
Orbiter Developer Guide: 3D Models (c) 2001-2002 Martin Schweiger 1

ORBITER
Developer’s Guide: 3D Models

©2001-2002 Martin Schweiger
www.medphys.ucl.ac.uk/~martins/orbit/orbit.html

02 December 2002

Contents

1. INTRODUCTION ..2

2. HOW TO CREATE A NEW SPACECRAFT CLASS ...2

3. THE VESSEL CLASS CONFIGURATION FILE..2

3.1. CONFIGURATION FILES FOR INDIVIDUAL VESSELS ...5
3.2. STATION CLASSES.. 5

4. THE MESH FILE...5

4.1. MESH GROUPS ..7
4.2. MATERIAL LIST...8
4.3. TEXTURE LIST ..8
4.4. PERFORMANCE OPTIMISATION ..8
4.5. MESH CONVERTERS ... 9

5. CREATING A SCENARIO ... 9

6. PUBLISHING ADDONS ... 9

6.1. FUNCTION OVER STYLE .. 9
6.2. CREATING AN ADDON PACKAGE ..10
6.3. PUTTING IT ON THE WEB ...10

Orbiter Developer Guide: 3D Models (c) 2001-2002 Martin Schweiger 2

1. Introdu ction
This document contains guidelines on developing new 3D models (spacecraft, orbital stations,
etc.) for ORBITER. It is aimed at addon developers, or anyone who wants to extend
ORBITER’s functionality.

2. How to create a new spacecraft class
To add a new spacecraft class to ORBITER, the following steps must be performed:

• Define the physical parameters of the new spacecraft class in a configuration file in the
Config subdirectory.

• Create a surface mesh which defines the ship’s visual appearance, in the Meshes
subdirectory.

• Optionally, add any textures used by the vessel, to the Textures subdirectory.
• Add a scenario which includes one or more spacecraft of the new class in the

Scenarios subdirectory.

The above steps allow you to create a basic ship with generic parameters. To fully customize
your new spacecraft one more step is required:

• Add a DLL module for the new vessel class which customises its behaviour (moving
parts, custom cockpit panels, custom flight model, etc.) in the Modules subdirectory.

Refer to the OrbiterAPI document for information on writing vessel modules for Orbiter. A
number of sample modules with source code is contained in the Orbitersdk\samples folder.

3. The vessel class c onfiguration file
Configuration files are ASCII text files which can be edited with any text editor capable of
writing plain text files (e.g notepad). All vessel configuration files are by default located in
ORBITER’s Config subdirectory (unless the ConfigDir entry in Orbiter.cfg points to a
different directory).

Below is a description of the file format for vessel classes.
Item Type Description
BaseClass S Parent class. Missing entries are taken from this class.

Allows the construction of class hierarchies.
Module S Name of plugin module for vessel customisation.

(optional). The module must be located in the Modules
folder.

MeshName S Name of the mesh used for visualisation
EnableFocus B true if vessel can receive input focus
EnableXPDR B true if vessel carries a transponder
XPDR I TRANSPONDER FREQUENCY STEP (IN UNITS OF 0.05

KHZ FROM 108.0 KHZ). ONLY USED IF
ENABLEXPDR=TRUE. THIS DEFAULT FREQUENCY
MAY BE OVERRIDDEN BY A VESSEL’S SCENARIO
SCRIPT.

Mass F Vessel mass (empty) [kg]
FuelMass F Max. fuel mass [kg]
Isp F Fuel-specific impulse [m/s]: Amount of thrust [N] obtained

by burning 1kg of fuel per second.
Size F (Mean) vessel radius [m]
MaxMainThrust F Main thruster rating [N]
MaxRetroTrust F Retro thruster rating [N]

Orbiter Developer Guide: 3D Models (c) 2001-2002 Martin Schweiger 3

MaxHoverThrust F Hover thruster rating [N]
MaxAttitudeRotAccel F Attitude thruster rating for rotation [rad/s2]
TouchdownPoints V V V 3 surface contact points in local vessel coordinates. For

aircraft-like configurations these are: nose wheel, left main
wheel, right main wheel. Other spacecraft types may
interpret the points differently.

