.

Synopsis:

SURFHANDLE oapi CreateSurface (int width, int height)
Parameters:

width width of surface bitmap (pixels)

height height of surface bitmap (pixels)

Return value
Handle to the new surface.

Notes:
* The bitmap contents are undefined after creation, so the surface must be
repainted fully before mapping it to the screen.
» If you want to use the surface as a texture, use oapiCreateTextureSurface
instead.
» Surfaces should be destroyed by calling oapiDestroySurface when they are
no longer needed.
See also:

oapiDestroySurface()

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 210

oapiCreateSurface (2)
Create a surface from a bitmap. Bitmap surfaces are typically used for blitting
operations during instrument panel redraws.

Synopsis:
SURFHANDLE oapi Creat eSurface (

HBI TMAP hBnp,
bool rel ease bnp = true)

Parameters:
hBmp bitmap handle
release_bmp flag for bitmap release

Return value:
Handle to the new surface.

Notes:

* The easiest way to access bitmaps is by storing them as resources in the
module, and loading them via a call to LoadBitmap.

» Do not use this function with a bitmap generated by CreateBitmap. To create
a surface of specified dimensions, use oapiCreateSurface (width, height)
instead.

» If release_bmp == true, then oapiCreateSurface will destroy the bitmap after
creating a surface from it (i.e. the hBmp handle will be invalid after the
function returns), otherwise the module is responsible for destroying the
bitmap by a call to DestroyObject when it is no longer needed.

» Surfaces should be destroyed by calling oapiDestroySurface when they are
no longer needed.

oapiCreateTextureSurface
Create a surface that can be used as a texture for a 3-D object.

Synopsis:
SURFHANDLE oapi Cr eat eText ureSurface (
i nt width,
i nt height)
Parameters:
width width of surface bitmap (pixels)
height height of surface bitmap (pixels)

Return value:
handle of new texture surface

Notes:

» Use this function instead of oapiCreateSurface if you want the surface to be
used as a surface texture for a 3-D object, for example via a call to
oapiSetTexture.

» For maximum compatibility, the surface should be square, and dimensions
powers of 2, for example 64x64, 128x128, 256x256, etc. Note that older
video cards may not support textures larger than 256x256.

» Surfaces should be destroyed by calling oapiDestroySurface when they are
no longer needed.

oapiDestroySurface
Destroy a surface previously created with oapiCreateSurface.

Synopsis:
voi d oapi DestroySurface (SURFHANDLE surf)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 211

Parameters:
surf surface handle

oapiSetSurfaceColourKey
Define a colour key for a surface to allow transparent blitting.

Synopsis:

voi d oapi Set Sur faceCol our Key (SURFHANDLE surf, DWORD ck)
Parameters:

surf surface handle

ck colour key (OXRRGGBB)
Notes:

» Defining a colour key and subsequently calling oapiBIt with the
SURF_PREDEF_CK flag is slightly more efficient than passing the colour
key explicitly to oapiBIt each time, if the same colour key is used repeatedly.

See also:
oapiClearSurfaceColourKey(), oapiBIt()

oapiClearSurfaceColourKey
Clear a previously defined colour key.

Synopsis:
voi d oapi C ear Sur f aceCol our Key (SURFHANDLE surf)

Parameters:
surf surface handle

See also:
oapiSetSurfaceColourKey(), oapiBIt()

oapiBlt
Copy a surface into another surface.

Synopsis:
void oapiBl't (
SURFHANDLE t gt, SURFHANDLE src,
int tgtx, int tgty,
int srcx, int srcy,
int w, int h,
DWORD ck = SURF_NO_CK)

Parameters:
tgt target surface
Src source surface

tgtx, tgty coordinates of upper left corner of copied area in target bitmap.
srex, srey coordinates of upper left corner of copied area in source bitmap.
w, h width, height of copied rectangle (pixel)

ck colour key (see notes)

Notes:

» Typically, this function is used to update panel instruments during processing
of ovcPanelRedrawEvent.

» This function must not be used while a device context is acquired for the
target surface (i.e. between oapiGetDC and oapiReleaseDC calls).

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 212

» If a blitting operation is necessary between oapiGetDC and oapiReleaseDC,
you may use the standard Windows BitBIt function. However this does not
use hardware acceleration and should therefore be avoided.

» Transparent blitting can be performed by specifying a colour key in ck. The
transparent colour can either be passed explicitly in ck, or ck can be set to
SURF_PREDEF_CK to use the key previously defined with
oapiSetSurfaceColourKey().

See also:
oapiSetSurfaceColourKey()

oapiColourFill
Fill an area of the target surface with a uniform colour.

Synopsis:
voi d oapi ColourFill (

SURFHANDLE t gt ,

DWORD fillcol or,

int tgtx =0, int tgty =0,
int w=0, int h =0)

Parameters:
tgt target surface
tgtx, tgty coordinates of upper left corner of area to fill.
w, h width, height, of area to fill.

Notes:

» The fill colour should be acquired with oapiGetColour(), to ensure
compatibility with 16-bit colour modes.

* This function must not be used while a device context is acquired for the
target surface (i.e. between oapiGetDC and oapiReleaseDC calls).

« Ifwand h are zero (the default) the whole surface is filled. The tgtx and tgty
values are ignored in that case and can be omitted.

19.18 Custom MFD modes

oapiRegisterMFDMode
Register a custom MFD mode.

Synopsis:

i nt oapi Regi st er M-DMbde (MFDMODESPEC &spec)
Parameters:

spec MFD specs (see notes below)

Return value:
MFD mode identifier

Notes:

* This function registers a custom MFD mode with Orbiter. There are two
types of custom MFDs: generic and vessel class-specific. Generic MFD
modes are available to all vessel types, while specific modes are only
available for a single vessel class. Generic modes should be registered in
the opcDLLI ni t callback function of a plugin module. Vessel class specific
modes are not implemented yet.

+ MFDMODESPEC is a struct defining the parameters of the new mode:

typedef struct {
char *nane; /I points to the name of the new mode
DWORD key; /I mode selection key (obsolete; see notes)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 213

int (*msgproc) (U NT, U NT, WPARAM LPARAM ;
/I address of MFD message parser

} MFDMODESPEC;

» The selection key is no longer used, because direct keyboard selection of a
mode is not supported by orbiter any more.

» See orbitersdk\samples\CustomMFD for a sample MFD mode
implementation.

oapiUnregisterMFDMode
Unregister a previously registered custom MFD mode.

Synopsis:

bool oapi Unregi st er M-Dbde (int node)
Parameters:

mode mode identifier, as returned by RegisterMFDMode

Return value:
true on success (mode could be unregistered).

oapiDisableMFDMode
Disable an MFD mode.

Synopsis:

voi d oapi Di sabl eM~Dvbde (i nt node)
Parameters:

mode MFD mode to be disabled.
Notes:

* The list of disabled MFDs is cleared whenever the focus switches to a new
vessel. To disable MFD modes permanently for a particular vessel type,
oapiDisableMFDMode should be called from within the ovcFocusChanged
callback function.

* For builtin MFD modes, mode can be any of the MFD_xxx constants. For
MFD modes defined in plugin modules, the mode id must be obtained by a
call to oapiGetMFDModeSpec.

oapiGetMFDModeSpec
Returns the mode identifier and spec for an MFD mode defined by its name.

Synopsis:
i nt oapi Get M-DMbdeSpec (

char *nane,
M-DMODESPEC **spec = NULL)

Parameters:
name MFD name (as defined in MFDMODESPEC::name during
oapiRegisterMFDMode)
spec If defined, this will return a pointer to the MFDMODESPEC structure

for the mode.

Return value:
MFD mode identifier.

Notes:

e This function returns the same value as oapiRegisterMFDMode for the given
mode.

* If no matching mode is found, the return value is MFD_NONE. In that case,
the returned spec pointer is undefined.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 214

» The mode identifiers for custom MFD modes can not be assumed to persist
across simulation runs, since they will change if the user loads or unloads

MFD plugins.

e This function can also be used for built-in MFD modes, which are defined as
follows:
Name string Mode identifier
Orbit MFD_ORBIT
Surface MFD_SURFACE
Map MFD_MAP
HSI MFD_HSI
VOR/VTOL MFD_LANDING
Docking MFD_DOCKING
Align Planes MFD_OPLANEALIGN
Sync Orbit MFD_OSYNC
Transfer MFD_TRANSFER
COM/NAV MFD_COMMS

19.19 Onscreen annotations

These functions can be used to display text on top of the render window during a running
simulation. These may include flight parameters of the currently observed spacecraft, user
instructions for tutorials, or debugging information during development.

oapiCreateAnnotation
Register a new annotation block with Orbiter.

Synopsis:
NOTEHANDLE oapi Cr eat eAnnot ati on (

bool excl usive,
doubl e si ze,
const VECTOR3 &col)

Parameters:
exclusive exclusive mode (not currently used)
size font scaling factor (1=standard)
col font colour (RGB values, range 0..1)

Return value:
A handle to identify the annotation for later access.

Notes:

* Annotations should be registered after the simulation render window has
been opened. Orbiter automatically deletes all annotations on closing the
simulation window.

» Multiple annotation blocks can be registered simultaneously. Currently there
is no way to prevent overlapping annotation displays.

