Orb:Connect

Introduction

Orb:Connect is a socket-based communication interface that allows external clients to access Orbiter
APlIs in a human-readable form. The project is based on the Orbiter OUIPC plugin and the intent of
Orb:Connect is to drive things like external "mission control" displays, simpits, and other "read-mostly"
types of clients. To that end, read or 'get' methods are assumed in the command structure and only active
commands such as "set" and "toggle" are identified specifically. Also, most of the read commands that
could have multiple targets (i.e. navmodes, engines, etc.) will return the values of all the appropriate
targets with one command in order to try and reduce the number of messages needing to be sent. It was
assumed that an engine console client, for example, would more likely be created to display all engine
statuses rather than just the left main engine.

Acknowledgements
Thanks to Russ (reverend) Purinton for providing the original OUIPC code from which this work is
derived.

Thanks to Brandon (hielor) Bolling for the subscription code and bug fixes.

Thanks to Doug (dbeachy) Beachy for providing the new XRVesselCtrl interface that allows such
extensive vessel control and feedback capabilities.

A special thank you to Dr. Martin Schweiger for creating such an extraordinary flight simulator.

Installation

Simply unzip the package into your Orbiter folder. The software comes with a Java console client that can
be used to test connectivity and message formats. The source code is available separately under the
GNU Public License (GPL).

Configuration

Initially, Orb:Connect is set up to communicate on port 37777. The installation contains a configuration file
in the Config directory (OrbConnect.cfg) in which you can change the service port.

Client configuration

A Java test client comes with the plugin for you to experiment with. If your client is running on the same
computer as Orbiter, It is preconfigured to communicate using the default port. Instructions for running the
client and reconfiguring it to run on a different computer are in a ClientReadme.txt file in the <orbiter-
home>/Doc/OrbConnect directory.

Message Structure

This section describes the format of all messages supported by OrbConnect. In support of my goal of
maintaining a human-readable and maintainable message structure, commands are broken up into
sections, with each section separated by a colon:

Type. What type of message is it? Types are:
ORB — Messages to Orbiter, or the simulation as a whole.
CAMERA - Camera controls.
SHIP — Messages to vessels.

FOCUS - Convenience messages to operate on the focus vessel.

XRCTL — Messages to vessels that implement the XRVesselCtrl interface.
NAV — Messages relating to position and navigation information.

BODY — Messages to planets, moons, and other ‘bodies’.

OBJ — Messages for handling generic objects.

Target. For commands that target a specific item in Orbiter. Targets may be identified by name or index.
A target reference may also have more than one part (specifically bases and base attributes.) If it does,
each part of the target will also be separated by colons.

Command.The identifier of the message to send.
Arguments. Any arguments the message needs to fulfill its task. Mainly used in ‘SET’ messages.

Again, the sections are each separated by a colon () and a specific command may not use all sections.
Within the arguments section, for commands that take multiple arguments, each argument is separated
by a comma (,). Note that although | tried to keep the messages human-readable, some of the commands
and even more of the responses can be very complex. Take special note of the delimiters if you have
trouble — that’s the most often source of errors.

Commands are not case sensitive. SHIP, Ship, and ship will all work. It is recommended, however, that
you use a form of camel case (http://en.wikipedia.org/wiki/CamelCase) for readability and to prevent
misspellings. Note, however, that names are case sensitive. While "Earth" will be found, "earth" will not.
This applies to bodies as well as vessel names. If unsure of a name, consult the scenario configuration
file.

Response Structure

The return message or response from Orb:Connect is prefaced by the command that was sent to it,
followed by an equal sign (=) and the actual response. This is to help you ensure multiple responses don't
get mixed up.

Return values can be string, integer, decimal, boolean, or lists of any of those. If an API method does not
return a value (has a void return type), "OK"; will be returned if successful. Multiple return values are
separated by commas (,).

Boolean values are returned as ";1"; for true and ";0"; for false.
Vectors (VECTORS3) are represented as a comma-separated list of x,y,z doubles.

Matrices (MATRIX3) values are returned as a comma separated list in the row/column order
11,12,13,21,22,23,31,32,33.

Structured data returned from an APl method will contain the values in the order they appear in the struct.
If an array of structs or values is embedded, they will be returned inside brackets ([]) and semicolon
separated. The use of SHIP:Status2 message where the engine, propellant and docking port properties
may be specified for return is a prime example.

In some cases, a list of multiple values may be returned in order to consolidate the same information
about multiple entities (i.e. engines) and reduce the amount of communication. In these cases, the list
entries are separated by semicolon (;).

Example:
XCTL:Focus:DoorsPos may return 3,0;2,0.5; . ..;3,1;5,0
where each pair of numbers stands for a separate door instance

state and position: ";3,0"; for door 0, ";2, 0.5"; for door 1, etc.
Another style of a return value containing multiple instances of the same information uses positional
notation. This format is used when the information consists of a single character value (i.e. Boolean or
states). Using this style, the positions are numbered starting with 0 and each position in the return string
stands for the object with that (zero-based) index or enum value.

Example:
SHIP:1:NavModeStates may return 01000000000
This indicates only navmode 1 (KILLROT) of the seven navmodes defined by the
OrbiterAPI and the three autopilots defined by the XRVesselCtrl interface is engaged

For additional information, look at the indicated reference APl method arguments and return values. Pay
close attention to the static values and struct definitions provided by the OrbiterAPI as these not only
provide the type of a return value, they also indicate the order of return values when the messages return
multiple values. You are strongly encouraged to use the test client to view complex responses.

Errors

Serious errors that may preclude the plugin from working are logged in the orbiter.log file. Command
errors are identified by a return value beginning with "ERR" (e.g. ERR01). The descriptions of the error
codes are contained in a later section.

