
Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 1

ORBITER
Programmers’s Guide

© 2001-2002 Martin Schweiger
www.medphys.ucl.ac.uk/~martins/orbit/orbit.html

02 December 2002

Contents
1 SPACECRAFT DESIGN .. 2

1.1 VESSEL MODULE CALLBACK FUNCTIONS .. 2
1.2 CREATING ENGINES ... 3
1.3 RENDERING RE-ENTRY FLAMES...9
1.4 DEFINING AN ANIMATION SEQUENCE..9
1.5 DESIGNING INSTRUMENT PANELS ..12

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 2

1 Spacecraft design
This section describes how to create a new vessel class for Orbiter by writing a vessel DLL
module. Although it is possible to create simple vessel classes without a custom module, by
writing a vessel configuration file, the full potential of Orbiter’s custom spacecraft design
capabilities can only be realised with a specialised module.

1.1 Vessel modu le callback functions
Orbiter talks to your vessel module via callback functions. Callback functions are invoked as a
result of particular events in the simulation. By implementing callback functions in your
module you can react to such events and make your vessel behave in a specific way. Note
that you do not need to implement all callback functions. Any callback functions which are not
defined in the module are simply skipped by Orbiter. For a list of available callback functions,
see section Vessel callback functions in the Reference Manual.

1.1.1 Vessel creation and d estruction

ovcInit
This function is called whenever a vessel instance of your vessel class is created. It allows
the module to perform all necessary initialisation steps to create the new vessel. A module
should always implement this function, and should normally create an instance of the
VESSEL interface class (see next section) or a derived class and return a pointer to it.

#include "orbitersdk.h"

DLLCLBK VESSEL *ovcInit (OBJHANDLE hvessel, int flightmodel)
{
 return new VESSEL (hvessel, flightmodel);
}

The VESSEL constructor requires two parameters, the vessel handle and flight model level,
which are both passed by ovcInit.
The VESSEL instance is your interface to the vessel, and most other callback functions will
return a pointer to it to provide access.

ovcExit
This function is called before the vessel is destroyed. It should be used for cleanup
operations, including the destruction of the VESSEL instance created in ovcInit. In its simplest
version it would look like this:

DLLCLBK void ovcExit (VESSEL *vessel)
{
 delete vessel;
}

1.1.2 Reading and saving vessel states

ovcLoadStateEx
Whenever a simulation is started, Orbiter loads the current status of all vessels from a
scenario file. The scenario contains all information required to completely define the status of
a vessel at a given time (its position, velocity, thruster levels, fuel levels, etc.) Most modules
will need to save and load specific parameters of their own, which are not recognised by
Orbiter’s generic scenario parser. For this purpose, Orbiter will call the ovcLoadStateEx
callback function to allow the module to process its own scenario data.
If the module does not require any non-standard status parameters, ovcLoadStateEx need
not be defined. Orbiter will then automatically parse its own generic data. For a list of generic
vessel data in a scenario file, see section Scenario files in the Orbiter User Manual.

If the module does implement ovcLoadStateEx, it should define a loop which reads lines from
the scenario by using the oapiReadScenario_nextline function. Any lines not recogised by the

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 3

module should be passed on to Orbiter by using the VESSEL::ParseScenarioLineEx function,
to allow initialisation of generic data.

This is a typical implementation of ovcLoadStateEx:

DLLCLBK void ovcLoadStateEx (VESSEL *vessel, FILEHANDLE scn, void *vs)
{
 char *line;
 int my_value;

 while (oapiReadScenario_nextline (scn, line)) {
 if (!strnicmp (line, “my_option”, 9)) {
 sscanf (line+9, “%d”, &my_value);
 } else if (...) { // more items
 ...
 } else { // anything not recognised is passed on to Orbiter
 vessel->ParseScenarioLineEx (line, vs);
 }
 }
}

The vs parameter passed by ovcLoadStateEx points to a VESSELSTATUSx struct (x ≥ 2).
Currently this VESSELSTATUS2, but this may change in future versions to incorporate
additional vessel properties. You don’t need to worry about a change in the interface provided
you don’t use vs for anything else than passing it on to ParseScenarioLineEx. Even if the
VESSELSTATUS interface changes, your module will still remain valid without re-compilation.