* The exclusive flag is currently not supported.

oapiDelAnnotation
Delete a previously registered annotation block.

Synopsis:

bool oapi Del Annot ati on (NOTEHANDLE hNot e)
Parameters:

hNote annotation handle

Return value:
true on success, false if an annotation corresponding to hNote was not found.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 215

oapiAnnotationSetPos
Define the screen position of an annotation block.

Synopsis:
voi d oapi Annot ati onSet Pos (

NOTEHANDLE hNot e,
doubl e x1, double y1,
doubl e x2, double y2)

Parameters:
hNote annotation handle
x1,y1 coordinates of upper left corner of annotationblock
xX2,y2 coordinates of lower right corner of annotation block
Notes:

» the coordinates are specified as fractions of the simulation window width and
height, and should therefore be in the range from O (left or top edge) to 1
(right or bottom edge). x2 > x1 and y2 > y1 are required.

» Textis wrapped automatically to fit in the box. Manual line breaks can be
inserted with with a \r\n (carriage return/line feed) sequence.

» If the bounding box is too small, part of the text may not be displayed.

oapiAnnotationSetText
Set the text to be displayed in the annotation box.

Synopsis:

voi d oapi Annot ati onSet Text (NOTEHANDLE hNot e, char *note)
Parameters:

hNote annotation handle

note pointer to character string
Notes:

* The maximum length of the text string is 1024 characters.
» To clear the current annotation text, set note to NULL.
* The annotation is displayed until cleared or overwritten with new text.

19.20 File management

oapiOpenFile
Open a file for reading or writing.

Synopsis:
FI LEHANDLE oapi OpenFile (

const char *fnane,
Fi | eAccessMbde npde,
Pat hRoot root = ROOT)

Parameters:
fname file name (with optional path)
mode read/write mode (see notes)
root path origin (see notes)

Return value:
file handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 216

Notes:
» The following access modes are supported:

FILE_IN read
FILE_OUT write (overwrite)
FILE_APP write (append)

» The file path defined in fname is relative to either the main Orbiter folder or
to one of Orbiter’s default subfolders, depending on the root parameter:
ROOT Orbiter main directory
CONFIG Orbiter config folder
SCENARIOS Orbiter scenarios folder
TEXTURES Orbiter standard texture folder
TEXTURES2 Orbiter high-res texture folder
MESHES Orbiter mesh folder
MODULES Orbiter module folder

* You should always specify a standard Orbiter subfolder by the above
mechanism, rather than manually as a path in fname, because Orbiter
installations can redirect these directories.

* Be careful when opening a file for writing in the standard Orbiter subfolders:
except for ROOT and SCENARIOS, all other standard folders may be read-
only (e.g. for CD installations).

oapiCloseFile

Close a file after reading or writing.

Synopsis:

voi d oapi C oseFile (FILEHANDLE file, FileAccessMde node)
Parameters:

file file handle

mode access mode with which the file was opened
Notes:

* Use this function on files opened with oapiOpenFile after finishing with it.
» The file access mode passed to oapiCloseFile must be the same as used to
open it.

oapiReadltem_string
oapiReadltem_float
oapiReadltem_int
oapiReadltem_bool
oapiReadltem_vec
Read the value of a tag from a configuration file.

Synopsis:

bool oapi Readltem string (FILEHANDLE f, char

char *string)

bool oapi Readltem fl oat (FILEHANDLE f, char

doubl e &d)
bool oapi Readltem.int (FILEHANDLE f, char

bool oapi Readltem bool (FILEHANDLE f, char *item bool &b)
bool oapi Readltem vec (FILEHANDLE f, char
VECTOR3 &vec)
Parameters:
f file handle
item tag defining the item
string character-string value
d double value
[integer value
ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 217

b
vec

boolean value
vector value

Return value:

true

Notes:

if tag was found in the file, false if not.

The tag-value entries of a configuration file have the format

<tag> = <value>

The functions search the complete file independent of the current position of
the file pointer.

Whitespace around tag and value are discarded, as well as comments
beginning with a semicolon (;) to the end of the line.

String values can contain internal whitespace.

Boolean values are represented by the strings “FALSE” and “TRUE".
Vector values are represented by space-separated triplets of floating point
values.

See also the oapiWriteltem_xxx functions.

oapiWriteltem_string

oapiWriteltem_f
oapiWriteltem_i

loat
nt

oapiWriteltem_bool
oapiWriteltem_vec
Write a tag and its value to a configuration file.

Synopsis:
voi

voi
voi

voi
voi

d oapi Witeltemstring (FILEHANDLE f, char *item
char *string)
d oapiWiteltemfloat (FILEHANDLE f, char *item
doubl e d)
d oapiWiteltem.int (FILEHANDLE f, char *item int i)
d oapi Witeltembool (FILEHANDLE f, char *item bool b)
d oapiWiteltemvec (FILEHANDLE f, char *item
const VECTOR3 &vec)

Parameters:
f file handle
item pointer to tag string
string character-string value
d double value
i integer value
b boolean value
vec vector value
Notes:

oapiWriteLine

Use these functions to write items (tags and values) to configuration files.
The format of the written items is recognised by the corresponding
oapiReadltem_xxx functions.

For historic reasons, the format for scenario file entries is different. Use the

Writes a line to a file.

Synopsis:

voi d oapi WitelLine (FILEHANDLE file, char *line)
Parameters:

file file handle

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 218

line line to be written (zero-terminated)

oapiWriteLog

Writes a line to the Orbiter log file (orbiter.log) in the main orbiter directory.

Synopsis:

voi d oapi WiteLog (char *line)
Parameters:

line line to be written (zero-terminated)
Notes:

» This function is intended for diagnostic initialisation and error messages by

plugin modules. The messages should make it easier to track problems.

* Avoid unnecessary output. In particular, don’t write to the log file continously

from within the simulation loop.
oapiSaveScenario
Writes the current simulation state to a scenario file.

Synopsis:

bool oapi SaveScenari o (const char *fnane,
Parameters:

fname scenario file name

desc scenario description

Return value:

true if scenario could be written successfully, false if an error occurred.

Notes:

const char *desc)

* The file name is always calculated relative from the default orbiter scenario
folder (usually Orbiter\Scenarios). The file name can contain a relative path

starting from that directory, but the subdirectories must already exist. The

function will not create new directories. The file name should not contain an

absolute path.

» The file name should not contain an extension. Orbiter will automatically add

a .scn extension.
* The description string can be empty (*).

oapiWriteScenario_string
Writes a string-valued item to a scenario file.

Synopsis:
voi d oapi WiteScenario_string (

FI LEHANDLE scn,
char *item
char *string)

Parameters:
scn file handle
item itemid
string string to be written (zero-terminated)

oapiWriteScenario_int
Writes an integer-valued item to a scenario file.

Synopsis:
voi d oapi WiteScenario_int (
FI LEHANDLE scn,

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger

219

char *item
int i)

Parameters:
scn file handle
item item id
[integer value to be written

oapiWriteScenario_float
Writes a floating point-valued item to a scenario file.

Synopsis:
voi d oapi WiteScenario float (

FI LEHANDLE scn,
char *item
doubl e d)

Parameters:
scn file handle
item itemid
d floating point value to be written

oapiWriteScenario_vec
Writes a vector-valued item to a scenario file.

Synopsis:
voi d oapi WiteScenario_vec (

FI LEHANDLE scn,
char *item
const VECTOR3 &vec)

Parameters:
scn file handle
item item id
vec vector to be written

oapiReadScenario_nextline
Reads an item from a scenario file.

Synopsis:
bool oapi ReadScenari o_nextline (

FI LEHANDLE scn,
char *&ine)

Parameters:
scn file handle
line pointer to the scanned line

Notes:
» The function returns true as long as an item for the current block could be
read. It returns false at EOF, or when an “END” token is read.
e Leading and trailing whitespace, and trailing comments (from “;” to EOL) are
automatically removed.
» ‘“line” points to an internal static character buffer.

19.21 User input and dialogs

oapiOpenDialog
Open a dialog box defined as a Windows resource.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 220

Synopsis:

HWAD oapi OpenDi al og (

HI NSTANCE hDLLI nst,
int resourceld,
DLGPROC nsgPr oc,
voi d *context = 0)

Parameters:
hDLLInst module instance handle (as obtained from opcDLLInit)
resourceld dialog resource identifier
msgProc pointer to Windows message handler
context optional user-defined pointer

Return value:
handle of the new dialog box, or NULL if the dialog was open already.

Notes:

Use oapiOpenDialog instead of standard Windows methods such as
CreateWindow or DialogBox, to make sure the dialog works in fullscreen
mode.
Only one instance of a dialog box can be open at a time. A second call to
oapiOpenDialog with the same dialog id will fail and return NULL.
The interface of the message handler is as follows:
BOOL CALLBACK MsgProc (

HWD hDl g, Ul NT uMsg,

WPARAM wPar am LPARAM | Par an)
See standard Windows documentation for usage of the dialog message
handler.
The context pointer can be set to user-defined data which can be retrieved
via the oapiGetDialogContext function. This allows to pass data into the
message handler.
Note that oapiGetDialogContext can not be used when processing the
WM_INITDIALOG message. In this case, the context pointer can be acessed
via IParam instead.

oapiOpenDialogEx
Open a dialog box defined as a Windows resource. This version provides additional
functionality compared to oapiOpenDialog.

