
 
 

MSH_MAKER v2.0    
© Radu Poenaru 2004 

 
 
Use MSH_MAKER to convert .3ds format file into Orbiter .msh format 
(as for now compatible with version 031217) 
 
 
1. HOW TO USE IT?                              
  
1. Copy your .3ds file into the same directory as the Msh_Maker, then rename it 

"input.3ds" 
 
2. Export a second 3ds file named "shadow.3ds", containing ONLY the objects 

that you wish to cast shadows. You can have the two files (input.3ds and 
shadow.3ds) identical, in which case all of your mesh will produce a shadow. 

     
3. Run Msh_Maker once; it will create a readable, text version of the .3ds in 

'debug.txt' 
 
4. Edit the debug.txt file as needed : change material properties, etc; (see 

section 2. Debug.txt) 
     
   
 
NOTES: The program first looks for a "debug.txt" file in the current directory. If 
such file exists, it will create a ".msh" file from it (as in step 4). If you rather desire  
to perform step 2 instead, delete "debug.txt"  
 
 
 
2. Debug.txt 
 
 The debug.txt serves as an intermediary file between the 3ds and msh 
formats. Why edit a intermediary file and not directly on the msh file? Because, 
as you will see , a number of parameters in the debug.txt file will determine how 
the .msh file will finally look like, saving tons of editing work that would otherwise 
had to be performed on  the .msh file. 
 
 
 
[SHADOW_OBJECTS] / [END_SHADOW]    

The names of the objects contained in this list will display shadows 
in Orbiter. Add or remove objects as you see fit. Notice that shadows can 



be computationally expensive, so it’s a good ideea to keep only the 
general outline of the hull as being part of your shadow and save the 
“details” from being rendered as shadows. 

 
MAT_NAME01  - “name”   (string) 
 The name of the material being described. You can have any number of 
materials in your mesh, but remember that multi/sub materials are not supported. 
You need to create a different material for each and every type of materials being 
used. 
 
MATERIAL_TENSION  - 1.0  (in radians) 
 This is one of the parameters that I was talking about above. It controls 
how smooth, or how sharp your mesh is. This is being done at material level. You 
can have different tensions for each material… 
 What does the 1.0 mean .. it is 1.0 radians (~ 57 degrees), and it specifies 
the angle at which MshMaker will “break” the edge in to a sharp edge. 
   

150
V1

V2

V3

120
V1

V4

V3

V2

 
 
 
 



If you are familiar with 3D modeling then , you might have guessed, this has to 
do with normals and lighting. 
 The final outcome being that higher numbers will produce a smoothed object (as 
you might need for say, a rocket cylinder), while smaller numbers will produce an 
object with sharper edges. 
 
MATERIAL_AMBIENT  r g b   [0..255] 
MATERIAL_DIFFUSE  r g b   [0..255] 
MATERIAL_SPECULAR  r g b   [0..255] 
 These values are directly taken from the 3ds and passed to the msh file.. 
they’re pretty straightforward so I won’t take much time writing about them 
 
MATERIAL_SHININESS 10 
MATERIAL_SHIN_STRENGTH 0 
  Again, these two values are directly taken from the material properties of 
the 3ds files. You should be aware of their meaning as a 3D modeler, but  just in 
case you get confused: one of them means how much the material shines, while 
the other one sets how diffuse the shining is. 
 
 
TRANS_PERCENT  100 
 Percentage for transparency… 0 means the object is invisible, 50 means it 
is 50% opaque and 100 means the object is totally opaque. You only need to set 
this parameter (either in the debug.txt, or directly in your modeling program) to 
enable transparency. MshMaker knows to position transparent objects to the end 
of the mesh for proper rendering. 
 
SELF_ILLUM  0 
  Percentage for self-illumination. 0 means the object emits no light 
of it’s own. 100 means the object will shine at the color set by 
MATERIAL_DIFFUSE. Note that this kind of illumination will obviously not cast 
any shadows. It will simply make the object “glow” 
 
TWO_SIDED 
 If this parameters is present at a material property list, then 2 objects will 
be constructed for each object of this material. The second one will be the 
“inverted” version of the first one (ie. vertex order in triangles) causing the actual 
object to be visible on “both sides”(ie. double sided). This can be very useful for 
thin objects that need to be visible both on the inside and outside( ie. engine bell) 
 
MASTER_SCALE 1 
 You can use this parameter as a last minute scalling of your mesh. This is 
a global parameter, so ALL of your mesh will be scalled by the amount entered 
here. 
 
 



NAMED_OBJECT  name 
 The name of the object currently being described 
 
TRIANGLE_VERTEXLIST number 
 The list of vertices making up the current object. “number” is the number 
of vertices. Note that material tension is not applied yet, so the final number of 
vertices in the msh might end up being larger. 
 