There is an older version of this function available, ovcLoadState (and corresponding
ParseScenarioLine). This uses the original VESSELSTATUS interface (version 1). It can still
be used, but is mainly provided for backward compatibility. This interface doesn’t make use of
the latest vessel capabilities, so should be avoided for new modules.

ovcSaveState
When the simulation is closed, or when the user saves by pressing Ctrl-S, a scenario file is
written which contains the current simulation status, so that the simulation can be resumed
from the current position. Whenever a vessel must save its state in a scenario, Orbiter will call
the ovcSaveState callback function to allow the module to save any module-specific
parameters. The programmer is responsible to match up the ovcSaveState and
ovcLoadStateEx implementations, i.e. to make sure any parameters written by ovcSaveState
can be parsed back in by ovcLoadStateEx.
ovcSaveState is not required if the vessel doesn’t need to save any specific data.
To allow Orbiter to save its generic state data, VESSEL::SaveDefaultState should be called
from within ovcSaveState. For example:

DLLCLBK void ovcSaveState (VESSEL *vessel, FILEHANDLE scn)
{
 vessel->SaveDefaultState (scn); // write all generic data

 oapiWriteScenario_int (scn, “my_option”, my_value);
 ... // more items
}

The oapiWriteScenario_int, oapiWriteScenario_float, oapiWriteScenario_vec, and
oapiWriteScenario_string functions provide a convenient way to write parameters to the
scenario.

1.2 Creating engines
To propel your ship in space, you must equip it with engines. There exist a variety of different
rocket engine types, such as liquid and solid fuel engines, or more futuristic ones such as ion
or photon drives.

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 4

1.2.1 A bit of theory

Thrust force
Despite their very different design, all engines work by the same principle: generating a thrust
force in one direction by expelling particles in the opposite direction at high velocity. A liquid-
fuel engine, for example, consists of a burn chamber in which a mixture of propellant and
oxydiser are ignited, and a nozzle through which the expanding gas is forced at high velocity.
The force Fth generated by the engine is proportional to the propellant mass flow dm/dt and
the velocity v0 of the expelled gas:

0)(vt
dt

dm
Fth

�

�

=

When creating a thruster, you need to specify the maximum force Fth it can generate when it
is driven at full power, and the propellant exit velocity v0. (in Orbiter, v0 is called the fuel-
specific impulse, or Isp). The Isp value determines how much fuel per second is consumed to
obtain a given thrust force. The higher the Isp value, the more fuel-efficient the engine.

-F th F th

Fuel

O 2

Note: In Orbiter, the thrust is specified as a force, and has units of Newton [1N = 1kg m s-2].
In the literature, thrust is often specified in units of kg. To convert such data into Orbiter units,
multiply by 1g = 9.81 m s-2. Isp is specified as a velocity in Orbiter, with units of m s-1. In the
literature it is often given in units of seconds [s]. To convert to Orbiter units, again multiply by
1g.

How long will my fuel last?
The burn time Tb at full thrust Fmax for fuel mass mF is given by

maxF

Ispm
T F

b =

Pressure-dependent thrust eff iciency
Most conventional rocket engines work less efficiently in the presence of ambient atmospheric
pressure, because the ignited gas must be expelled through the nozzle against the outside
pressure of the atmosphere. This leads to a reduction of the thrust force at ambient pressure
p:

pAFpF −= 0)(

where F0 is the vacuum thrust rating and A has units of an area [m2] and can be regarded as
the effective nozzle cross section. If we know the force F1 generated at ambient pressure p1,
then

1

10
101 p

FF
AApFF

−
=⇒−=

and therefore

)1(1)(0
10

10
0

1

10
0 ηpF

pF

FF
pF

p

FF
pFpF −=




 −
−=

−
−=

and likewise
)1()(0 ηpIsppIsp −=

In the literature, the pressure-dependency of engine thrust is often defined by specifying the
Isp value for both vacuum and a given reference pressure (e.g. atmospheric pressure at sea
level). Orbiter uses the same convention to apply pressure-dependency.