Message Index

Below is a list of OrbConnect messages. The section is divided into subsections that contain messages
for specific 'areas' of Orbiter control and information. Commands are ordered by area, and are generally
listed in the order found in the Orbiter SDK Reference Manual. The listing uses angle brackets (< .. >) to
delineate a variable argument (something you must provide) that is required prior to the command, with a
descriptive phrase inside to indicate its content. That content is entered into the command without the
brackets. Argument values are separated by commas.

Example:

ORB:Name:<object index> would actually be created as ORB:Name:2 to retrieve the name of
the object with the index of 2.

Subscription Messages

These messages provide the ability to set up repetitive data transmissions without having to continually
send commands. Subscribe messages consist of three parts: the command, an update rate/frequency,
and the target orbiter command. The subscription command returns a uniqgue number that allows the
client to identify the incoming message and associate arriving data back to the subscription command.

Unsubscribe messages consist of two parts: the command and the subscription id returned by the
subscribe command. It is always good practice for clients to unsubscribe from each subscription prior to
exiting or closing connections.

Update rates are set in number of updates per second, the term Hertz (Hz) is commonly used for this
rate. The service divides a second into 20 timeslots, which allow for rates of 1 to 20Hz. While you can use
an arbitrary value as the frequency, the problem is data can only be sent out during a timeslot --so the
data will "stutter" because it will be alternating between the expected and one additional timeslot. This
problem is avoided when you use a "native" frequency, which in the case of 20 buckets will be 20, 10,
6.6667, 5, 4, 3.333, 2.85...etc Hz. All the native frequencies can be calculated as 20/timeslot where
timeslot is an integer between 1 and 20.

Clients may subscribe to any number of commands. Note, however, that large numbers of subscriptions
at high refresh rates may negatively impact frame rates. Here’s an example to return the focus vessels

altitude four times per second:
Client: SUBSCRIBE:4:SHIP:FOCUS:AIlt
Orbiter: SUBSCRIBE:4:SHIP:FOCUS:AIt=1000
1000=1200
1000=1201
1000=1202

Client: UNSUBSCRIBE:1000
Orbiter: UNSUBSCRIBE:1000=0K

SUBSCRIBE:<frequency>:<command>
Reference API method None
Additional Arguments None
Return Type A unique subscription id (int)

UNSUBSCRIBE<subscriptionld>

Reference API method None
Additional Arguments None
Return Type "OK"

General Orbiter Messages

These messages provide information about the active simulation, as well as control over some of its
properties. Reference API is OrbiterAPI.

ORB:GBodyCount
Reference APl method
Additional Arguments
Return Type

ORB:GBodies
Reference API method
Additional Arguments
Return Type

ORB:SimTime
Reference APl method
Additional Arguments
Return Type

ORB:SimStep
Reference APl method
Additional Arguments
Return Type

ORB:SysTime
Reference APl method
Additional Arguments
Return Type

oapiGetGBodyCount
None
int

none
None

csv list of GBodies defined in the current scenario
Moons of a planet are prefixed by the primaries name:
Earth.Moon, Saturn.Titan, etc.

oapiGetSimTime
None
double

oapiGetSimStep
None
double

oapiGetSysTime
None
double

ORB:SysStep
Reference API method
Additional Arguments
Return Type

ORB:SIimMJD
Reference API method
Additional Arguments
Return Type

ORB:SysMJD
Reference APl method
Additional Arguments
Return Type

ORB:SetSimMJD
Reference APl method
Additional Arguments
Return Type

ORB:Time2MJD
Reference API method
Additional Arguments
Return Type

ORB:TimeAccel
Reference APl method
Additional Arguments
Return Type

ORB:SetTimeAccel
Reference APl method
Additional Arguments
Return Type

ORB:Pause
Reference APl method
Additional Arguments
Return Type

ORB:SetPause
Reference APl method
Additional Arguments
Return Type

ORB:FrameRate
Reference APl method
Additional Arguments
Return Type

ORB:HUDMode
Reference APl method
Additional Arguments
Return Type

oapiGetSysStep
None
double

oapiGetSimMJD
None
double

oapiGetSysMJD
None
double

oapiSetSimMJD
MJD (double)
double

oapiTime2MJD
Time (double)
double

oapiGetTimeAcceleration
None
double

oapiSetTimeAcceleration
Warp (double)
"OK"

oapiGetPause
None
bool

oapiSetPause
Paused (bool)
"OK"

oapiGeFrameRate
None
double

oapiGetVesselCount
None
int

ORB:SetHUDMode
Reference API method
Additional Arguments
Return Type

ORB:ToggleHUDColor
Reference API method
Additional Arguments
Return Type

ORB:IncHUDIntensity
Reference API method
Additional Arguments
Return Type

ORB:DecHUDIntensity
Reference APl method
Additional Arguments
Return Type

ORB:SetHUDBrightness
Reference APl method
Additional Arguments
Return Type

ORB:MouseClick
Reference APl method
Additional Arguments

Return Type

ORB:OpenMFD
Reference API method
Additional Arguments

Return Type

ORB:MFDMode
Reference APl method
Additional Arguments
Return Type

ORB:SendMFDKey
Reference API method
Additional Arguments

Return Type
Notes

oapiSetHUDMode
mode (int)
bool

oapiToggleHUDColour
None
IIO KII

oapilncHUDIntensity
None
"OK"

oapiDecHUDIntensity
None
IIO Kll

None. Sets HUD brightness directly.
a brightness level between 0 and 100 (int)
"OK"

N/A - performs mouse click at specified coords
screen x coord (int)

screen y coord (int)

llOKll

oapiOpenMFD
id (int)

mode (int)

int

oapiGetMFDMode
id (int)
int

oapiSendMFDKey

id (int)

key code (int)

int

MFD must be in SEL or MNU mode or keys are ignored
SEL btn = OAPI_KEY_F1

MNU btn = OAPI_KEY_GRAVE

ORB:ProcessMFDButton
Reference APl method
Additional Arguments

Return Type

ORB:MFDButtonLabel
Reference APl method
Additional Arguments

Return Type

ORB:SwitchPanel
Reference API method
Additional Arguments
Return Type

ORB:SetPanel
Reference APl method
Additional Arguments
Return Type

ORB:DebugsString
Reference APl method
Additional Arguments
Return Type

Camera Messages

These messages allow for positioning and control over the Orbiter camera view. Reference API is

OrbiterAPl.