CameraOffset V Camera position inside the vessel for cockpit view
CW V Airflow resistance coefficients in the three axis directions

(transversal, vertical, longitudinal)
CrossSections V Cross sections in axis directions (z=longitudinal) [m2]
RotResistance V Resistance against rotation around axes in atmosphere,

where angular deceleration due to atmospheric friction is
a(ω)

x,y,z = -v(ω)
x,y,z ρ rx,y,z with angular velocity v(ω) and

atmospheric density ρ.
DockRef V Docking reference point
DockDir V Docking approach direction
DockRot V Longitudinal alignment direction (normal to DockDir)
PropellantResourcei F [F] Specs for propellant resource i (i=1...). First value: max.

fuel capacity [kg]. Second value: fuel efficiency factor (>0,
default: 1)

MEngineRefi V Reference position for main thruster i (i=1…)
REngineRefi V Reference position for retro thruster i (i=1…)
HEngineRefi V Reference position for hover thruster i (i=1…)
AttRefdij V Reference position for attitude thruster (for rotation around

axis d (d=X,Y,Z), rotation direction i (i=1,2) and thruster
index j (j=1,2)) for a total of 12 attitude thrusters

LongAttRefij V Reference position for attitude thrusters (for linear
forward/backward translation), direction i (i=1,2) and
thruster index j (j=1,2)) for a total of 4 attitude thrusters

Inertia V Principal moments of inertia, mass-normalised (see below)
[m2]

WingAspect F The wing aspect ratio (wingspan2 / wing area). Used for
atmospheric drag calculation.

WingEffectiveness F A wing form factor: ~3.1 for elliptic wings, ~2.8 for tapered
wings, ~2.5 for rectangular wings.

<Docklist> List List of positions and approach directions for docking ports
(see below).

(S=String, B=Bool, F=Float, V=Vector)

Obsolete options (these are retained for backward compatibility and may be dropped in future
versions):
Item Type Description
FuelMass F Equivalent to PropellantResource1
COG_OverGround F Replaced by TouchdownPoints

 (S=String, B=Bool, F=Float, V=Vector)

Notes:
• A vessel class can be derived from a different vessel class, by defining the BaseClass

entry. All properties not defined in the new class configuration file are taken from the base
class.

• The mesh name should not contain the file extension (.msh) and should not contain a
directory path.

• The Docklist allows to define multiple docking ports per vessel (e.g. for space stations). It
should not be mixed with the DockRef/DockDir/DockRot options. The list format is as
follows:

Orbiter Developer Guide: 3D Models (c) 2001-2002 Martin Schweiger 4

BEGIN_DOCKLIST
<Dock-spec 0>
<Dock-spec 1>
. . .
<Dock-spec n-1>

END_DOCKLIST

where <Dock-spec i>:

<xi> <yi> <zi> <dxi> <dyi> <dzi> <rxi> <ryi> <rzi> [<ids-step>]

<xi> <yi> <zi> is the reference position of the docking port in the station’s local
coordinates. <dxi> <dyi> <dzi> is the direction in which a ship approaches the docking
port in the station’s local reference frame.

<rxi> <ryi> <rzi> is a reference direction perpendicular to the approach direction used for
aligning an approaching ship’s rotation along its longitudinal axis.

<ids-step> is an optional parameter which allows to define the frequency for an IDS
(Instrument Docking System) transmitter for the dock. The value is an integer from which
the frequency is calculated by f = fmin + <ids-step> * 0.05 kHz, where fmin = 108.0 kHz.
The IDS setting can be overridden by individual vessels via the IDS option in the
scenario file. Defining the IDS in the config file is usually only useful for objects with a
single instance, for example space stations.

• For post 011222 versions the old legacy flight model is no longer supported. The
NewFlightModel and LiftFactor options are ignored.

• The LiftCoeff entry is no longer supported. AOA-dependent lift coefficients are now
directly implemented in software via vessel modules.