Synopsis:

HWND oapi OpenDi al ogEx (

HI NSTANCE hDLLI nst,
i nt resourceld,
DLGPROC msgPr oc,
DWORD flag = 0,
void *context = 0);

Parameters:
hDLLInst module instance handle (as obtained from opcDLLInit)
resourceld dialog resource identifier
msgProc pointer to Windows message handler

flag

bit-flags to define dialog box options (see notes)

context optional user-defined pointer

Return value:
handle of the new dialog box, or NULL if the box could not be opened.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 221

Notes:

* The flag parameter can be a combination of the following values:
DLG_ALLOWMULTI: Allows multiple instances of the same dialog resource
to be open simultaneously.

DLG_CAPTIONCLOSE: Shows a Close button in the dialog title bar.
Pressing it produces an IDCANCEL notification to the message procedure.
DLG_CAPTIONHELP: Shows a Help button in the dialog title bar. Pressing it
produces an IDHELP notification to the message procedure.

» If customised title bar buttons are requested, the dialog box template should
not contain standard title buttons, by omitting the WS_SYSMENU window
style.

» Additional buttons can be created by using the oapiAddTitleButton function.

oapiFindDialog
Returns the window handle of an open dialog box, or NULL if the specified dialog box is
not open.

Synopsis:
HWND oapi Fi ndDi al og (H NSTANCE hDLLI nst, int resourceld)

Parameters:
hDLLInst module instance handle (as obtained from opcDLLInit)
resourceld dialog resource identifier

Return value:
Window handle of dialog box, or NULL if the dialog was not found.

oapiCloseDialog
Close a dialog box.

Synopsis:

voi d oapi C oseDi al og (HWND hDI g)
Parameters:

hDlg dialog window handle (as obtained by oapiOpenDialog)
Notes:

* This function should be called in response to an IDCANCEL message in the
dialog message handler to close a dialog which was opened by
oapiOpenDialog.

oapiGetDialogContext
Retrieves the context pointer of a dialog box which has been defined during the call to
oapiOpenDialog.

Synopsis:
voi d *oapi Get Di al ogCont ext (HWND hDi g)

Parameters:
hDIg dialog window handle

Notes:

e This function returns NULL if no context pointer was specified in
oapiOpenDialog.

oapiAddTitleButton
Adds a custom button in the title bar of a dialog box.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 222

Synopsis:

bool oapi AddTitl eButton (

DWORD nsgi d,
HBI TMAP hBnp,
DWORD f 1 ag)

Parameters:
msgid The message identifier generated by pressing the button
hBmp bitmap containing the button images.

flag

additional parameters (see notes)

Return value:
true if the button could be created, false otherwise.

Notes:

oapiAddTitleButton can only be called while processing the
WM_INITDIALOG message in the dialog message procedure.

Up to 5 buttons can be created in the title bar, including the standard buttons
defined in the call to oapiOpenDialogEX.

Whenever the users left-clicks on the button, a WM_COMMAND message is
generated in the message procedure, where the low-word of the WPARAM
parameter is set to msgid.

The button size defined in the bitmap should be 15x15 pixels large. Their
look should conform to Orbiter’s standard dialog buttons.

The following bit-flags in the flag parameter are currently supported:
DLG_CB_TWOSTATE: The button has two states, and clicking on it will flip
between the two states.

If the DLG_CB_TWOSTATE flag is set, the bitmap must be 15x30 pixels
large, containing two images, where the upper image represents the initial
state, and the lower image represents the “checked” state.

If the DLG_CB_TWOSTATE flag is set, the button state (O or 1) is passed in
the high-word of the WPARAM parameter whenever the dialog is notified of
a button press.

oapiDefDialogProc
Default Orbiter dialog message handler. This function should be called from the
message handler of all dialogs created with oapiOpenDialog to perform default actions
for any messages not processed in the handler.

Synopsis:

BOOL oapi Def Di al ogProc (

HWAD hDl g,
U NT uMsg,
WPARAM wPar am
LPARAM | Par am

Parameters:
The parameters passed to the message handler.

Return value:
The value returned by oapiDefDialogProc should be returned by the message
handler.

Notes:

Typical usage:

BOOL CALLBACK MsgProc (HWAD hDl g, U NT uMsg,
WPARAM wPar am LPARAM | Par am)

switch (uMsg) {
case W _COWVAND:
switch (LOAORD (wParan)) {

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 223

case | DCANCEL: // dial og cl osed by user
CloseDi g (hD g);
return TRUE;

}

br eak;

/1 add nore nessages to be processed here

}
return oapi Def Di al ogProc (hDl g, uMsg, wParam | Paran;

}
» oapiDefDialogProc currently only processes the WM_SETCURSCR message,

and always returns FALSE.

oapiRegisterCustomCmd
Register a custom function. Custom functions can be accessed in Orbiter by pressing

Ctrl-F4. A common use for custom functions is opening plugin dialog boxes.

Synopsis:
DWORD oapi Regi st er Cust onCd (

char *| abel,
char *desc,

Cust omFunc func,
voi d *cont ext)

Parameters:
label label to appear in the custom function list.
desc a short description of the function
func pointer to the function to be executed

context pointer to custom data which will be passed to func

Return value:
function identifier

Notes:
* The interface of the custom function is defined as follows:
t ypedef void (*Custonfunc)(void *context)
where context is the pointer passed to oapi Regi st er Cust onCnd.

oapiUnregisterCustomCmd
Unregister a previously defined custom function.

Synopsis:
bool oapi Unregi sterCustonCnd (int cndld)
Parameters:
cmdld custom function identifier (as returned by oapiRegisterCustomCmd)

Return value:
false indicates failure (cmdld not recognised)

oapiOpeninputBox
Opens a modal input box requesting a string from the user.

voi d oapi Openl nput Box (

char *title,

bool (*d bk) (void*, char*, voi d*),
char *buf = 0,

int vislen = 20,

void *usrdata = 0)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 224

Parameters:

title input box title

Clbk callback function receiving the result of the user input (see notes)
buf initial state of the input string

vislen number of characters visible in input box

usrdata user-defined data passed to the callback function

Notes:

» Format for callback function:
bool InputCallback (void *id, char *str, void *usrdata)
where id identifies the input box, str contains the user-supplied string, and
usrdata contains the data specified in the call to oapiOpeninputBox.
The callback function should return true if it accepts the string, false
otherwise (the box will not be closed if the callback function returns false).

» The box can be closed by the user by pressing Enter (“OK") or Esc
(“Cancel”). The callback function is only called in the first case.

* The input box is modal, i.e. all keyboard input is redirected into the dialog
box. Normal key functions resume after the box is closed.

oapiRegisterLaunchpadltem

Register a new item in the parameter list of the “Extra” tab of the Orbiter Launchpad
dialog.

Synopsis:
LAUNCHPADI TEM HANDLE oapi Regi st er Launchpadl t em (

Launchpadltem *item
LAUNCHPADI TEM HANDLE parent = 0)

Parameters:
item pointer to Launchpadltem structure (see notes)
parent parent item, or NULL for root item

Return value:
Handle for the new item

Notes:

* The “Extra” list of the Launchpad dialog is customisable and can be used by
modules to allow user selection of global parameters and settings. Data can
be written to/read from file and therefore persist across Orbiter sessions.

e item is a pointer to a class instance derived from Launchpadltem (see
Section 16). It defines what is displayed in the list, and how the user
accesses the item.

» Items can be arranged in a hierarchy. Child items can be defined by passing
the handle of a previous item as the parent parameter.

» If an entry with the same name as item->Name() already exists, no new
entry is generated, and the handle of the existing entry is returned.

e Because double-clicking on an item both activates it and expands the child
list of parent items, parent items should be inert (i.e. should not define their
clbkOpen method) to avoid ambiguities.

e oapiRegisterLaunchpaditem should usually be called during the DLL
initialisation function. A matching oapiUnregisterLaunchpaditem should be
called during the DLL exit function.

oapiUnregisterLaunchpadltem

Unregister a previously registered entry in the “Extra” tab of the Orbiter Launchpad
dialog.

Synopsis:
bool oapi Unregi st er Launchpadltem (Launchpadltem *iten)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 225

Parameters:
item handle of the item to be removed

Return value:
true if item could be unregistered, false if no matching item was found.

Notes:
* A module must unregister all the launchpad items it has registered before it
is unloaded, at the latest during ExitModule. Failing to do so will leave stale
items in the parameter list of the Extra tab, leading to undefined behaviour.

oapiFindLaunchpadltem
Returns a handle for an existing entry in the Extra parameter list.

Synopsis:
LAUNCHPADI TEM HANDLE oapi Fi ndLaunchpadl t em (

const char *nane = 0,
LAUNCHPADI TEM HANDLE parent = 0)

Parameters:
name the name of the item in the list (or O for first entry)
parent the parent item below which to search (or O for root)

Return value:
Item handle if found, or O otherwise.

Notes:

* This method allows to retrieve the handle of an already existing entry in the
Extra list. It is useful for placing new items below a parent that wasn't defined
by the module itself.

» It can be used iteratively to search for lower-level entries.

» If name is not set, the first child entry of parent is returned (or the first root
entry, if parent==0).

* You should only attach children to items that don't themselves define an
activation method (see notes to oapiRegisterLaunchpaditem).