CAMERA:IsInternal
Reference API method
Additional Arguments
Return Type

CAMERA:Mode
Reference API method
Additional Arguments
Return Type

CAMERA:CockpitMode
Reference APl method
Additional Arguments
Return Type

CAMERA:Target
Reference APl method
Additional Arguments
Return Type

oapiProcessMFDButton
id (int)

button (int)

mouse event (int)

bool

oapiMFDButtonLabel
id (int)

button (int)

string

oapiSwitchPanel
direction (int)
int

oapiSetPanel
panelld (int)
int

oapiDebugString
"CLEAR" or a message
llOKll

oapiCameralnternal
None
bool

oapiCameraMode
None
int

oapiCockpitMode
None
int

oapiCameraTarget
None
string (name of target object)

CAMERA:GlobalPos
Reference APl method
Additional Arguments
Return Type

CAMERA:GlobalDir
Reference API method
Additional Arguments
Return Type

CAMERA:TargetDist
Reference API method
Additional Arguments
Return Type

CAMERA:Azimuth
Reference API method
Additional Arguments
Return Type

CAMERA:Polar
Reference APl method
Additional Arguments
Return Type

CAMERA:Aperture
Reference APl method
Additional Arguments
Return Type

CAMERA:SetAperture
Reference APl method
Additional Arguments
Return Type

CAMERA:SetScaleDist
Reference APl method
Additional Arguments
Return Type

CAMERA:RotAzimuth
Reference APl method
Additional Arguments
Return Type

CAMERA:RotPolar
Reference APl method
Additional Arguments
Return Type

CAMERA:SetCockpitDir
Reference APl method
Additional Arguments

Return Type

oapiCameraGlobalPos
None
vector

oapiCameraGlobalDir
None
vector

oapiCameraTargetDist
None
double

oapiCameraAzimuth
None
double

oapiCameraPolar
None
double

oapiCameraAperture
None
double

oapiCameraSetAperture
aperture (double)
"OK"

oapiCameraScaleDist
scale factor (double)
llo Kll

oapiCameraRotAzimuth
azimuth change (double)
"OK"

oapiCameraRotPolar
polar change (double)
"OK"

oapiCameraSetCockpitDir
polar dir (double)

azimuth dir (double)

llo Kll

Vessel Related Messages

The following messages are for vessel information/handling. These commands normally take an object
identifier (name or index) before the command name. The special identifier "FOCUS" may be used to
reference the vessel that has focus. Reference API is OrbiterAPI if the reference method begins with
"oapi", otherwise the reference is to the VESSEL/VESSEL?2 interface.

SHIP:Count
Reference APl method
Additional Arguments
Return Type

SHIP:CockpitMode
Reference API method
Additional Arguments
Return Type

SHIP:<"FOCUS" or vessel index>:Name

Reference API method
Additional Arguments
Return Type

oapiGetVesselCount
None
int

oapiCockpitMode
None
bool

GetName
None
string

SHIP:<"FOCUS", vessel name or index>:ClassName

Reference APl method
Additional Arguments
Return Type

GetClassName
None
string

SHIP:<"FOCUS", vessel name or index>:Version

Reference API method
Additional Arguments
Return Type

Version
None
int

SHIP:<"FOCUS", vessel name or index>:Status

Reference APl method
Additional Arguments
Return Type

GetStatus
None
VESSELSTATUS as csv

SHIP:<"FOCUS", vessel name or index>:Status2

Reference APl method
Additional Arguments

Return Type

GetStatusEx

get fuel levels (bool) OPTIONAL

get thruster levels (bool) OPTIONAL

get docking info (bool) OPTIONAL

VESSELSTATUS? as csv

semicolon

fuel levels for 0 <= # fuelspecs as csv (if requested)

semicolon

thruster levels for 0 <= # thrusters as csv (if requested)

semicolon

ref vessel docking port, ref vessel name for 0 <= # dockinfos
as csv (if requested)

SHIP:<"FOCUS", vessel name or index>:Mass

Reference API method
Additional Arguments
Return Type

GetMass
None
double

SHIP:<"FOCUS", vessel name or index>:EmptyMass

Reference APl method GetEmptyMass

Additional Arguments None

Return Type double
SHIP:<"FOCUS", vessel name or index>:PropMass

Reference APl method GetPropellantMass

Additional Arguments None

Return Type double
SHIP:<"FOCUS", vessel name or index>:PropFlowRate

Reference APl method GetPropellantFlowrate

Additional Arguments None

Return Type double
SHIP:<"FOCUS", vessel name or index>:DfltFuelMass

Reference APl method GetFuelMass

Additional Arguments None

Return Type double
SHIP:<"FOCUS", vessel name or index>:DfltMaxFuelMass

Reference APl method GetMaxFuelMass

Additional Arguments None

Return Type double
SHIP:<"FOCUS", vessel name or index>:DfltFuelFlowRate

Reference APl method GetFuelRate

Additional Arguments None

Return Type double
SHIP:<"FOCUS", vessel name or index>:Elements1

Reference API method GetElements(1)