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 5

Thrust level
In Orbiter, thrusters can be driven at any level L between 0 (cutout) and 1 (full thrust). The
actual thrust force generated by the engine is thus calculated as

LpFpF ⋅=)()(max

In reality, thrusters can often only be driven at maximum, or within a limited range below
maximum. This is not currently implemented in Orbiter, but may be introduced in a future
version.

Thruster placement and thrust direction
The effect of a thruster depends on its placement on the vessel, and the direction in which the
thrust force is generated. In the most general case, a thruster will produce both a linear
acceleration (due to a force) and an angular acceleration (do to torque).
Torque is generated if the force vector does not pass through the vessel’s centre of gravity
(CG)

F

r C G

The torque is then given by the cross product
rFM

�

��

×=
(remember that Orbiter uses a left-handed coordinate system!) To avoid uncontrollable spin
you should design your ship’s main engines so that their force vector passes through the CG.
Vessel coordinates are always defined so that the CG is at the origin (0,0,0). Therefore, a
thruster located at (0,0,-10) and generating thrust in direction (0,0,1) would not generate
torque.

Attitude thrusters: Rotation
Sometimes generating torque is desired in order to rotate the spacecraft. For controlled
attitude manouevres one then usually wants to change only the angular moment, without also
inducing a linear acceleration. This requires the simultaneous operation of at least 2 thrusters
so that their linear moments cancel.

F

r-r
-F

Attitude thrusters: Translation
In order to provide small linear accelerations in various directions (for example, to line the
ship up with the docking port of a space station), thrusters must be driven single or in groups
so that they don’t generate torque. Sometimes it is possible to re-use the rotational attitude
thrusters for this task, but it is equally possible to add separate linear thrusters.

F

r-r

F

Engine gimbal and thrust vectoring

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 6

Using attitude thrusters in a launch vehicle during the burn phase of the main engines is
usually not practical. Instead, attitude control is performed by tilting the main engines and
thereby generating a torque as described above. In practice this may be done by suspending
the engines in a gimbal system which allows rotation around one or two axes. In Orbiter, this
can be implemented by modifying the thrust direction of the engine.
Another way to change the thrust direction is by inserting deflector plates into the exhaust
stream.

Torque, angu lar momentum and angu lar velocity
The relationship between torque M and angular velocity is given by Euler’s equations for a
rotating rigid body:

yxxyzzz

xzzxyyy

zyyzxxx

JJMJ

JJMJ

JJMJ

ωωω
ωωω
ωωω

)(

)(

)(

−−=

−−=

−−=

�

�

�

where (Jx, Jy, Jz) are the principal moments of the inertia tensor (PMI), (Mx, My, Mz) are the
components of the torque tensor, and (ωx, ωy, ωz) are the angular velocity components around
the x, y, and z-axes. In Orbiter, this system of differential equations is solved by a trapeziod
rule.

1.2.2 Putt ing it all i nto the modu le

Now that you know how thrusters work, it is time to add a few to your new ship. As with other
vessel capabilities, thrusters should usually be designed in the ovcSetClassCaps callback
function, for example like this (assuming that MyVessel is a class derived from VESSEL):

void MyVessel::SetClassCaps (FILEHANDLE cfg)
{
 // vessel caps definitions
}

DLLCLBK void ovcSetClassCaps (VESSEL *vessel, FILEHANDLE cfg)
{
 ((MyVessel*)vessel)->SetClassCaps (cfg);
}

Propellant resources
Thrusters can only be operated if they are connected to propellant resources (e.g. fuel tanks).
To create a propellant resource:

class MyVessel: public VESSEL
{
 ...
 PROPELLANT_HANDLE ph_main;
}

void MyVessel::SetClassCaps (FILEHANDLE cfg)
{
 ...
 const double MAX_MAIN_FUEL = 1e5;
 ph_main = CreatePropellantResource (MAX_MAIN_FUEL);
 ...
}

which creates a fuel tank of capacity 105kg. CreatePropellantResource returns a handle to the
new tank, which is used later to connect thrusters to the tank.
CreatePropellantResource accepts two further optional parameters: the initial fuel mass, and
a fuel efficiency factor eff between 0 and 1. By default, the tank is full, with fuel efficiency 1. If
an eff < 1 is specified, then the thrust force generated by all connected thrusters is modified
by