19.22 Utility functions

oapiRand
Returns uniformly distributed pseudo-random number in the range [0..1].

Synopsis:
doubl e oapi Rand ()

Return value:
Random value between 0 and 1.

Notes:

» This function uses the system call rand(), so the quality of the random
sequence depends on the system implementation. If you need high-quality
random sequences you may need to implement your own generator.

« Orbiter seeds the generator with the system time on startup, so the
generated sequences are not reproducible.

19.23 Debugging

oapiDebugString

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 226

Returns a pointer to a string which will be displayed in the lower left corner of the
viewport.

Synopsis:
char *oapi DebugString ()

Return value:
Pointer to debugging string.

Notes:

e This function should only be used for debugging purposes. Do not use it in
published modules!

» The returned pointer refers to a global char[256] in the Orbiter core. It is the
responsibility of the module to ensure that no overflow occurs.

» If the string is written to more than once per time step (either within a single
module or by multiple modules) the last state before rendering will be
displayed.

* Atypical use would be:

| sprintf (oapi DebugString(), "my value is %", myval ue);

20 Custom dialog controls

Orbiter defines custom dialog control classes which may come useful when defining dialog
box interfaces. To make use of the controls, you must include the Orbitersdk\include\DIgCtrl.h
header in your plugin code, and link with Orbitersdk\lib\DIgCtrl.lib.

In order to use Orbiter custom dialog controls, your code must call the
oapiRegisterCustomControls function, usually inside the opcDLLInit callback function. During
cleanup (e.g. in opcDLLEXit) you must call oapiUnregisterCustomControls.

oapiRegisterCustomControls
This allows to use Orbiter’s custom controls in dialog boxes. See section 20.

Synopsis:
#include “D gCrl.h”

voi d oapi Regi st er CustomControl s (H NSTANCE hl nst)

Parameters:
hinst module instance handle

Notes:
The module should call oapiUnregisterCustomControls before exiting.

oapiUnregisterCustomControls
Unregister Orbiter custom dialog controls.

Synopsis:

voi d oapi Unregi st er Cust onControl s (H NSTANCE hl nst)
Parameters:

hinst module instance handle

20.1 Gauge control

This is similar to a standard scrollbar control. It consists of a horizontal or vertical bar with a
level indicator and arrow buttons on either end. The user can manipulate the control by either
pressing the arrow buttons, or by clicking and dragging the level indicator.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 227

Unlike standard Windows scroll bars, the gauge control does not block the simulation while a
mouse button is pressed over the control. You should always use the gauge control in
preference to scroll bars to avoid jumps in the simulation.

The Rcontrol code in the SDK sample directory demonstrates the use of gauge controls.
Defining a gauge control in the dialog template

Places a custom control in the dialog window and sets its class to OrbiterCtrl_Gauge. The
control can be horizontal or vertical.

Addressing gauge controls from the module code

oapiSetGaugeParams
Initialises a gauge control once the dialog box has been opened (e.g. with

oapiOpenDialog).
Synopsis:
voi d oapi Set GaugePar ans (
HWD hCtrl,

GAUGEPARAM * gp,
bool redraw = true)

Parameters:

hCtrl window handle of the control

ap parameter list (see notes)

redraw if true, the gauge is redrawn to reflect the parameter changes
Notes:

* The GAUGEPARAM struct has the following entries:
i nt rangem n, rangenax
min. and max. gauge values
enum GAUGEBASE { LEFT, RICHT, TOP, BOITOM } base
gauge orientation: LEFT: left to right, RIGHT: right to left, etc.
enum GAUGECOLCR { BLACK, RED } col or
gauge indicator colour

oapiSetGaugeRange
Set minimum and maximum gauge values.

Synopsis:
voi d oapi Set GaugeRange (
HMWD hCirl,
int rmn, int rnax,
bool redraw)
Parameters:
hCitrl window handle of the control
rmin minimum gauge value
rmax maximum gauge value
redraw if true, the gauge is redrawn to reflect the range change

oapiSetGaugePos
Set the current gauge value.

Synopsis:
i nt oapi Set GaugePos (
HWD hCtrl,
i nt pos,

bool redraw = true)

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 228

Parameters:

hCtrl window handle of control
pos new gauge value
redraw if true, the gauge is redrawn to reflect the value change

Return value:
The new gauge value, clamped to the gauge range.

oapilncGaugePos
Increment/decrement the current gauge value.

Synopsis:
i nt oapi | ncGaugePos (
HWD hCtrl,
i nt dpos,
bool redraw = true)
Parameters:
hCtrl window handle of control
dpos value change
redraw if true, the gauge is redrawn to reflect the value change

Return value:
The new gauge value, clamped to the gauge range.

oapiGetGaugePos
Returns the current gauge value.

Synopsis:

i nt oapi Get GaugePos (HWND hCtrl)
Parameters:

hCitrl window handle of control

Return value:
Current gauge value.

Control messages
Gauge controls send the following messages to the message queue of the owning dialog box:

WM_HSCROLL
Scrolling notification. This is sent while the user left-clicks and drags the gauge
indicator, or continuously (at a rate of 100Hz) while the left mouse button is held down
on one of the arrow buttons. Both horizontal and vertical gauges send the
WM_HSCROLL message to simplify message handling.

Message parameters:
LOWORD(wParam) event type
HIWORD(wParam) gauge value
(HWND)IParam window handle of control

Notes:
The event type can be one of the following:

SB_LINELEFT: The user has pressed an arrow button to decrement
the gauge value.

SB_LINERIGHT: The user has pressed an arrow button to increment the
gauge value.

SB_THUMBTRACK:
The user is dragging the gauge indicator with the
mouse.

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 229

21 Standard ORBITER modules

21.1 Vsop87

Vsop87.dll is a full implementation of the VSOP87 planetary solutions for Mercury to Nep-
tune." Orbiter uses the VSOP87 “B” series which computes the heliocentric positions for the
ecliptic and equinox of J2000. Positions and velocities are calculated by a perturbation
method which uses a series of trigonometric perturbation terms. The number of included
terms defines the precision of the result. Therefore the computation time will depend on the
selected precision. Vsop87.dll supports precision settings between 1le-3 and le-8.

Vsop87.dil supports the following planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Ura-
nus and Neptune.

According to the VSOP documentation, at full precision (1e-8), the relative error is within 1”
for

* Mercury, Venus, Earth and Mars over 4000 years before and after J2000

» Jupiter and Saturn over 2000 years before and after J2000.

» Uranus and Neptune over 6000 years before and after J2000.

If you want to replace Vsop87 with your own code:

» Check section 18 for the callback interface.

» The code for different planets doesn’t need to be implemented in a single DLL. You can
replace the calculations for a single planet by writing a module for it, and referencing this
module from the planet’s cfg file, while keeping the standard Vsop87 module for the other
planets.

21.2 Moon

Moon.dll is Orbiter's driver module for controlling Earth’s moon. It contains a partial
implementation of the Lunar Solution ELP 2000-82B algorithm by M. Chapront-Touze and J.
Chapront’. This is a semi-analytical calculation of lunar ephemerides consisting of
trigonometric and Poisson series, with constants fitted to JPL's ephemerides DE200/LE200.
The original version calculates cartesian geocentric lunar coordinates in the mean dynamical
ecliptic and inertial equinox of J2000. The code has been adapted to Orbiter by additionally
calculating and returning the time derivatives of the coordinates. Moon.dll requires data file
ELP82.dat containing a table of perturbation terms to be present in the Config\Moon\Data
directory.

The number of terms used by Orbiter can be controlled by setting the ErrorLimit parameter in
Moon.cfg. Valid range is 1e-2 to 1e-8 (default 1e-5). The current error limit and number of
terms can be found in Orbiter.log under entry ELP82.

The current version does not include tidal, relativistic or solar eccentricity perturbation terms,
to avoid inconsistencies with Orbiter's dynamic model.