Additional Arguments None

Return Type ELEMENTS struct as csv
SHIP:<"FOCUS", vessel name or index>:Elements2

Reference API method GetElements(2)

Additional Arguments reference body name (optional)

mjd (double) (optional)
Note: Accepts “now” to use current simMJD
frame (int) (optional)

Return Type ELEMENTS then ORBITPARAM structs as csv,
SHIP:<"FOCUS", vessel name or index>:EquPos

Reference API method GetEquPos

Additional Arguments None

Return Type long (double), lat (double), rad (double)
SHIP:<"FOCUS", vessel name or index>:Alt

Reference API method GetAltitude

Additional Arguments None

Return Type double

SHIP:<"FOCUS", vessel name or index>:NavModeStates

Reference API method GetNavmodeState
Additional Arguments None
Return Type positional string of NavModes (AutoPilots) by id (1-based)

The three XR autopilots are included in the last three
positions: AttitudeHold, DescentHold and AirspeedHold.
SHIP:<"FOCUS", vessel name or index>:SetNavMode

Reference APl method ActivateNavmode, DeactivateNavmode
Additional Arguments id (int)
activate (bool)
Return Type bool
SHIP:<"FOCUS", vessel name or index>:ToggleNavmode
Reference APl method ToggleNavmode
Additional Arguments None
Return Type int
SHIP:<"FOCUS", vessel name or index>:APSettings
Reference APl method None
Additional Arguments None
Return Type Comma separated values of the flight variables set (held) by the

NavModes/Autopilots. They are in pairs of active (bool) and
value (double) and appear in the order:

Bank, Pitch, AoA, Altitude, Airspeed, Vertical Speed
(bool,double,bool,double, bool,double,bool,double,
bool,double,bool,double)

SHIP:<"FOCUS", vessel name or index>:AttitudeMode

Reference APl method oapiGetAttitudeMode
Additional Arguments None
Return Type int
SHIP:<"FOCUS", vessel name or index>:SetAttitudeMode
Reference API method oapiSetAttitudeMode
Additional Arguments mode (int)
Return Type bool
SHIP:<"FOCUS", vessel name or index>:ToggleAttitudeMode
Reference APl method oapiToggleAttitudeMode
Additional Arguments None
Return Type int
SHIP:<"FOCUS", vessel name or index>:ADCtrIMode
Reference APl method GetADCtrIMode
Additional Arguments None
Return Type int
SHIP:<"FOCUS", vessel hame or index>:SetADCtrIMode
Reference APl method SetADCtrIMode
Additional Arguments mode (int)
Return Type "OK"
SHIP:<"FOCUS", vessel name or index>:EngineGrpLevels
Reference API method GetThrusterGroupLevel(2)
Additional Arguments None

Return Type csv of levels (double) for each thruster group

SHIP:<"FOCUS", vessel name or index>:SetEngineGrpLevel

Reference APl method SetThrusterGroupLevel(2)
Additional Arguments groupld (int)

level (double)
Return Type "OK"

SHIP:<"FOCUS", vessel hame or index>:ChgEngineGrpLevel
Reference API method IncThrusterGroupLevel(2)
Additional Arguments groupld (int)

level change (double)
Return Type "OK"

SHIP:<"FOCUS", vessel name or index>:FltStatus
Reference APl method GetFlightStatus
Additional Arguments None
Return Type int

SHIP:<"FOCUS", vessel name or index>:Airspd
Reference APl method GetAirspeed
Additional Arguments None
Return Type double

SHIP:<"FOCUS", vessel name or index>:TruSpd (Alias for Airspd message)
Reference API method GetAirspeed (See SurfaceMFD in Orbiter manual)
Additional Arguments None
Return Type double

SHIP:<"FOCUS", vessel name or index>:ShipAirspdVector
Reference APl method GetShipAirspeedVector
Additional Arguments None
Return Type vector

SHIP:<"FOCUS", vessel name or index>:Accel

Reference APl method None
Additional Arguments None
Return Type The ship acceleration in m/s? along the airspeed vector (double)

SHIP:<"FOCUS", vessel name or index>:VAccel

Reference APl method None
Additional Arguments None
Return Type The ship vertical acceleration in m/s’ (double)

SHIP:<"FOCUS", vessel name or index>:IndSpd
Reference APl method None Returns the ‘indicated’ airspeed based on atmospheric
conditions and flight regime.
(See SurfaceMFD in Orbiter manual)

Additional Arguments None
Return Type double
SHIP:<"FOCUS", vessel name or index>:OrbSpd
Reference APl method None Returns the orbital speed of the vessel
(See SurfaceMFD in Orbiter manual)
Additional Arguments None

Return Type double

SHIP:<"FOCUS", vessel name or index>:GndSpd

Reference APl method None Returns the ground speed of the vessel
(See SurfaceMFD in Orbiter manual)

Additional Arguments None

Return Type double

SHIP:<"FOCUS", vessel name or index>:EquSpd
Reference API method None Returns the ‘equivalent’ airspeed based on atmospheric
conditions and flight regime.
(See SurfaceMFD in Orbiter manual)

Additional Arguments None
Return Type double

SHIP:<"FOCUS", vessel name or index>:HorizonAirspdVector
Reference APl method GetHorizonAirspeedVector
Additional Arguments None
Return Type vector

SHIP:<"FOCUS", vessel name or index>:Attitude

Reference APl method GetAoA, GetSlipAngle, GetPitch, GetBank
Additional Arguments None
Return Type AOA, slip, pitch, bank(double,double,double,double)
SHIP:<"FOCUS", vessel name or index>:AtmConditions
Reference API method GetAtmTemperature,
GetAtmDensity,
GetAtmPressure,
GetDynPressure,
GetMachNumber
Additional Arguments None
Return Type temp,density,pressure,dynamic pressure, mach nbr

(double,double,double,double,double)

Focus Object Messages

The below messages allow operations on the focus vessel via the specific Orbiter methods available for
that purpose. They are a slightly shorter version of the SHIP: messages, but of course will not track a
specific vessel if the focus changes.