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 7

effFF ⋅=′

Creating thrusters
To add a new thruster, use the CreateThruster command:

class MyVessel: public VESSEL
{
 ...
 THRUSTER_HANDLE th_main;
}

void MyVessel::SetClassCaps (FILEHANDLE cfg)
{
 ...
 const double MAX_MAIN_THRUST = 2e5;
 const double VAC_MAIN_ISP = 4200.0;
 th_main = CreateThruster (_V(0,0,-8), _V(0,0,1), MAX_MAIN_THRUST,
 ph_main, VAC_MAIN_ISP);
 ...
}

This adds a thruster at position (0,0,-8) with a thrust vector in the positive z-direction, with the
specified max. thrust and Isp values, and connected to the tank we added earlier. In this
configuration, the engine efficiency is assumed not to be affected by atmospheric pressure.
For increased realism, we could introduce pressure-dependency by adding an additional Isp
value at a reference pressure, and the reference pressure itself:

void MyVessel::SetClassCaps (FILEHANDLE cfg)
{
 ...
 const double MAX_MAIN_THRUST = 2e5;
 const double VAC_MAIN_ISP = 4200.0;
 const double NML_MAIN_ISP = 3500.0;
 const double P_NML = 101.4e3;
 th_main = CreateThruster (_V(0,0,-8), _V(0,0,1), MAX_MAIN_THRUST,
 ph_main, VAC_MAIN_ISP, NML_MAIN_ISP, P_NML);
 ...
}

This reduces the Isp value at sea level to 3500 and performs a linear interpolation to obtain
the Isp at arbitrary pressures. Note that we could have omitted the last parameter, P_NML,
because the reference pressure defaults to 101.4 kPa (atmospheric pressure at Earth sea
level).
If you descend into a very dense planetary atmosphere, Orbiter will exprapolate the Isp value
beyond sea level pressure, until Isp drops to zero. At this point, the thruster will stop working
altogether.

Group ing thrusters
Although it is possible to address thrusters individually in your module, it is often easier to
engage them in groups. Groups are also required to activate manual user thruster control via
the keyboard or joystick, and the automatic navigation modes such as killrot.
Orbiter has a number of standard thruster groups, such as THGROUP_MAIN,
THGROUP_RETRO, THGROUP_HOVER, and a full set of attitude thruster groups. For a full
listing, see VESSEL::CreateThrusterGroup in the Reference Manual.
It is the responsibility of the vessel designer to make sure that thrusters are grouped in a
sensible way. For example, whenever the user presses the “+” key on the numerical keypad,
all thrusters in THGROUP_MAIN will fire. If the thrusters grouped in THGROUP_MAIN
behave in an unexpected or non-intuitive way it will be confusing to the user. Furthermore, if
attitude thrusters are not appropriately grouped, some or all of the navigation modes may fail.
To group thrusters, use the CreateThrusterGroup command:

void MyVessel::SetClassCaps (FILEHANDLE cfg)

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 8

{
 ...
 thg_main = CreateThrusterGroup (th_main, 2, THGROUP_MAIN);
 ...
}

(this assumes that th_main is an array of 2 thruster handles which have been created
previously). The function returns a handle to the group which can be used later to address the
group.
Apart from the standard groups, Orbiter allows to create custom groups by using the
THGROUP_USER label. Custom groups are not engaged by any of the standard manual or
automatic control methods, therefore the module must implement a suitable control interface
for these groups.

1.2.3 Defining exhaust f lames
When you define a thruster with CreateThruster, Orbiter will not automatically generate
visuals for the exhaust flames when the thruster is engaged. Sometimes exhaust flames may
not be appropriate, or, more importantly, you may want to detach the logical thruster definition
from the physical definition (more about this below).