• Inertia tensor J: Relates angular momentum and angular velocity: �L ⋅= J

∫

+
+

+
=

Vol

dr

ryrxryrzrxrz

rzryrzrxrxry

rzrxryrxrzry

rm
M

J
22

22

22

)()()()()()(

)()()()()()(

)()()()()()(

)(
1

where M is the total vessel mass, and the integration is over the vessel volume. Note that
this definition normalises by M, so the unit of J is [m2]. The principal moments of inertia
(PMI) Jx, Jy, Jz required by the configuration file are the diagonal elements of J in a
reference frame in which J is diagonal:

=

z

y

x

J

J

J

J

00

00

00
ˆ

The SDK contains a simple tool to calculate the inertia tensor for a given mesh:
Orbitersdk\utils\shipedit.exe. The tool requires “well behaved” meshes
(composed of closed compact surfaces) and assumes a homogeneous density distribution
inside the mesh. The latter is not very realistic, so the results must be interpreted carefully.
They should still serve as a good starting point for experimentation.

• LiftCoeff : List entries have the format AOA:CL defining a piecewise linear CL(AOA)
distribution. Up to 50 entries are supported, but in practice less than 10 entries should be
sufficient. AOA values must be in increasing order, and the full range from –180° to 180°
must be spanned, i.e. the first AOA entry must be –180, the last must be 180.

Orbiter Developer Guide: 3D Models (c) 2001-2002 Martin Schweiger 5

3.1. Configuration files for ind ividual vesse ls
A vessel only requires an individual definition file if it is not an instance of a vessel class. In
this case the format for the vessel’s .cfg file is identical to the vessel class .cfg files described
above.

3.2. Station classes
Dedicated space station classes were used in previous versions of Orbiter, but have become
obsolete with the introduction of vessel-to-vessel docking capabilities.
Station classes are still supported in the current release for backward compatibility, but may
be discontinued in a future version. Stations should now be designed as vessels, to take
advantage of the new features supported by vessel-vessel docking.

Configuration files for classes of orbital stations. The class definition contains parameters
(such as mass, size and mesh) for a type of station, but not the parameters (such as position)
for individual stations. For an example see Config\ISS.cfg. Individual stations are defined in
the scenario file (see section Error! Reference source not found .).

Item Type Description
BaseClass String Parent class. Missing entries are taken from this class. Allows the

construction of class hierarchies.
MeshName String Name of the mesh used for visualisation
Mass Float Station mass [kg]
Size Float Mean station radius [m]
ZrotFreq Float For spinning stations: rotation frequency [Hz]. Default: 0 (i.e. no

rotation). Rotation axis is always the station’s local z-axis. This is
a nominal value and can be overridden by individual stations.

<Docklist> List List of positions and approach directions for docking ports (see
below).

This is the syntax for <Docklist>:
BEGIN_DOCKLIST

<Dock-spec 0>
<Dock-spec 1>
. . .
<Dock-spec n-1>

END_DOCKLIST

where <Dock-spec i>:
<xi> <yi> <zi> <dxi> <dyi> <dzi> <rxi> <ryi> <rzi>
<xi> <yi> <zi> is the reference position of the docking port in the station’s local coordinates.
<dxi> <dyi> <dzi> is the direction in which a ship approaches the docking port in the station’s
local reference frame.
<rxi> <ryi> <rzi> is a reference direction perpendicular to the approach direction used for
aligning an approaching ship’s rotation along its longitudinal axis.

4. The mesh file
ORBITER uses a proprietary mesh file format. Mesh files are ASCII text files. (A binary format
may be introduced in the future). Mesh files are located in the Meshes subdirectory unless
the MeshDir entry in Orbiter.cfg points to a different directory.

Orbiter Developer Guide: 3D Models (c) 2001-2002 Martin Schweiger 6

ORBITER meshes are defined in a left-handed coordinate system. Vessel meshes should be
oriented such that the vessel’s nose (or more precisely, its main thrust direction) points in the
positive z-direction, the positive x-axis points right, and the positive y-axis points up.

The units for vertex coordinates are meters [m].