FOCUS:Name
Reference API method oapiGetFocusObjectName
Additional Arguments None
Return Type string
FOCUS:Setbylndex
Reference APl method oapiSetFocusObject, oapiGetVesselBylndex
Additional Arguments index (int)
Return Type "OK"
FOCUS:SetByName
Reference APl method oapiSetFocusObject, oapiGetVesselByName
Additional Arguments name (string)

Return Type "OK"

FOCUS:GlobalPos
Reference APl method
Additional Arguments
Return Type

FOCUS:GlobalVel
Reference API method
Additional Arguments
Return Type

FOCUS:RelPos
Reference APl method
Additional Arguments
Return Type

FOCUS:RelVel
Reference APl method
Additional Arguments
Return Type

FOCUS:RelPosVel
Reference API method

Additional Arguments

Return Type

FOCUS:AIt
Reference APl method
Additional Arguments
Return Type

FOCUS:Pitch
Reference APl method
Additional Arguments
Return Type

FOCUS:Bank
Reference APl method
Additional Arguments
Return Type
FOCUS:Heading
Reference APl method
Additional Arguments
Return Type

oapiGetFocusGlobalPos
None
vector

oapiGetFocusVesselVel
None
vector

oapiGetFocusRelativePos
reference object id (hame or object index)
vector
Reference Frame (int) Optional
0=Global (default)
1=Vessel Local (see Global2Local)
2=Vessel Horizon (see HorizonRot)

oapiGetFocusRelativeVel
reference object id (hame or object index)
vector
Reference Frame (int) Optional
0=Global (default)
1=Vessel Local (see Global2Local)
2=Vessel Horizon (see HorizonRot)

oapiGetFocusRelativePos
oapiGetFocusRelativeVel
reference object id (hame or object index)
Reference Frame (int) Optional
0=Global (default)
1=Vessel Local (see Global2Local)
2=Vessel Horizon (see HorizonRot)
vector,vector

oapiGetFocusAltitude
None
double

oapiGetFocusPitch
None
double

oapiGetFocusBank
None
double

oapiGetFocusHeading
None
double

FOCUS:EquPos
Reference API method
Additional Arguments
Return Type

FOCUS:Airspd
Reference APl method
Additional Arguments
Return Type

FOCUS:AirspdVector
Reference API method
Additional Arguments
Return Type

FOCUS:ShipAirspdVector
Reference APl method
Additional Arguments
Return Type

FOCUS:AtmDensity
Reference APl method
Additional Arguments
Return Type

FOCUS:EngineStatus
Reference APl method
Additional Arguments
Return Type

FOCUS:AttitudeMode
Reference API method
Additional Arguments
Return Type

FOCUS:ToggleAttitudeMode
Reference APl method
Additional Arguments
Return Type

FOCUS:SetAttitudeMode
Reference APl method
Additional Arguments
Return Type

oapiGetFocusEquPos
None
vector

oapiGetFocusAirspeed
None
double

oapiGetFocusAirspeedVector
None
double

oapiGetFocusShipAirspeedVector
None
double

oapiGetFocusAtmPressureDensity
None
pressure, density (double,double)

oapiGetFocusEngineStatus
None
mainLevel, hoverLevel, attMode (double,double,int)

oapiGetFocusAttitudeMode
None
int

oapiToggleFocusAttitudeMode
None
int

oapiSetFocusAttitudeMode
None
"OK"

XRVesselCtrl Interface Specific Messages

These commands are for accessing extended commands available through the XRVesselCtrl interface
created by Doug Beachy. This is a public interface that was created initially for his XR- series vessels, but
it may be implemented by any vessel addon developer. These commands take a vessel identifier (name
or index) before the command name in the same manner as SHIP messages.

XCTL:<"FOCUS", vessel name or index>:XRVersion

Reference APl method GetCtrlApiVersion

Additional Arguments None

Return Type double
XCTL:<"FOCUS", vessel name or index>:SetEngine

Reference APl method SetEngineState

Additional Arguments engineld (int)

throttle level (double)

pitch gimbal position (double)

yaw gimbal position (double)

balance position (double)

pitch centering mode engaged (bool)
yaw centering mode engaged (bool)
balance centering mode engaged (bool)
auto mode engaged (bool)

divergent mode engaged (bool)

Return Type "OK"
XCTL:<"FOCUS", vessel name or index>:Engine
Reference APl method GetEngineState
Additional Arguments engineld (int)
Return Type engineld (int),

throttle level (double),

pitch gimbal position (double),

yaw gimbal position (double),
balance position (double),

pitch centering mode engaged (bool),
yaw centering mode engaged (bool),
balance centering mode engaged (bool),
auto mode engaged (bool),

divergent mode engaged (bool),

tsfc (double),

flow rate (double),

thrust (double),

fuel level (double),

max fuel level (double),

diffuser temp (double),

burner temp (double),

exhaust temp (double)

XCTL:<"FOCUS", vessel name or index>:Engines

Reference APl method GetEngineState
Additional Arguments None
Return Type semicolon separated string of engines states by engineld

(see Engine above)

XCTL:<"FOCUS", vessel name or index>:Doors
Reference API method GetDoorState
Additional Arguments None
Return Type comma separated string of (int) door states by doorld