22 Index

< c
<Planet>_ AtmPrm..........ccoovrinnnencnnene. 155 CELBODY ..ottt 150
<Planet>_Ephemerisc.ccceovvnnienennnens 153 DEpPhemeris ... 150
<Planet>_FastEphemeris........cc.ccocevvrenencne 154 CIbKAtMParamccccooeveeerenncnenenens 152
<Planet>_SetPreCiSion..........cccoeveerenennens 153 CIBKEPhemMEXis ..o 150
A clbkFastEphemeris........ccccoevvvveneceennene. 152
CIBKINIT ..o 150
Airfoil COEffRUNC.......cvvvireiece e 93 D
AUBNES ... 5
Deltaglidercccovvvvieeereceeerec e 5

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 230

E

ELEMENTS. ..ot 6

ENGINESTATUS......oo i 7

ENGINETYPE....ccc oo 7

EXHAUSTTYPE ..o 7

EXitINStancCe........ccocevvveeiceeciee e, 150

ExitModule.........cceeeeveeirieiee. 12, 146, 149

ExternMFD
~EXtErNMPFDoooeiveeeeeece e, 141
ACHIVE ..o 142
EXternMFD ..., 141
GetButtonLabelcccceevveveveeeieeieeeee. 143
GetDisplaySurface.........cccocvevecnenecnn 143
GEtVESSE ... 142
o R 142
SEVESSH ..o 142

G

Gauge
CUSLOM CONLIOlecvvveecieeecieeeceee e 227
WM_HSCROLL ...ccovvvveiercececeee, 229

GraphMFD
AddGraph.......cccoeviveinicreee 138
AdAPIOL.......oo i 139
CONSEIUCEOveeeeeveeeeeeee et 138
FiNdRANGEc.oeeveieiricee 140
o] 140
SEtAULORANGE.vev e 139
SEtAULOTICKS.....ceecveecreecree e 140
SetAXISTItIC ..o, 140
SEtRANGE.......ei i 139

H

HUD
mode CONSLaNtS.........ccceeeeeereecreeiecee e, 11

|

INItINSEANCE.....ve e 149

InitModule........cccovveeeeereeirieenen. 12, 146, 149

L

Launchpaditem
(o] o] (@] o= o [145
ClbKWriteConfig.....ccccoveveeveeiceeseesieeiens 145
COoNSEIUCEOreeeeeiieeeciee e 143
DESCIiPtioNecveeeececeeeeee e 144
Destructorccocceveevceee e, 143
NaME ... 144
OpenDialogcceereerineeneeeeeee 144

M

MATRIXS .o 6

MESHGROUP_TRANSFORM 110

MFD
ButtonLabelccveveieeirieieececre e 135
ButtonMenu.........ccccoeeceeeevveee e, 136
(©70] 9151 101 (o QU 133
ConsumeBULtON..........cccceeeiviiee e 137
ConsumeKeyBuffered.........c.ccevevveivennnns 136

ConsumeKeylmmediate.............ccooerunee. 136

identifier constants.........ccocvvevveereeeeeneeeene 11
InvalidateBUuttons..........ccccevvvveeecceniennnns 134
InvalidateDisplayccccocvvveveeieeiieenns 134
Mode CONSLANS.ceerveriere e 11
ReadSIALUS ..o 137
RecallStatusccooevereiiiieeieecee 138
SelectDefaultFontcoceveienineenne. 134
SelectDefaultPen...........ccooveienieeeene. 135
SLOrESLALUScoeeeeeeeeeie e 138
T e 134
UpPdate......ccoveerierieneree e 134
WHEESIALUS. ... cveeeeeeeeeeeeee e 137
MOON....coiiie e 230
N
Navmode
CONSLANES.eeveeeeeeeere e 11
o]
oapiAcceptDelayedKeyocccvvvevveiieennnns 192
oapIAddTIitleBUttONcceeevvveee e 222
0apPiANNOtationSetPOoS........ccccevveeceeees 215
0apiANNotationSatTeXtccvvereererieennes 216
08PIBIL.....oieciirice e 212
oapiBltPanel AreaBackground..................... 203
08Pi CameraAPErtUre.oeevereerereeennes 190
oapiCameraAttachcccoeevivccvinice, 192
oapiCameraAzimuthccceeeeveeeveeceenens 190
oapiCameraGloba Dircccccoveeveeivennns 189
oapiCameraGloba Pos............ccccvveeivennns 189
oapiCameralnternal..........ccoceeeeeveeeveeseennens 188
oapiCameraMode..........cccevvvveeiceeieeseeiens 188
oapiCameraPolar.........ccccceeveeceiieeseeseeiens 190
oapiCameraRotAZimuthcccccveneene. 191
0apiCameraRotPolarcccvereeririeenne, 191
oapiCameraScaleDist.......coeorireceririeenee 191
oapiCameraSetAperture.........ccoveeevereeenne 190
0api CameraSetCockpitDirccccceverveuene 191
0apiCameraTarget.......cccverveerereeerereeeees 189
oapiCameraTargetDist........ccoccvveeeveereeinnnns 189
oapiClearSurfaceColourKeyccccveueene 212
0api CloSeDIalog.....ccvevvereresiecese e 222
0aPiClOSEFIlE ..., 217
0api CockpitMode.........ccoeveveeeierecececieens 189
08PICOIOUIFllceeeieeiiceee 212
0api CreateANNOtationcccovveerereeennes 215
oapiCreateSurface (1)ccoeeeverecerereeenne 210
0apiCreateSurface (2)coeeevereeereneeennes 210
oapiCreateTextureSurface...........ccccvvvrveene. 211
08PICreateVessalcccvvveeenincienesee 161
0api CreateVesSSElEXoovvvvvvvesecececienens 161
0apiDELUGSHIING ..o 226
oapiDecHUDINENSItY......ccocvvereeiececienns 198
0apiDEfDIalOgPIOCc.cecveveceeciere e 223
0apiDElANNGLALiON....c..ocvevececere e 215
oapiDeleteMeshcoevvvececece e 193
oapiDeleteVessal ... 162
08piDestroySurface.ooeevvereeneneeene 211
oapiDisableMFDMode..........ccocoveerinieene, 214

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 231

08P FiNADIA0g.....ccverveeeierieeeiereeeie s 221

oapiFindLaunchpaditem..........c.ccccevvenencne 225
08I GEtAITSPEE ..o 170
0apiGetAirspeedVectorccoeveevieenennne. 171
oapiGetAltitude........ccoccveevieceeceee e 167
0api GetAtmPressureDensitycceeee.e. 172
oapiGetAttitudeMode...........cccceeveevieeennee. 175
0apiGetBankK.........cceevevveecece e 168
oapiGetBarycentre..........cccceeeeeveeveecieceene, 167
0apiGetBaseByINdEXcooveereneceenienieeens 159
oapiGetBaseByNameccccvevevneneenens 159
08PiGEtBaseCoUNtcccvereeerereeiesiereeeens 159
08PiGetBaseEqUPOScoeevereeierieiins 181
0apiGetBasePadCount............ccvvveereneeeens 181
0apiGetBasePadEqUPOSccccveeeevieiiene 181
oapiGetBasePadNavccccccevveveeciecnnee, 182
oapiGetBasePadStatus...........cccceveevieeneee. 182
0api GetCelbodylnterface..........cccccevveeneeee. 160
0apIGEtCMALINE.....ccveeeececee e 155
0aPIGELCOIOUNcceeeeveieee e 209
08PIGELDC......c.ooeeeiecieeese e 209
0apiGetDial 0gCoNtEX........ccveververeeeerierieiens 222
08PiGELEMPLYMaSS.......ccvvvieeeerieeiesieeeiens 163
08PiGEtENGINESLALUSeveneeeeieeeiesieeens 174
08PIGELEQUPOS........coveeeieiieeereeee e 170
08Pi GEtFOCUSAITSPEET ... 171
oapiGetFocusAirspeedVector..................... 171
oapiGetFocusAltitude...........cccceeveerieeeenee. 168
oapi GetFocusAtmPressureDensity 172
oapiGetFocusAttitudeMode........................ 176
oapiGetFocusBanKccceeeeeveeceecieceene 169
oapi GetFocusEngineStatus...........cccceeeeeee. 174
08Pi GEtFOCUSEQUPOS.........coveeeriiecieicee 170
oapi GetFocusGloba Pos...........cccceveenee 165
oapiGetFocusGloba Veccoeeieenene 166
oapiGetFocusHeadingc.coeveveeereneencns 169
oapiGetFocusinterface........cooveeveeeeeveneennene 160
08Pi GEtFOCUSODJECEcveveeceeiieecicrieee 160
0api GEtFOCUSPItCh......ccvecece e 168
oapiGetFocusRelativePos.............ccccueeeee. 166
oapiGetFocusRelativeVelcccvevivenenee. 167
oapi GetFocusShipAirspeedVector 172
oapiGetFrameRate............ccceeeveeveeveeeeene 188
08PIGEtFUEIMESS........oveeeieieececc e 164
038PI GEtGAUPEPOSc.eeverveeeeeriereeierie i 229
0api GetGbodyByINdex..........cccoovveerineeecns 158
0apiGetGbodyByName...........ccccoveevvenieeens 158
0api GetGhodyCouNtevveeerereeeiriereeins 158
08piGetGlobalPOS..........covvvereeeiecieie 165
oapiGetGlobalVel........cccovvvveceeecee, 165
oapiGetHeading.......ccccceevevvveeeececeee 169
0apiGEtHUDMOdEc.ccevvveecieeeceeee 197
oapiGetlnducedDragcceeveveveeveneenenn, 172
0aPIiGELMBSS......c.vevveie e 163
oapiGetMaxFuelMasscccveeeeveveennn, 164
08PIGEtMFDMOdE.........coiviieeieciiriee 198
0api GEtMFDM OdESPEC.......covevereeceeeieene 214
0apiGetNavChannelccccevvereenenienens 183
038PI GELNAVDESC ..o 184
08PIGELNAVFIE] ... 183