Mesh file format:
MESHX1 header
GROUPS <n> <n>: number of groups
<group 1> group spec 1
<group 2> group spec 2
…
<group n> group spec n
MATERIALS <m> <m>: number of materials
<mtrl-name 1> material name 1
<mtrl-name 2> material name 2
…
<mtrl-name m> material name m
<material 1> material spec 1
<material 2> material spec 2
…
<material m> material spec m
TEXTURES <t> <t>: number of textures
<tex-name 1> texture name 1
<tex-name 2> texture name 2
…
<tex-name t> texture name t

Group specs:
[MATERIAL <i>] material index; optional
[TEXTURE <j>] texture index; optional
[TEXWRAP <wrap>] texture wrap mode: <wrap> = U or V or UV; optional
[NONORMAL] “no normals” flag; see below; optional
GEOM <nv> <nt> <nv>: vertex count, <nt>: triangle count
<vtx 0> vertex spec 0
<vtx 1> vertex spec 1
…
<vtx nv-1> vertex spec nv-1
<tri 0> triangle spec 0
<tri 1> triangle spec 1
…
<tri nt-1> triangle spec nt-1

Vertex specs:
<x> <y> <z> [<nx> <ny> <nz> [<tu> <tv>]]

<x> <y> <z>: vertex position
<nx> <ny> <nz>: vertex normal (optional)
<tu> <tv>: texture coordinates (optional)

Missing normals are automatically calculated as the mean of the normals of adjacent faces.
Texture coordinates are only required if the group uses a texture.

Triangle specs:
<i> <j> <k> vertex indices (zero-based). Left-hand face is rendered.

Material specs:
MATERIAL <mtrl-name> material header
<dr> <dg> <db> <da> Diffuse colour (RGBA)
<ar> <ag> <ab> <aa> Ambient colour (RGBA)

Orbiter Developer Guide: 3D Models (c) 2001-2002 Martin Schweiger 7

<sr> <sg> <sb> <sa> <pow> Specular colour (RGBA) and specular power (float)
<er> <eg> <eb> <ea> Emissive colour (RGBA)

4.1. Mesh group s
Meshes are divided into groups. Each group can define its own material and texture
specification. For example, if you want different parts of the object to have different material
properties, you need to split the mesh into groups accordingly.

Each group contains
• An optional material index. Indices �������	� ��
��������������� ���������������������! ���������	�"� �	�#� � �#��$�%'&!(��!)�*

means “default material” (which is white, diffuse and opaque). If the group doesn’t specify
a material index it inherits the previous group’s material. The first group in the mesh must
specify a material index, otherwise the result is undefined.

• An optional texture index. Indices �+�,�#�+� ��
���-�.�!)���/��0�����0�	�1�������������! �2�.�!)���/��0��� � ��"$�%3&�(���)�*
means “no texture”. If the group doesn’t specify a texture index it inherits the previous
group’s texture. The first group in the mesh must specify a texture index, otherwise the
result is undefined.

• An optional TEXWRAP flag. This defines how textures wrap around the object. “U”
causes textures to wrap in the u-coordinate direction in texel space, “V” wraps in v-
coordinate direction, and “UV” wraps in both directions. Default is no wrapping.

• An optional NONORMAL flag. This indicates that vertex definitions in this group don’t
contain normal definitions, and the first two numbers after the vertex coordinate (x,y,z)
triplet is interpreted as texture coordinate (u,v) pair.

• A GEOM specification, defining the number of vertices and triangles in the group.
• A vertex list (see below)
• A triangle list (see below)

Vertex lists
Each group contains a vertex list, defining the positions, and optionally normal directions and
texture coordinates of the vertices in the group.
Each line in the list defines a vertex, and contains up to 8 floating point numbers (separated
by spaces)
• The first 3 numbers contain the cartesian vertex coordinates (x,y,z) in the object local

coordinate space. Units are meters [m]
• The next 3 numbers (if present) contain the vertex normal direction (nx,ny,nz) (unless the

group has set the NONORMAL flag). The normal direction is the direction perpendicular
to the mesh surface at the vertex position. Orbiter needs this to generate correct lighting
effects. If no normals are specified (or if the NONORMAL flag is set) Orbiter guesses the
normal direction as the average of the normals of the surrounding triangles. This works
well for smooth surfaces, but should be avoided for surfaces which contain sharp edges.
Normal directions should be normalised, i.e. sqrt(nx2+ny2+nz2) = 1.

• The next 2 numbers (if present) contain the vertex texture coordinates (u,v). Texture
coordinates are only required if the group uses a texture (i.e. has texture index �+�45$
Texture coordinates define how a rectangular 2D texture is mapped onto the object
surface. Texture coordinate (0,0) refers to the lower left corner of the texture, (1,1) refers
to the upper right corner. Coordinates > 1 are allowed and cause textures to repeat
periodically.