XCTL:<"FOCUS", vessel name or index>:DoorsPos

Reference API method GetDoorState
Additional Arguments None
Return Type semicolon separated string of (comma separated door State (int)

and Position (double)) by doorld

XCTL:<"FOCUS", vessel name or index>:SetDoor

Reference APl method SetDoorState
Additional Arguments doorld (int)
doorState (int)

Return Type "OK"
XCTL:<"FOCUS", vessel name or index>:KillAPilots

Reference APl method KillAoutpilots

Additional Arguments None

Return Type "OK"
XCTL:<"FOCUS", vessel name or index>:StdAPs

Reference APl method GetStandardAP

Additional Arguments None

Return Type positionalString of standard autopilots (Navmodes) by id

XCTL:<"FOCUS", vessel name or index>:SetStdAP

Reference APl method SetStandardAP

Additional Arguments autopilotld/navmode (int)
engaged (bool)

Return Type bool

XCTL:<"FOCUS", vessel name or index>:AttHIdAP

Reference APl method GetAttitudeHoldAP

Additional Arguments None

Return Type engaged (bool),
mode (int),

targetPitch (double),
targetBank (double)

XCTL:<"FOCUS", vessel name or index>:SetAttHIdAP

Reference APl method SetAttitudeHoldAP
Additional Arguments engaged (bool),
mode (int),

targetPitch (double),
targetBank (double)

Return Type int
XCTL:<"FOCUS", vessel name or index>:DscntHIdAP

Reference API method GetDescentHoldAP

Additional Arguments None

Return Type engaged (bool),

targetVerticalSpeed (double),
autoland (bool)

XCTL:<"FOCUS", vessel name or index>:SetDscntHIdAP
Reference APl method oapiGetVesselCount
Additional Arguments engaged (bool),
targetVerticalSpeed (double),
autoland (bool)

Return Type int
XCTL:<"FOCUS", vessel name or index>:AirspdAP

Reference APl method GetAirspeedHoldAP

Additional Arguments None

Return Type engaged (bool),

targetAirspeed (double),

XCTL:<"FOCUS", vessel name or index>:SetAirspdAP

Reference APl method SetAirspeedHoldAP
Additional Arguments engaged (bool),
targetAirspeed (double),
Return Type int
XCTL:<"FOCUS", vessel name or index>:SysStatus
Reference APl method GetXRSystemStatus
Additional Arguments None
Return Type csv string of XRSystemStatus values

XCTL:<"FOCUS", vessel name or index>:MWS

Reference API method GetXRSystemStatus
Additional Arguments None
Return Type positional string of bools by XRSystemStatus value.

"1" (true) indicates a status value < 1.0 or not "offline".

XCTL:<"FOCUS", vessel name or index>:ResetMWS

Reference APl method ResetMWS
Additional Arguments None
Return Type int
XCTL:<"FOCUS", vessel name or index>:ExtLights
Reference APl method GetExteriorLight
Additional Arguments None
Return Type comma separated bools by lightld

XCTL:<"FOCUS", vessel name or index>:SetExtLight

Reference API method SetExteriorLight

Additional Arguments lightld (int)
on (bool)

Return Type bool

XCTL:<"FOCUS", vessel name or index>:HUDModes

Reference APl method oapiGetHUDMode,
GetSecondaryHUDMode,
GetTertiaryHUDMode

Additional Arguments None

Return Type priMode, secMode, terMode (int,int,int)

Note: priMode will be empty if vessel does not have focus.

XCTL:<"FOCUS", vessel name or index>:SetHUDMode

Reference APl method oapiSetHUDMode,
SetSecondaryHUDMode,
SetTertiaryHUDMode
Additional Arguments HUDId (int) pri=1, sec=2, tert=3
mode (int)
Return Type bool
XCTL:<"FOCUS", vessel name or index>:CoG
Reference APl method GetCenterOfGravity
Additional Arguments None
Return Type double
XCTL:<"FOCUS", vessel name or index>:ChgCoG
Reference APl method ShiftCenterOfGravity
Additional Arguments meters to shift (double)
Return Type bool
XCTL:<"FOCUS", vessel name or index>:RCSDockingMode
Reference APl method IsRCSDockingMode
Additional Arguments None
Return Type bool
XCTL:<"FOCUS", vessel name or index>:SetRCSDockingMode
Reference API method SetRCSDockingMode
Additional Arguments bool
Return Type bool
XCTL:<"FOCUS", vessel name or index>:ElevEVA
Reference APl method IsElevatorEVAPortActive
Additional Arguments None
Return Type bool
XCTL:<"FOCUS", vessel name or index>:SetRCSDockingMode
Reference APl method SetElevatorEVAPortActive
Additional Arguments bool
Return Type bool
XCTL:<"FOCUS", vessel name or index>:StatusMsgs
Reference APl method GetStatusScreenText
Additional Arguments nbr of lines requested (int) OPTIONAL

if not specified, all available messages (up to 64)
are returned.
Return Type Semicolon separated list of status messages from Tertiary HUD

Position and Navigation Messages

These messages return information about a vessels position and velocity. This information can be
absolute or relative to other vessels, planetary bodies, or even navaids, Different reference frames may
also be requested. Reference API is OrbiterAPI.