08PIGELNAVPOS ..o 183
0apiGEtNaVRANGE........ccvvreerireresiees 183
08PIGELNAVTYPE....coveeeeriiieirereere e 184
0apiGetObjectByINdexcccevvevvecieennns 156
0apiGetObjectByName..........cccccevvecvvennns 156
0apiGetObjectCountccceeceeveeveecieeiens 156
0apiGetObjectName.........cccceeceeeeeceeceeiens 159
(o= 0 [[€75(@)] o][= v 1Y/ o[- TS 156
0apiGetOrbiterinstance..........ccoeveveevvenens 155
08PIGELPALISE ..o 188
08PIGELPITCN......oeceieieccee 168
oapi GetPlanetAtmConstants............cccceeee 179
oapiGetPlanetAtmParams............cccoceveene. 179
oapi GetPlanetCurrentRotation.................... 178
0api GetPlanetJCOEffcoeevereiriree, 180
oapiGetPlanetJCoeffCountcccceevveneee 180
0api GetPlanetObliquity.......ccccveeeeveeieenens 177
0api GetPlanetObliquityMatriX..........ccecu.... 178
oapiGetPlanetPeriodcccoecvveeeveecieens 177
oapiGetPlanetTheta.......ccoeveecee e 178
oapiGetPropellantHandle.............ccccveenie. 163
0apiGetPropel lantMass..........ocoveererieene. 164
oapi GetPropellantMaxMass...........cceeveeee 164
0apiGetRelativePos..........coecvercniee, 166
oapiGetRelativeVel ..., 166
0apiGetShipAirspeedVectorcccveenee. 171
0aPIGELSIMMUID ..o 186
0aPIGELSIMSLEPccvveveeceee e 185
0aPIGELSIMTIME...cceevveeceee e 185
0APIGELSIZE......ee e 162
oapiGetStationByIndex........ccccveeeeveervennnnns 158
oapiGetStationByName..........cccceeeveereenenns 158
08pi GetStationCOoUNt...........covvvereeerereeenee 158
08PIGELSYSMUIDooveeeiriiiereee s 186
08I GELSYSSLED ... 186
038PI GELSYSTIME. ..o 185
oapiGetTextureHandle............cooveeeieeene 195
oapiGetTimeAcceleration...........ccccveerveuene. 187
0apiGetVessel ByIndexccccveevveenivennnns 157
oapiGetVesselByName.........cccoeeeeveecvvennnns 157
0apiGetVesselCountccevveeeeeeeceeceeiens 157
oapiGetVessalInterface.......ccoccvveevveecvennnns 160
0api GEtWaVEDIagccccceveeveeeieeecveeeeiennns 173
038PI INCGAUGEPOS ..o 228
0api INCHUDINENSItYcvcveereiicsiriee 198
08PIISVESSE ...t 157
08PILOAdMESN ... 192
oapiLoadMeshGIobal...........cccocevevririeene, 192
08PIL0adTEXIUNE.......eveeeireereeeeeeeees 195
0aPIMESNGIOUPccvveeeieciecircece e 193
0apiMeshGroupCount..........ccceeveeereereerenns 193
oapiMeshMateriaccoevvvveneceeieciiennns 194
oapiMeshMaterialCountcccceverveivennnns 194
oapiMFDBuUttonLabelcccovvveeeiecienns 200
0aPiNaVINRANGEc.cevveeresieceee e 185
0apiObjectVisualPrrcccoveeererieereeeee 162
0apiOPENDIAlOg.......coveereirieirireeeeee 220
08piOPeNDIalOgEX.......ccvereeeririeesieseee 221
08PIOPENFIle.....ceciicc e 216
0apiOPeN NPUEBOX.......cccevireeereirceeesiee 224

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 232

08PIOPENMPFD....c.coviviiiiiieeee s 198

oapiParticleSetLevel Ref ... 197
oapiPlanetHasAtmosphere ..o 179
oapiProcessMFDBULtONcccceeeeveeneee. 199
0aPIRaNd........coo e 226
oapiReadltem boolcccocvevvevieie 217
oapiReadltem floatccccovevveveeciece, 217
oapiReadltem int........cccccvvevieveecie e, 217
oapiReadltem _Stringccccvvveveeveeciece, 217
oapiReadItem VEC........cccvvveevinceieiee 217
oapiReadScenario_nextline..........ccccoeveene 220
oapi RefreshM FDBULLONS...........ccocvvienenne 199
oapiRegisterCustomCmd.........cccoeeevrereenene 223
oapiRegisterCustomControls...............c...... 227
oapiRegisterExhaustTexture............c.ccoeeuene 176
oapiRegisterLaunchpaditem....................... 225
oapiRegiterMFD (1) ..ccvvevvveeveeceeee e 200
oapiRegiterMFD (2)oocvvveeveeceeciece 200
oapiRegisterMFDMode...........ccccccveviennee. 213
oapiRegisterPanelArea.........cccccceveevieeneee. 202
oapiRegisterPanel Background 201
oapiRegisterReentryTexture...........ccoceveeeene 177
0aPIREEaSEDC ..o 209
08I SAVESCENANTO ... 219
08I SENAM FDKEYoeeeiiviieieriereeiesieiens 199
oapi SetAttitudeMode..........cccceverciniinenens 175
oapiSetDefNavDisplaycccceveeveeveecnnee. 208
0api SetDefRCSDisplayccoeveevveeieecenee 208
0PI SEtEMpPtyMass........cccccvvveveeceecie e 165
oapiSetEnginelLevel..........ccooeveeveeciece, 174
oapi SetFocusAttitudeMoaode............c..c........ 176
0api SetFocusObjeCt........occvveereeceece e 160
08Pi SetGaugeParams.........ccoeerereeereneenens 227
08Pi SEtGAUGEPOS.eeeverieeeiesiereeiesieneeiens 228
0api SetGaugeRaNgeccevveverereeerereeeens 228
0apiSEtHUDMOdE..........cooiiiiiniiciiieee 197
08Pi SEtM eShPropertyccoeeevereeereneeens 196
08PISEtPaNE]ccovireiieee 204
oapi SetPanelNeighbours...........ccccccevveeeeee. 202
0aPISEtPaLISE. ... 188
0apISELtSIMMUID.......ccveeeece e 186
oapi SetSurfaceColourKeycccceevveeenee. 211
0aPISELTEXIUNE.....oeeeeeeece e 196
oapiSetTimeAccelerationccoeceveneeene 187
08Pi SWItChPanelccceveveeiircice 203
0PI TIMEZ2MUID ..o 187
oapiToggleAttitudeMode............occvveneeene 175
oapi ToggleFocusAttitudeMode.................. 176
0apiToggleHUDCOoIOUrcccoeveeeerienenns 198
oapiTriggerPanelRedrawArea.................... 203
oapiTriggerRedrawArea...........cccceeeveveennenn. 207
oapiUnregisterCustomCmd..........ccccevvenee. 224
oapiUnregisterCustomContrals.................. 227
oapiUnregisterLaunchpaditem................... 225
oapiUnregisserMFDMode.........c.cccecvevuenene. 213
0apiVCRegiSterArea (1)cceevevereeeereneneens 205
08piVCRegIStErArea (2)coeevvereeerereenens 206
0apiVCRegisterHUD..........cccccovvineeiiiriine 205
08piVCRegISterMFD.........ccoeoeiireinieniins 205

oapiV CSetAreaClickmode_Quadrilateral .. 207

0apiV CSetAreaClickmode_Spherical 207
0apiVCSatNeighbours..........cccoeveererieene, 204
0apiVCTriggerRedrawArea.........cccocevveeenee. 206
oapiWriteltemn _boolcccoecvivvviieies 218
oapiWriteltemn float.........cccceeevviviieiiees 218
oapiWriteltem int.........cccceveveveiieeieeceees 218
oapiWriteltem String.......ccoceevveevveesieennens 218
0apPIWTIteltem VEC........ccceevvece e 218
0aPIWIILELINE ..o, 218
0BPIWIITELOGcvveeieeerieeeeeee s 218
oapiWriteScenario_floatccceeveruenenne. 219
oapiWriteScenario intcccceveeerereenne, 219
oapiWriteScenario_stringcoeeeveerveene. 219
0apiWriteScenario VEC........cccovveerereeenne, 220
OBJIHANDLE.......ocoieeeeece e 5
opcCloseRenderViewport..........ccceeevvenene 147
OPCDLLEXIt .ocvvceeeee e 146
(o] o o3] I I o 1 S 146
opcFocusChanged.........ccccovveveviceeceecieeiens 148
opcOpenRenderViewportccceeeveenenns 146
OPCPAUSE ...ttt 148
OPCPOSESLED.....ccveeeeeeee e 147
OPCPIESIED ..o 147
opcTimeAccChanged........c.ccoveveererieenne, 148
OPCTIMESLED ..ot 148
OVCADCHIMOdE........oveeereeicesecee e 18
OVCANIMALE......ceeiieieeeie e 19
ovcConsumeBufferedKey.........cccevveveerneenee. 20
OVCCONSUMEKEY ...cvvvieiieeieeesiee e 20
OVCDOCKEVENL.......ccceeeiiirieiinieeeeeeeeeee 19
OVCEXIt ..o 13
ovcFocusChanged.........cccvvveveeveenieccie s 16
OVCHUDMOdE.......coieeeeeeceeeee e 19
[0V | o S 13
ovcLoadPanel..........ccoovievevineneeeeeeee, 21
OVCLOBASEALE ... 14
OVCLOBASLAEEXccvveeeeeeeeieceeeeee e 15
OVEMFDMOdE.......coeeeeeereeeeee e 19
OVCNAVMOAE........c.eeieeiiereneeeeeeeeeee e 18
ovcPanelMouseEveNt...........ccoceveeereeieneenne. 21
ovcPanelRedrawEventc.ccocceeeieeieneenne. 22
OVCPOSICreation........c.cooevereereneneeeeie e 16
OVCRCSMOME ..ot 18
OVCSAVESIALE.......ceeeieeeieeie et 16
OVCSEClasSCapS.civevreerieieesiesee e 13
OVCSELSIAL.....cveeiieieeie e 14
OVCSELSIAEEX ... 14
OVCTIMESED ..o 17
ovcVisualCreated........cooovvvvvveneneeieeie e, 17
ovCVisualDeStroyed.........coovvveveeeeieeieneennn, 17
P