To create an exhaust flame definition use the AddExhaust function. AddExhaust comes in two
flavours:
• UINT AddExhaust (THRUSTER_HANDLE th, double lscale, double wscale,

SURFHANDLE tex = 0) const
• UINT AddExhaust (THRUSTER_HANDLE th, double lscale, double wscale,

const VECTOR3 &pos, const VECTOR3 &dir, SURFHANDLE tex = 0) const
Both versions require a handle to the logical thruster they are linked to, and two size
parameters (longitudinal and transversal scaling), but while the first version takes exhaust
location and direction directly from the thruster definition, the second version gets location
and direction passed as parameters.

Here is an example demonstrating how you would use the second version of AddExhaust:
Let’s assume you build a rocket propelled by 4 main engines arranged in a regular square
pattern. The engines have fixed orientation (no individual gimbal mode) and all thrust force
vectors are parallel. In addition, the engines produce identical thrust magnitudes at all times.
Then the 4 engines can be represented by a single logical thruster, whose magnitude is the
sum of the 4 actual engines, and positioned in the geometric centre. This simplifies the code,
and is more efficient, because Orbiter does not need to add up 4 individual force vectors.
However, you still want to see exaust flames for each of the 4 engines, so you would use the
second version of AddExhaust to define 4 exhaust flames at the correct positions.

The disadvantage of the second version is that changes in the position or orientation of the
thruster (for example as a result of SetThrusterPos or SetThrusterDir) are not automatically
propagated to the exaust flames. Therefore, if you plan to move or tilt the thrusters, you
should create them individually and use the first version of AddExhaust.

Custom exhaust textures
By default, Orbiter uses a standard texture to render exhaust flames. If you want to customise
the exhaust appearance on a per-thruster basis, you can pass a nonzero surface handle tex
to both of the AddExhaust versions. To obtain a surface handle for a custom texture, use the
oapiRegisterExhaustTexture function.

...
SURFHANDLE tex = oapiRegisterExhaustTexture (“MyExhaust”);
AddExhaust (th_main, 10, 2, tex);
...

The texture file must be stored in DDS format in Orbiter’s default texture directory. Note that
oapiRegisterExhaustTexture can be safely called multiple times with the same texture.

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 9

1.3 Rendering re-entry flames
To visualise the friction heat dissipation during atmospheric reentry, Orbiter supports the
rendering of “re-entry flames”. To calculate the amount of heat generated per surface area
and time (and to scale the exhaust flames) Orbiter uses this formula:

3

2

1
vP ρ=

where ρ is the atmospheric density, and v is the vessel’s airspeed. Orbiter renders exhaust
flames if P > P0 where P0 is a user defined limit. The size and opacity of the reentry flames is
scaled by






 −
=

0

0

5
,1min

P

PP
s

In addition, the user can specify scaling factors for length and width of the reentry texture, as
well as the texture itself.

Orbiter by default uses its own texture to render reentry flames. If you want to change the
texture globally, you need to replace reentry.dds in the Textures subdirectory. If you only want
to modify the texture for a specific vessel class, you need to load a custom texture, and then
set your render options:

ovsSetClassCaps (VESSEL *vessel, FILEHANDLE cfg)
{
 ...
 SURFHANDLE tex = oapiRegisterReentryTexture (“MyReentryFlame”);
 vessel->SetReentryTexture (tex, my_plimit, my_lscale, my_wscale);
 ...
}

Reentry textures require a specific layout. They consist of an elongated part in the left half of
the texture map, and a circular part in the upper right corner. The lower right corner is not
currently used. This is how the alpha channel of the default reentry.dds looks like:

Note that Orbiter automatically adds a colour component to the texture depending on the
value of s, from red to white. If this is sufficient for your custom reentry flame, leave the RGB
channels of the texture pure white. Otherwise you may want to experiment with additional
texture colours.

If you want to suppress rendering of reentry flames for your vessel altogether, use

...
SetReentryTexture (NULL);
...

1.4 Defining an animation sequence
Animation sequences can be used to simulate movable parts of a vessel. Examples are the
deployment of landing gear, cargo door operation, or animation of airfoils.
Animations are implemented in vessel modules, using the VESSEL interface class.
Orbiter allows 3 types of animation: rotation, translation and scaling. More complex can be
built from these basic operations.