NAV:<"FOCUS", vessel name or index>:
Reference APl method
Additional Arguments
Return Type

NAV:<"FOCUS", vessel name or index>:
Reference APl method
Additional Arguments

Return Type

NAV:<"FOCUS", vessel name or index>:
Reference APl method
Additional Arguments
Return Type

NAV:<"FOCUS", vessel name or index>:
Reference API method
Additional Arguments
Return Type

NAV:<"FOCUS", vessel name or index>:
Reference APl method
Additional Arguments
Return Type

NAV:<"FOCUS", vessel name or index>:
Reference API method
Additional Arguments
Return Type

NAV:<"FOCUS", vessel name or index>:
Reference APl method
Additional Arguments
Return Type

NAV:<"FOCUS", vessel name or index>:
Reference APl method
Additional Arguments
Return Type

Elements1
GetElements(1)

None

ELEMENTS struct as csv

Elements2

GetElements(2)

reference body name (optional)
mjd (double) (optional)

Note: Accepts “now” to use current simMJD

frame (int) (optional)

ELEMENTS then ORBITPARAM structs as csv,

EquPos

GetEquPos

None

long (double), lat (double), rad (double)

GravRef
GetGravityRef
None

String

GlobalPos
GetGlobalPos
None

vector

GlobalVel
GetGlobalVel
None

vector

RelPos
oapiGetFocusRelativePos
reference object id (hame or object index)
vector
Reference Frame (int) Optional
0=Global (default)
1=Vessel Local (see Global2Local)
2=Vessel Horizon (see HorizonRot)

RelVel
oapiGetFocusRelativeVel
reference object id (hame or object index)
vector
Reference Frame (int) Optional
0=Global (default)
1=Vessel Local (see Global2Local)
2=Vessel Horizon (see HorizonRot)

NAV:<"FOCUS", vessel name or index>:RelPosVel

Reference APl method oapiGetFocusRelativePos
oapiGetFocusRelativeVel
Additional Arguments reference object id (hame or object index)

Reference Frame (int) Optional
0=Global (default)
1=Vessel Local (see Global2Local)
2=Vessel Horizon (see HorizonRot)
Return Type vector,vector

NAV:<"FOCUS", vessel name or index>:Navaids
Reference API method None. Returns a list of nav transmitters
Additional Arguments Type of transmitter (int). Optional. Returns all types by default.
Limit (int). Optional. Number of navaids to return. Default is 100.
Sort by name (bool). Optional. Default is sort by distance.
Return Type Semicolon delimited list of csv navaid info:
Type (int), Description (string),
Channel (int), InRange (bool)

NAV:<"FOCUS", vessel name or index>:NavaidRelPos
Reference APl method None. Returns information about navaid position, distance and
bearing if in range. Options include different reference frames
including vessel, horizon relative
Additional Arguments Receiver number
Reference Frame (int) Optional
0=Global (default)
1=Vessel Local (see Global2Local)
2=Vessel Horizon (see HorizonRot)
Return Type Type (int), Description (string), Channel (int), InRange (bool),
Relative Position (Vector)

NAV:<"FOCUS", vessel name or index>:NavaidRelVel

Reference API method None. Returns velocity relative to navaid, in different reference
frames, including vessel and orizon relative.

Additional Arguments Receiver number

Return Type Type (int), Description (string), Channel (int), InRange (bool),

Relative Velocity (Vector)

Planetary Body Messages

These messages perform operations for Planetary Bodies (Sun, planets, moons). Their primary use
entails getting information about bases and their navigational resources. These messages normally take
an object identifier (name or index) before the command name. Reference API is OrbiterAPI.

BODY:<name or index>:Period

Reference APl method oapiGetPlanetPeriod
Additional Arguments None
Return Type double

BODY:<object name or index>:0bliquity
Reference APl method oapiGetPlanetObliquity
Additional Arguments None

Return Type double

BODY:<object name or index>:Theta

Reference APl method oapiGetPlanetTheta
Additional Arguments None
Return Type int

BODY:<object name or index>:ObliquityMatrix
Reference API method oapiGetPlanetObliquityMatrix
Additional Arguments None
Return Type MATRIX3

BODY:<object name or index>:CurrRotation
Reference APl method oapiGetVPlanetCurrentRotation
Additional Arguments None
Return Type double

BODY:<object name or index>:HasAtm

Reference APl method oapiPlanetHasAtmosphere
Additional Arguments None
Return Type bool
BODY:<object name or index>:AtmConsts
Reference API method oapiGetPlanetAtmConstants
Additional Arguments None
Return Type ATMCONST as csv
BODY:<object name or index>:AtmParams
Reference APl method oapiGetPlanetAtmParams
Additional Arguments radius (double)
Return Type ATMPARAM as csv
BODY:<object name or index>:JCoeffCount
Reference API method oapiGetPlanetJCoeffCount
Additional Arguments None
Return Type int
BODY:<object name or index>:JCoeff
Reference API method oapiGetPlanetJCoeff
Additional Arguments coeff index (int)
Return Type double
BODY:<object name or index>:JCoeffs
Reference APl method oapiGetPlanetJCoeffs
Additional Arguments None
Return Type csv of all JCoefficients by index

BODY:<object name or index>:BaseCount

Reference APl method oapiGetBaseCount
Additional Arguments None
Return Type int

BODY:<object name or index>:BaseName
Reference APl method oapiGetBaseName
Additional Arguments baseld (name or base index)

Return Type string

BODY:<object name or index>:BaseEquPos

Reference APl method oapiGetBaseEquPos
Additional Arguments baseld (name or base index)
Return Type longitude, latitude, radius (double,double,double)

BODY:<object name or index>:BasePadCount

Reference APl method oapiGetBasePadCount
Additional Arguments baseld (name or base index)
Return Type int
BODY:<object name or index>:BasePadEquPos
Reference APl method oapiGetBasePadEquPos
Additional Arguments baseld (name or base index)
padindex (int)
Return Type longitude, latitude, radius (double,double,double)

BODY:<object name or index>:BasePadStatus

Reference APl method oapiGetBasePadStatus

Additional Arguments baseld (name or base index)
padindex (int)

Return Type int

BODY:<object name or index>:NavData

Reference API method oapiGetNavChannel
oapiGetNavFreq
oapiGetNavPos

Additional Arguments baseld (name or base index)

padindex (int)
vessel name or id (optional)
Return Type int, double, vector, bool (in range if vessel supplied)

BODY:<object name or index>:NavChannel

Reference API method oapiGetNavChannel
Additional Arguments baseld (name or base index)
padindex (int)
Return Type int
BODY:<object name or index>:NavFreq
Reference APl method oapiGetNavFreq
Additional Arguments baseld (name or base index)
padindex (int)
Return Type double
BODY:<object name or index>:NavPos
Reference API method oapiGetNavPos
Additional Arguments baseld (name or base index)
padindex (int)
Return Type vector

General Object Messages

The following messages are for generic object information/handling. These commands normally take an
object identifier (name or index) before the command name. Reference APl is OrbiterAPI.