TRIANGLE_FACELIST number 
 The list of indices of vertices making up the triangles of your object. 
”number” is the number of triangles, and this is the final number that will end up 
in the msh file aswell 
 
TRIANGLE_MATERIAL name 
 The name of the material  for this object. 
 
 
3.  Keyframe.txt 
 
  
OBJECT name 
 The name of the object being described. Note that Orbiter SDK expects 
object indices not names.You can match names vs. object indices by searching 
for the object name in the final msh file.. a object index is written in the format : 
 

GEOM 127 126 ;  <Object_name> / <Object_index> 
 
HEIRARCHY   -1 
 Index of heirarchy for structured objects. The algorithm for the tree is very 
clever to use, but kinda hard to explain in here. Search for some dedicated 3DS-
Heirarchy tutorials for more info on this. 
 
PIVOT_OFFSET_XYZ  x y z 

Vector (XYZ) from the center of the object to the pivot point (center of 
rotation). You need to add this offset vector to the object position vector to 
determine the actual rotational point, if you have a rotational animation. In the 
graphic below, PIVOT_OFFSET represents the diference between Position 
Vector and  Rotation Center: (note you get the Position Vector from the 
Translation keyframes) 



Position Vector

Rotation Center

 
 
 
TRANSLATIONKEYS number 
  The following list is a “number” number of keys representing 
translations for the current object: 
 

FRAME_NR: 0   POS XYZ: 44.3373 -10.1205 0 
- means at frame 0 ,the Position Vector of the object is   

(44.33,-10.12,0.0) 
 
 
ROTATIONKEYS number 
 The following list is a “number” number of keys representing rotations for 
the current object: 
 FRAME_NR: 100  ANG: 0.829031  AXIS_V XYZ: 0 0 –1 

- means at frame 100, there is a rotation or 0.829 radians on the axis 
(0,0,-1) around the point (PositionVector +  PivotOffset).  

 
To set up a rotation from the example above use : 
 
     mt.transform = MESHGROUP_TRANSFORM::ROTATE; 
  mt.P.rotparam.axis=_V (0,0,-1); // read from the AXIS_V XYZ 
 
   mt.P.rotparam.angle=0.829031/100 * delta_frames; 

 //read total angle from from ANG ,  
//divided by total number of frames in the  
//interval (from 100 to 0 are 100 frames), 
// then multiplied by the number of ellapsed  
//frames  (from the OrbiterAPI) 

   
     



   mt.P.rotparam.x=44.3373; 
  mt.P.rotparam.y=-8.1205; 
  mt.P.rotparam.z=0; 

//the center of rotation is computed by adding  
//PIVOT_OFFSET_XYZ (in our ex. 0 2 0), 

    //to the center of the object (44.3373,-10.1205,0).  
 
   
NOTE:all the XYZ vectors in the keyframe file are in 3DS units, and are thus not 
scaled down by MASTER_SCALE. 
 Rescale PIVOT_OFFSET_XYZ and POS_XYZ to fit your needs. AXIS_V and 
ANG do not need to be scaled down. 
 
NOTE: as with all the animation keys, the FRAME_NR represents the frame 
where the animation has ENDED rather than when the animation started.  
 
 
 
Improvements for V2.0 
 
  - added double-sided materials support. If you object is created from a double 
sided material, both sides    will be visible in Orbiter. This can get usefull for 
engine nozzles, etc... 
 
  - added shadow support. Now MSH_MAKER uses two 3ds files : input.3ds and 
shadow.3ds 
  
Improvements for V1.21 
 
  - keyframe information (animations) are now read from the 3ds and passed into 
a "keyframe.txt" when performing animations 
   - program no longer crashes when no materal / texture is present in the 3ds 
file. Dunno why someone would not use any materials though... 
 
Improvements for V1.2 
 
  - MASTER_SCALE now works. Vertex coords are now divided by 
MASTER_SCALE before they are  put in the .msh file. 
   (ie. a "MASTER_SCALE 10 " will produce a .msh ten time smaller than in the 
.3ds file) 
  - all the material parameters supported in Orbiter are now gathered from the 
.3ds        
  - changed default MATERIAL_TENSION to 1.0 ; now only sharp edges get new 
vertex by default. 
   - objects are ordered in the .msh file so that transparent objects are last in the 
file; this assures    proper rendering. 



   
 
Improvements for V1.1 
 
 - fixed a bug causing a div/0 when normals were perpendicular. 
 - fixed a bug that crashed the program when no textures were used. 
 - now the vertex parser scans for unreferenced vertices and deletes them from 
the stream. 
 - changed the meaning of MATERIAL_TENSION; MATERIAL_TENSTION no 
longer refers to the  angle between faces; now is the threshold for the angle 
between facet normal & the average  of normals in that point. Not that it would 
matter much or anything..... 
 
 
 
 
 
Send any comments or bug reports to  
  poenaru.radu@rcc.rondo-ganahl.com 