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 10

1.4.1 Semi-automatic animation
Mesh requirements:
Animations are performed by transforming mesh groups. Therefore, all parts of the mesh
participating in an animation must be defined in separate groups. Multiple groups can
participate in a single transformation.

Modu le prerequisites:
If it doesn’t exist already, create a C++ project for the vessel module.
Derive a class from VESSEL, e.g.

class MyVessel: public VESSEL {
 // ...
};

Implement the ovcInit and ovcExit callback functions to create and destroy an instance
of MyVessel , e.g.

DLLCLBK VESSEL *ovcInit (OBJHANDLE hvessel, int flightmodel)
{

 return new MyVessel (hvessel, flightmodel);
}

DLLCLBK void ovcExit (VESSEL *vessel)
{

 delete (MyVessel*)vessel;
}

Defining an animation sequence:
Create a member function for MyVessel to define animation sequences, and call it from the
constructor, e.g.

MyVessel::MyVessel (OBJHANDLE hObj, int fmodel)
: VESSEL(hObj, fmodel)
{
 DefineAnimations();
}

In the body of DefineAnimations(), you now have to specify how the animation should be
performed. Here is an example for a nose wheel animation:

void MyVessel::DefineAnimations()
{
 static UINT groups[4] = {5,6,10,11}; // participating groups
 static ANIMCOMP nosewheel = {
 groups, 4, // group list and # groups
 0.3, 1.0, // limiting states
 0,-1.0,8.5, // rotation reference
 1.0,0.0,0.0, // rotation axis
 (float)(-0.5*PI), // rotation range
 0, // mesh no.
 0, // not used
 MESHGROUP_TRANSFORM::ROTATE // transform type
 };

 anim_gear = RegisterAnimSequence (0.0);
 AddAnimComp (anim_gear, &nosewheel);
}

The ANIMCOMP structure defines all the parameters of the animation. In this case:
groups pointer to a list of indices (starting with 0) of mesh groups participating in the

animation.

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 11

4 defines the number of groups to be part of the animation (must be ≥ 1).
0.3, 1.0 specifies that the animation should take place between states 0.3 and 1.0 of

the animation sequence. This means that the wheel will remain fully retracted
between states 0.0 and 0.3, and will gradually be deployed between states
0.3 and 1.0. This allows us to perform a different animation first, for example
open the gear doors.

0,-1.0,8.5 defines a reference point (in the vessel’s frame of reference) for the rotation.
1.0,0.0,0.0 defines the axis around which the rotation takes place.
(float)(-0.5*PI) the angular range over which the rotation is performed (in radians)
0 the mesh index (starting with 0 for the vessel’s first mesh)
0 the ngroup member of the MESHGROUP_TRANSFORM struct which is not

used here.
MESHGROUP_TRANSFORM::ROTATE

the animation type (rotation)

RegisterAnimSequence() defines a new sequence. The sequence identifier is stored in
anim_gear. Parameter “0.0” indicates that the wheel is defined in its retracted state in the
mesh.
AddAnimComp() adds the nosewheel animation to the sequence.

Additional animations can be added to the same sequence by defining additional ANIMCOMP
structures and adding them to anim_gear with AddAnimComp().

Additional sequences (for example to animate cargo doors) can be added by additional
RegisterAnimSequence() calls.

Note that all ANIMCOMP structures must be defined static because Orbiter does not create a
local copy. This means that the animations are global properties of the vessel class.

Performing the animation:
To animate the nose wheel now, we need to manipulate the animation sequence state by
calling SetAnimState() with a value between 0 (fully retracted) and 1 (fully deployed). This is
typically done in the Timestep() member function, e.g.

void MyVessel::Timestep (double simt)
{
 if (gear_status == CLOSING || gear_status == OPENING) {
 double da = oapiGetSimStep() * gear_speed;
 if (gear_status == CLOSING) {
 if (gear_proc > 0.0)
 gear_proc = max (0.0, gear_proc-da);
 else
 gear_status = CLOSED;
 } else { // door opening
 if (gear_proc < 1.0)
 gear_proc = min (1.0, gear_proc+da);
 else
 gear_status = OPEN;
 }
 SetAnimState (anim_gear, gear_proc);
 }
}

Here, gear_status is a flag defining the current operation mode (CLOSING, OPENING,
CLOSED, OPEN). This will typically be set by user interaction, e.g. by pressing a keyboard
button. If the animation is in progress (OPENING or CLOSING), we determine the rotation
step (da) as a function of the current frame interval (oapiGetTimeStep()). The value of
gear_speed defines how fast the gear is deployed.
Next, we update the deployment state (gear_proc), and check whether the sequence is
complete (≤0 if closing, or ≥1 if opening). Finally, SetAnimState() is called to perform the
animation.