OBJ:Count
Reference APl method
Additional Arguments
Return Type

OBJ:<object index>:Name
Reference APl method
Additional Arguments
Return Type

OBJ:<object name or index>:Type
Reference API method
Additional Arguments
Return Type

OBJ:<object name or index>:IsVessel
Reference API method
Additional Arguments
Return Type

OBJ:<object name or index>:Size
Reference APl method
Additional Arguments
Return Type

OBJ:<object name or index>:Mass
Reference APl method
Additional Arguments
Return Type

OBJ:<object name or index>:GlobalPos

Reference APl method
Additional Arguments
Return Type

OBJ:<object name or index>:GlobalVel
Reference APl method
Additional Arguments
Return Type

OBJ:<object name or index>:RelPos
Reference API method
Additional Arguments
Return Type

OBJ:<object name or index>:RelVel
Reference APl method
Additional Arguments
Return Type

OBJ:<object name or index>:ByType
Reference APl method
Additional Arguments
Return Type

oapiGetObjectCount
None
int

oapiGetObjectName
None
string

oapiGetObjectType
None
int

oapilsVessel
None
bool

oapiGetSize
None
double

oapiGetMass
None
double

oapiGetGlobalPos
None
vector

oapiGetGlobalVel
None
vector

oapiGetRelativePos
reference object id (hame or object index)
vector

oapiGetRelativeVel
reference object id (name or object index)
vector

none
Object type (int)
comma separated objects of the specified type

OBJ:<object name or index>:AttachCamera
Reference APl method oapiAttachCamera
Additional Arguments None
Return Type "OK"

Error Codes
This section describes the meaning of any error messages that might be received from OrbConnect.

ERROO Missing Message - Nothing was received.

ERRO1 Incomplete Message - Not enough of the message was received to interpret it.

ERRO02 Message Not Understood - The message could not be determined or a non-specific error
occurred while parsing the message. Check your spelling and formatting.

ERRO03 Missing Argument(s) - At least one argument was missing

ERRO04 Invalid Argument - An argument was of the wrong type (letter instead of number), or value was
out of range.

ERRO5 Not a Vessel - Argument required to be a vessel

ERRO6 XRVesselCtrl Interface not supported - The vessel cannot be accessed through XCTL message.
ERRO7 XRVessel not identified - Could not get access to a XRVesselCtrl interface

ERR08 Command could not be executed by Orbiter.

ERRO09 Bad Pointer - The program could not resolve a specified object. Check spelling, case or index.
ERR10 Invalid Object - The object was not of the required type. If the message was for a body (planet) or
vessel the object found may not of that type. Also check spelling, case or index.

ERR11 Invalid Reference Object - The reference object specified for a relative position or velocity could
not be determined.

ERR12 Planet has no Atmosphere. Returned when the planet has no atmosphere or static pressure is <
0.001kPa. Check first using HASATM and/or getAtmPressue.

ERR13 Vessel has no elements.

ERR14 Vessel has no nav receivers.

ERR15 No information available — The message was understood, but there was no matching data.
ERR98 Buffer Overflow - The argument received was too long to handle. Strings are limited to 250
characters. Numbers are limited to 8 characters.

ERR99 Fatal Error. Something Bad Happened.

Known Issues

Occasionally, Orbiter can ‘lock up’ or become unresponsive. A restart of Orbiter and any OrbConnect
clients may become necessary.

Pausing Orbiter will not halt communication, but because of the way Orbiter works, messages processed
during the pause are not consumed by Orbiter in an orderly fashion and may cause an unexpected state
when unpaused. Workaround: Check that Orbiter is not paused, especially before sending ‘set’ or ‘toggle
commands. If paused, your client could treat it as a ‘telemetry dropout’ with appropriate visual indications
and disabling buttons, etc.

3

Licensing
This project is licensed under the GNU Public License (GPL).

THIS WORK IS PROVIDED "AS IS", "WHERE IS" AND "AS AVAILABLE", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES OR CONDITIONS OR GUARANTEES. YOU, THE USER, ASSUME ALL RISK IN ITS USE,
INCLUDING COPYRIGHT INFRINGEMENT, PATENT INFRINGEMENT, SUITABILITY, ETC. AUTHOR
EXPRESSLY DISCLAIMS ALL EXPRESS, IMPLIED OR STATUTORY WARRANTIES OR CONDITIONS, INCLUDING
WITHOUT LIMITATION, WARRANTIES OR CONDITIONS OF MERCHANTABILITY, MERCHANTABLE QUALITY
OR FITNESS FOR A PARTICULAR PURPOSE, OR ANY WARRANTY OF TITLE OR NON-INFRINGEMENT, OR
THAT THE WORK (OR ANY PORTION THEREOF) IS CORRECT, USEFUL, BUG-FREE OR FREE OF VIRUSES.
YOU MUST PASS THIS DISCLAIMER ON WHENEVER YOU DISTRIBUTE THE WORK OR DERIVATIVE WORKS.

Source Code

The entire project, including source code is available as a separate download from OrbitHanger.
http://www.orbithangar.com/