PARTICLESTREAMSPEC.......cccocevriiennn 7
PROPELLANT_HANDLE........ccccoveiririennn 6
R

RCONEIOL ... 5
S

SURFHANDLE ..ottt 5

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 233

T DelExhaustStream.........cccceeveeeeeeeveeeeeens 117

DEIMESN......cooieeeeeee e 107
$ES§CS)1EJ§§HI—? Al\\ll\? [I)‘ LE E """"""""""""""""" g DelPropellantResourcec.coeeeeeneenene 47
— T T e DEITHIUSIEN ... 53
\% DelThrusterGroup (1)ccceevevereereeeeneennns 61
DelThrusterGroup (2) ...ceeevveeveeveeeenieeen, 61
VECTORS.....ccooe e 6 DetachChild 80
VESSEL ..ot 22 Dock 76
ActivateNavmode. 3 DOCk.C.:.(.).l:lll’;t ... r
ACQANIMEHONCOMPONENt oo 112 Dodd ngStatus ... b
AddANIMCOMP ..o, 115 Editairfoil ... %5
AddAttExhaustMode........ccccceoveveeeveneenn. 73 EnablelDS........ .. 1 03
AddAHEXhaUSIRES ... 72 EnableTr ansponder """""""""""""""""" 102
AdABEACON ... 118 GetADCHIMode ... 42
AGEXNAUSE (1) erernressnrssinessinessnnessnnes 68 GEetAIrSPEEd ... 85
AGDEXNBUSL (2)..cosevsrssnvssssnssssssssssnsssss 68 GELAIHUTE. ... 84
AGIEXNAUSIRESoovvevv 72 GAANGUIANE oo 45
AddExhaustStream (1)ccooeevvvvereeennen. 116 GetAOA 85
AGAEXNAUSESITERM (2) - 117 GetApDi.s.t .. e
AAFOICE. ...ttt 44 GELATGPEN oo 83
ﬁggm :hh (;) """""""""""""""""""""" 18‘5‘ G AIMDENSILY oo 90
(Q):rvinsssmnissssnnsssssnsssss s GEtATMPIESSUre........ooeeveeeeee e 90
AddReentryStream..........cccccveeveiereenen. 117 GetAtmRef 90
ﬁgacucm | :ic t gg GetAMTEMPEAUIE oo %
ACAMENTLOUNL...covvvereinneees GetAttachmentHandle............ccoevveeveeenee 80
ClearAirfoil Definitions........cccceeeevvvevnnneen. 95 GetAttachmentld 79
ClearAttExhaustRefs..........ccovevevecvvreinneee. 73 GetAttachmentin dex """""""""""""""""" 79
ClearBeacons................. s 119 GetAttachmentParams ... 79
ClearControl SurfaceDefinitions............... 97 GetAttachmentStatus 79
ClearDockDefinitions..........cccveevevverveennen. 74 GetAttitudeLinLevel " 66
g: earfﬂxguﬁRff Suunnimssmnisss s ig; GEtAtUAEMOTE o.r oo 42
CAAMESNES (1) ovvvvnsnnrvssssnnssss s GetAMtitUAEROILEVEl oo 65
ClearMeshes (2) ..coceveveveeeseeeeieeiiennens 108 GetBank 86
g: ear_llfLop;II argsf.w_)tgrces """"""""""""" gg GetBankMomentScale.........cooeeeeeeneenenne 27
C|earv ru ab|ereD '”él'ons"i ----------------------- o GetCameraDefaultDirection 28
c easrt a ; FOQEIEMENIS. ovvvovve o GEtCamEraOffSetoovveeeeeeeeeeeeeeeecesee 28
Cogat FUCEON <. 2 GetClassName ... 23
FOBALE ...ooonrnir s GELCHPRAGIUS. ... eseeeee 25
CreateAIrfoiloooceeeeieee e, 93
CresteAirfoil2 94 GetCOG_EleV...iiicieveie e 26
r TONZ. v GetControlSurfaceLevelcoccevveeveeeneee 98
CreateAirfoil3......ooivieeeecee e, 94 .
. . GELCroSSSECHIONS......cccvvvveeeeeeecirireeee e 26
CreateANimationcccceeeeeeecinvveeeeeeeennns 111
CreatoAttachment 78 GEICW ... 92
r ACIMENE ... GetDamMagEMOUE ... 24
CreateControlSurface........cccoveeeeecvveeeennen. 96
GetDockHandleccceoeveeeeeiieeeeeieeeee 75
CreateControlSurface?cooceeeeeveeeeenneen. 97
CreateDock 73 GetDOCKParams.........ccoeeeeeveeeeieeeeeieee e 75
r OCK covvvericsniisni s GEtDOCKSEAUSceeeeveiee e seieee e eieee e 75
CreatePropellantResource............ccccveneeee. 47
GEDIag.....covieeeeieeeiesesese e 40
Creat€ThruSstercc.ovveeeeeeeeeee e 52
GetDragVectorccoovveveiineneeeeeenens 40
CreateThrusterGroup........coceeeeeeeeeeeerennen. 60
. GetDYNPressure.........cocovveveeeneeeeeenens 91
CreateVariableDragElement..................... 98
- GetElements (1) ...ocvveveeererenereneeesieneeiens 81
DeactivateNavmode...........coceeeeeeveeiiveennn. 43
Def SetSiat 37 GetElements (2) .ccccceveveve e 81
Doty atgé """"""""""""""""""""""" 28 GELEMPLYMESS..... . evveeeeeeeeeeeeeseeeseeseseeee 25
DA ol Koremmsssnnsn e o GEENADIEFOCUS .o eeeseee 24
IO oo GetEngineLevecccovvvvvevevecieeen 71
DelANIMationcccoeveveeevceeeceec e, 111
L GEtEQUPOS. ... 84
Del AnimationComponent............ccccueeene 113 -
DalB 119 GetFlightModel ..o 24
. Cea‘t’or; e o GEFliGtSIAIUS ... 38
ONTOISUMBCE. . cvvvreveereeeenens GEtFOrCEVECON ..ot 40
DEIDOCK ... 74
Del Exhaust 69 GetFUBIMBSS.......ceeieieieeceee e 51
BUSL oo GEFUBIRELE 51
DelExhaustREfcoovveeeeeiieceeee e 72

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 234

GetGlobal Orientationcoceeeveeeeeeesnnen. 46

GetGlobalPos.........cccoovvevereeeceeeee e 44
GetGlobaVE......cccovveeveecececeecese, 45
GetGravityGradientDamping 26
GetGravityREef ..., 8l
GetGroupThruster (1) ...ccceovevvvevievierieenen, 63
GetGroupThruster (2)....cccvevvvevecvesieenen, 63
GetGroupThrusterCount (1)ccccvevveneen. 62
GetGroupThrusterCount (2)ccceeveneee. 62
GetHandle........cccoeveverrrecece e 23
GetHorizonAirspeedVector ... 85
GELIDS.....cc e 104
GELISP ... 70
GELLITE ..o 40
(€7 (1 AV4< o (o R 39
GetMachNUumberccooevevenirieeee, 91
GetMainThrustModPXrcccoeerieeieenee. 72
GetManualControlLevelccoceeeeennee. 67
GELMBSS......ooeeeirieeeie e 38
GetMaxFUelMasscccvereeenenennseens 52
GetMaxXThrUStcooveeeeece e 69
GEtMESN ... 106
GEINAME......oieee e 23
GetNavmodeState.........cooevvevererieeeenennenn 44
GetNavRadioFreg.........ccoeeeveneecnieniennn 102
GEINAVRECVooeeeieie e 102
GEINAVSOUICEcceeeeeeee e 104
GELPEDISE ... 84
GELPITCN ..o 86
GetPitchMomentScale.........c.ccooveeeveenee. 27
GELPMI ..ottt 26
GetPropellantCountccccccveverierieennen. 48
GetPropel lantEfficiencyccoccoevnenene. 50
GetPropellantFlowrate............ccccceeeenienene 50
GetPropellantHandleByIndex................... 48
GetPrope lantMassccoeverereienenenenn 49
GetPropellantMaxMass.........ccoeeerereenne 50
GetRelativePos.........coovveveeeceeeeee, 45
GetRe aiVEVE ..o 45
GetROtatioNMaLriX......ccevvereereeneereeieeenen 87
GEtROIDIagccovvveviiieeie e 92
GetShipAirspeedVector........ccccccvvveveeenen. 85
GELSIZE ...t 25
GetSliPANGIE. ..ot 86
GEESMI v 83
GESIAUS ..o 36
GESIAUSEX ..o 37
GetSuperstructureCGccoeeeveeveneene. 87
GetSurfaceRef ..., 84
GetThrusterCountcccvverereriereresienenns 54
GetThrusterDirccoveveeeriererenereee e 55
GetThrusterGroupHandle............ccccueueee. 61
GetThrusterGroupLevel (1)......ccccveveeeee. 65
GetThrusterGroupLevel (2)......cccceeveeeen. 65
GetThrusterHandleBylndex..............c....... 53
GetThrusterlSP (1) «.ccevveevveeeeseeeeeseens 57
GetThrusterISp (2) ..ooveeeeeereererenieeneeneene 57
GetThruster|Sp0.......coeeeeereeeereeeesiee 58
GetThrusterLeve.........cooveverenieeieneennn, 59
GetThrusterMaX (1)cccevrverererienenenieen 56