Notes:
• Vertices located at sharp edges or corners require multiple entries in the vertex list,

because they have multiple normal directions (in other words, the surfaces are non-
differentiable at edges). In that case you should always define the normals in the mesh
file, and not leave it to Orbiter to generate them for you. Otherwise the edges will appear
unrealistically smooth.

• Likewise, vertices with multiple vertex coordinates (e.g. at the edge between two texture
maps) need multiple entries in the vertex list.

Orbiter Developer Guide: 3D Models (c) 2001-2002 Martin Schweiger 8

Triangle lists
The group’s triangle list follows immediately below the vertex list. It defines the triangles which
compose the group’s mesh surface.
• Each line in the list defines a triangle and consists of 3 integer numbers (i,j,k). Each of the

numbers specifies a vertex from the group’s vertex list (starting from 0)
• Only the “clockwise” (CW) side of each triangle is rendered: the side which, if you look at

it, has the vertices arranged in a clockwise order. The opposite “counterclockwise” (CCW)
side is invisible.

• If you need to render both sides of a triangle (e.g. for a thin plate) you need to define two
triangles.

• If you want to flip the rendered side of a triangle (e.g. to correct for “inside out” artefacts)
you need to rearrange the triangle indices in the following way:
(i,j,k) -> (i,k,j)

4.2. Material list
Materials allow to specify the homogeneous lighting properties of a mesh group. The material
lists consists of
• A header line, MATERIALS <m>, defining the number <m> of materials.
• A list of material names.
• A list of material properties.

Each material property specification consists of 4 RGBA quadruplets, where R, G and B
define the red, green and blue components, and A is the opacity. RGB values should be
between 0 and 1, but can be > 1 for special effects. A must be between 0 (fully transparent)
and 1 (fully opaque).
• The first line specifies the diffuse material colour. This is the colour that is diffusely (in all

directions) reflected from an illuminated surface.
• The second line specifies the ambient material colour. This is the colour of an unlit

surface.
• The third line specifies the specular colour. This is the colour of light reflected by a

polished surface into a narrow beam. The power entry specifies the width of the cone into
which specular light is reflected. Higher values mean a narrower cone, i.e. sharper
reflections. Typical values are around 10. If omitted, the default value for power is 0.

• The fourth line specifies the emissive colour. This is the colour of light emitted by a
glowing surface.

4.3. Texture list
The texture list contains the names of texture files used by the various mesh groups. Texture
names should contain file extensions “.dds” but no directory paths. Textures must be located
in Orbiter’s Textures subdirectory.

Notes:
• Textures must be in DDS format (“Direct Draw Surface”). A DirectX SDK tool, dxtex,

which is included in the Orbiter SDK package, allows to convert BMP bitmaps into DDS.
• You should store the textures either in DXT1 compressed format (opaque textures or

textures with binary transparency), or in DXT3 compressed format (for textures with
continuous transparency).

• For maximum compatibility, avoid textures larger than 256x256 pixels, because of
limitations of some older graphics cards.

4.4. Performance optimisation
To achieve the best results with your new mesh, consider the following points:
• Texture groups which use the same texture should be stored in sequence in the mesh.

Unnecessary switching between textures can degrade performance if textures must be
swapped in and out of video memory.

Orbiter Developer Guide: 3D Models (c) 2001-2002 Martin Schweiger 9

• Within a sequence of groups using the same textures, groups which use the same
material should be stored in sequence. Again, this avoids the need of switching render
parameters.

• Avoid large numbers of very small groups. If small groups use the same parameters
(material, texture, etc.) they should be merged into a single group.

• Groups which use transparent materials or textures should be sorted to the end of the
mesh. If transparent groups overlap, the innermost ones should be listed before the outer
ones.
In order to render transparency correctly, DirectX requires the scene seen through the
transparent object to be fully built before the transparent object itself is rendered. Any
objects rendered after the transparent object will be masked by it.

• Objects with transparency and specular reflection are more expensive to render than
opaque and diffusive objects, so use these features sparingly.

• And most importantly, keep the vertex count low! (See section 6.1)

4.5. Mesh converters
If you want to convert an existing model into an Orbiter mesh, check the Orbiter web forum for
mesh converters created by other users. There is currently a converter which converts from
Truespace asc format, which many 3D editors can export. If you have written your own mesh
editor or converter, publish it!

5. Creating a scenario
To actually fly your new creation in Orbiter, you need to create a scenario which contains one
(or more) ships or stations of the new class. The easiest way to do this is by editing one of the
existing scenario files in the Scenarios subdirectories. For example, to try a new vessel class,
you could:

• Open the “Habana spaceport.scn” file in notepad
• Replace the line

GL-01:DeltaGlider
with
GL-01:<new class>
where <new class> is the name of your new vessel class.

• Save the scenario under a new name.

When you launch this modified scenario, you will find yourself in the cockpit of your new ship,
parked on a launchpad of Habana International Spaceport.

6. Publishing addon s
Now that you have created and tested your new ship or station, you want to share it with the
rest of the Orbiter community. Here is how to do it:

6.1. Function over style
It may be tempting to create an extremely detailed 3D model with tens of thousands of mesh
vertices, and megabytes of textures – but don’t. Remember that many people may have
lower-powered computers than you, and that the sexiest spacecraft is worthless if it degrades
framerate to un-playability. Also, your model may compete with tens or hundreds of other
objects for processor cycles.
Therefore, aim for low polygon count. Creating good-looking objects with low-resolution
meshes is the high art of 3D modelling for real-time applications. If you are importing an
existing model into Orbiter, see whether your 3D editor has an option to reduce the polygon
count (sometimes called optimisation or decimation) before converting to the Orbiter mesh
format. As a rough guideline, I would suggest to keep the vertex count below 10 000 vertices
for each spacecraft.

Orbiter Developer Guide: 3D Models (c) 2001-2002 Martin Schweiger 10

Likewise, try to limit the textures used by your object. Graphics cards have limited texture
memory, and your ship will share this space with lots of other objects. Therefore I suggest
• a small number of texture maps, at dimension 256x256 or smaller.
• The use of generic texture maps (e.g. textures for solar panels etc.) which can be re-used

by other models, helps reduce texture memory requirements. Have a look at the Orbiter
Textures directory, to see whether an existing standard Orbiter texture is usable for your
model.

• Remember that some older graphics cards do not support textures larger than 256x256.
Avoid anything larger if you want to ensure compatibility.

These limits are mere suggestions for published addons to ensure reasonable performance
on low end computers – you are free to ignore them. You should however mention the
complexity of your model (i.e. the vertex count) and possible incompatibilities in the readme
file accompanying the addon, to help users decide if they can use your addon.

Of course there are no limitations for models created for your private use.

6.2. Creating an addon package
Create a zip file containing all the components of your new model (readme file, configuration
file, mesh, textures, scenario). The zip file should contain directory information of the files, so
that everything ends up in the right place when the user unpacks the archive in the Orbiter
home directory.
Do NOT include modified versions of standard Orbiter files (like planet configuration files or
solar system configuration files) which may overwrite existing files. If your package needs to
modify standard files this should be described in the readme file.
Test that the package unzips and runs ok before publishing it (ideally in a fresh Orbiter
installation)

Make sure your package contains a readme file with at least the following information:
• Your name and email
• The Orbiter version for which the package was written
• A description of the package (what kind of ship or station, etc.)
• A list of files in the package
• Installation instructions, including required changes to standard Orbiter configuration files.
• An (approximate) vertex count so that users can estimate the performance impact

6.3. Putt ing it on the web
Put your new package on a web site (with a short description and an optional screen shot)
and tell others about it! If you haven’t got web space, submit it to one of the Orbiter
repositories set up by Orbiter users. The “Related sites” page on the Orbiter home site has a
list of Orbiter addon repositories. One of the most popular Orbiter archives can be found at
AVSIM (www.avsim.com). For widest publicity, you should put a note with link in the Orbiter
addon forum, or email the Orbiter mailing list. Finally, you may want to consider submitting a
screenshot of your addon to be published on the official Orbiter web site. Check the Orbiter
gallery page for a link to submission guidelines.