GetThrusterMaX (2) ...ccevvereeereeneerieneenens 56
GetThrusterMax0........ccccevevvveereeeeeeeenes 56
GetThrusterMoment..........cocvveeveveeereeene 59
GetThrusterREf ..o 55
GetThrusterResource............cveveeeeeeneene 54
GetThrustVectorccveeveveneceeeeiene 39
GetTotalPropellantFlowrate...................... 50
GetTotalPropellantMass...........ccccceeeeeeeee. 50
GetTouchdownPoints...........ccooeveeeeneeene 26
GetTranspondercccoeveeerererenenieenne 103
GetTrMSCale ..o 27
GetUserThrusterGroupCount.................... 63
GetUserThrusterGroupHandleByIndex62
GetWelghtVeCtorccvvverieeerieneeerieeeeens 39
GetWheelbrakeLevelccoovvveveennen. 101
GetWiNgaspeCtcccccveveeveereesiesiee e 99
GetWingEffectiveness........ccccccevevvceecennee. 99
Global2Localcccoveveeiiiiiieeeeee 89
Global ROt ..o 88
GroundContactccceverereneneeenieeienes 41
HorizonInVROL ..o, 88
HOriZONROL........ccoeeeiceeceeecece e, 88
INCENgineLevelccooiveininennie 71
IncThrusterGroupLevel (1)cccccevreenene 64
IncThrusterGroupLevel (2)......cccccvvnuenene 64
IncThrusterLevel_SingleStep.................... 59
INItNaVRadIOScceeveereiceeeeeeeiee 101
INSErtMESh (1) ..covvveeeeiriereeeese e 105
INSErtMESN (2) ..ccvvveneeirieeeeeee e 106
Local2GIobalcccooeviiineriiineeiee 89
LOCAI2RE ..o 89
MeshgroupTransformcccceeeeeevenene 110
Nonspherical GravityEnabled..................... 41
OrbitStabilisedccceevvivieeriieisecene 41
ParseScenarioLine.........ccooveevvecreeienennn. 36
ParseScenarioLineEXccccceeveeeceeeeneennn. 36
RECOrdEVENL.......c.ooveeee e 115
RegisterAnimation............ccccoeeveeenenienenn 111
RegisterAnimSequence..........cccocvevvenene 114
SaveDefaultState.ccoovvverereeeeieeine 38
SetADCIHIIMOdE. ..o 43
SetAIDEdORGB ..o 29
SetAngularVel ... 46
SetAnimationccccccveeeeiececee e, 114
SetAttachmentParams...........c.ccoceeeereeneene 78
SetAttitudeLinLevel (1) ...cccoovveveenenenns 67
SetAttitudeLinLevel (2).....ccovveveeieneenns 67
SetAttitudeMode.........coovvieneneeieene 42
SetAttitudeRotLevel (1).....cccovvereeerieneenns 66
SetAttitudeRotLevel (2)......cccvveveevenenns 66
SetBankMomentScale.........ccovveveevinneenns 32
SetCameraDefaultDirection (1) 33
SetCameraDefaultDirection (2) 34
SetCameraMovement..........cccoceveerevreene 35
SetCameraOffseat.......cccoveveveneneeiee 33
SetCameraRotationRange...........ccccveveenene 34
SetCameraShiftRange.........ccccvveveerieneencns 35
SetClipRadiUS ... 29
S (0(0 R = [Y 30
SetControlSurfacelLevelccoceoeeenene 97

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 235

SetCrosSSECtiONS.....ccvvvereeriere e 31 SEtTrMSCAE. ..o 33
SECW e 91 SetVisibilityLimitcccooovvvviinceeieeen 29
SetDefaultPropellantResource.................. 48 SetWheelbrakelLevelc.ccoovvveeenennen. 101
SetDockParams (1)cccceveeveeiieccieseee 74 SetWingaspectcceevevceevee e 98
SetDockParams (2)ccceveeveececcieseene 75 SetWingEffectiveness..........cccoevevveceenens 99
SetElements.........ccooeneninineneeeeee 82 ShiftCentreOfMasscccoverevererieeienins 86
SEtEMPLYMESS.......cooveeiriereienieeesie i 30 ShIftCG ..ot 86
SetEnableFoCuUS........ooevirivience 28 ShiIftMesh......coeiiieeeee 107
SetEngineLevelcoceeevievieieee e 71 ShiftMeshesccccevceeveeceee e, 107
SetExhaustScales........coooveveniecnienienn, 109 ToggleNavmode..........ccovvrerierenerieneeenns 44
SEtFUEIMESS ..o 51 (] 1o [0 o: S 76
SetGlobal Orientation..........cccoceveeererienne 46 UnregisterAnimation...........c.cceeeerenennn 111
SetGravityGradientDamping..........cc..c..... 32 VESSEL2

SetIDSChannelccccoovvvvieneeeeeeens 103 CIbKADCtrIMode........cocovvrieeieeiieeene 125
SEUSP ..o 70 clbKANIMate.......coeveeeerececee e 129
SetLiftCoeffFUNC......ccveveev i 100 clbkConsumeBufferedKey............c......... 128
SetMaxFuelMass........ccccceveeveeneccie s 51 clbkConsumeDirectKey..........cccccerveeneen. 128
SetMaxThrustcccoveiiiirieeeeee 69 CIbKDOCKEVENL........ccovviiiirieieeiereen 129
SetMaxWheelbrakeForce...........ccceeuenee 100 CIbkDrawHUDccoooinininiiceieeene 127
SetMeshVisibilityMode..........ccccoeevvennene 108 clbkFocusChanged...........cccccveevvvevieennen. 123
SetMeshVisiblelnternalccccce.e. 109 CIbkHUDMOdE........ccociiiiinienceieeen 126
SEINAVRECV ... 101 clbkL oadGenericCockpitccccoereenene 129
SetPitchMomentScale.........cooveveceeeeenee. 31 clbkLoadPandcccccovvvvivnieninineene 130
SEPMI . 32 clbkLoadStateEXcccocvvvreerirreeieeene 120
SetPropellantEfficiencyc.ccoeeevenenene 49 ClbkLoadVC.......coovieirieiecneecsieeie 131
SetPropel lantMass.........cooveeeeercrenenen, 49 CIbKMFDMOdE........cooeiiiieiiiecicsiceins 126
SetPropellantMaxMass...........cccceeverveenen. 49 clbkNavMode.........cccoevvevveecececeeen, 126
SetReentry TEXTUNE........ccceveereeeieeieeieans 110 clbkPanelMouseEvent.............cccccevveenen. 130
SetRotatioNMatrixcceveveereererieeieneene, 87 clbkPanelRedrawEventcccceeeeueee. 131
SEtROtDIagcccvvveeveeceee e 92 clbkPlaybackEvent...........ccccceevrvereennen. 122
SELSIZE..oiiee e 28 clbkPostCreation...........cocoverererereenne 122
SetSurfaceFrictionCoeff 31, 100 CIbKPOSISIED.ee e 124
SEThrusterDirc.ccovvveveriieeeeceeeee 55 CIDKPreSten ..o 123
SetThrusterGroupLevel (1).......ccceveenee 64 CIbKRCSMoOdE........ooeeeiriieieecieeis 125
SetThrusterGroupLevel (2)........ccceeeenee 64 clbkSaveState.........ccooeevineeneneiienns 121
SetThrusterlsp (1) ..oeveeeeereeneneeeeesee 56 ClbkSetClassCaps........covreereneeeriineenns 119
SetThrusterlSp (2) ..oooveeeeeveeeeeeee 57 CIDKSEtSLALEEXccveeeeerieeeeerieeeee e 121
SetThrusterLevelocoovvvveenieene, 58 clbkVCMouseEvent...........ccoovvveeeeennnne 132
SetThrusterLevel_SingleStep................... 58 clbkVCRedrawEventcccceevevveenen. 132
SetThrusterMax0........coceveverenerieeieeene, 55 clbkVisualCreated...........cooevervrereennnne 124
SetThrusterRefcooovvvveeeece e 54 clbkVisualDestroyed..........coeeveverenennen. 125
SetThrusterResource.ccoeevvereeerienenn 54 VESSELSTATUS......ooierieneeese s 8
SetTouchdownPoints..........ccoeeerieeeeneenne. 30 VISHANDLE......ccotiiiiee e 5
SetTransponderChannelccccoeeee. 102 VSOPBT ...ttt 229

! p. Bretagnon and G. Francou, Bureau des Longitudes, CNRS URA 707, Planetary Solution
VSOP87

2 M. Chapront-Touze and J. Chapront, Bureau des Longitudes, CNRS URA 707, Lunar
Solution ELP 2000-82B

ORBITER API Reference Manual (c) 2001-2006 Martin Schweiger 236