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 12

The DeltaGlider sample module (Orbitersdk\samples\DeltaGlider) contains a complete
example for an animation implementation.

1.4.2 Manual animation
As an alternative to the (semi-)automatic animation concept described in the previous section,
Orbiter also allows manual animation. This can be more versatile, but requires more effort
from the module developer, because the complete animation sequence must be implemented
explicitly.
A manual animation sequence is created by the functions
VESSEL::RegisterAnimation() and VESSEL::UnregisterAnimation() . A call to
RegisterAnimation causes Orbiter to call the module’s ovcAnimate callback function at
each frame, provided the vessel’s visual exists. UnregisterAnimation cancels the
request.
Note that RegisterAn i mation /UnregisterAnimation pairs can be nested. Each call to
RegisterAnimation increments a reference counter, each call to
UnregisterAnimation decrements the counter. Orbiter will call ovcAnimate as long as
the counter is > 0.
It is up to the module to implement its animations in the body of ovcAnimate . Typically this
will involve calls to MeshgroupTransform() , to rotate, translate or scale mesh groups as a
function of the last simulation time step. Note that ovcAnimate is called only once per frame,
even if more than one RegisterAnimation request has been logged. The module must
therefore decide which animations need to be processed in ovcAnimate .
UnregisterAnimation should never be called from inside ovcAnimate , since
ovcAnimate is only called if the visual exists. This could cause the unregister request to be
lost. It is better to test for animation termination in ovcTimestep .

1.5 Designing instrument panels
1.5.1 Defining a panel
In order to implement instrument panel support for your vessel you must implement the
ovcLoadPanel callback function:

DLLCLBK bool ovcLoadPanel (VESSEL *vessel, int id)
{
 ...
}

where vessel is a pointer to the VESSEL interface instance for which the panel is to be
generated, and id is a panel identifier. Orbiter will call this function whenever it needs to load
a new panel, for example because the user switched to a different panel, selected a different
vessel, or activated panel mode with F8.

If the vessel only supports a single panel, id will always be 0. If multiple panels are
supported, your callback function must test the value of id to determine which panel to load.
To implement multiple panels, each of the panel must define its connectivity to neighbouring
panels via the oapi SetPanelNeighbours function.

Example: If your vessel supports a main panel, an overhead and a left side panel, the
structure of ovcLoadPanel would look like this:

DLLCLBK bool ovcLoadPanel (VESSEL *vessel, int id)
{
 switch (id) {
 case 0: // main panel
 oapiRegisterPanelBackground (LoadBitmap (hDLL,
 MAKEINTRESOURCE (IDB_PANEL0)));
 oapiSetPanelNeighbours (2, -1, 1, -1);
 // register areas for panel 0 here
 break;
 case 1: // overhead panel
 oapiRegisterPanelBackground (LoadBitmap (hDLL,

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 13

 MAKEINTRESOURCE (IDB_PANEL1)));
 oapiSetPanelNeighbours (-1, -1, -1, 0);
 // register areas for panel 1 here
 break;
 case 2: // left side panel
 oapiRegisterPanelBackground (LoadBitmap (hDLL,
 MAKEINTRESOURCE (IDB_PANEL2)));
 oapiSetPanelNeighbours (-1, 0, -1, -1);
 // register areas for panel 2 here
 break;
 }
 return true;
}

Each panel must register a background bitmap via the oapiRegisterPanelBackground
function. The bitmap must be passed in standard Windows HBITMAP format. The easiest
way to include a panel bitmap in your vessel DLL is to include it as a bitmap resource so that
it can be loaded with the Windows LoadBitmap command. The hDLL parameter is the
Windows module instance handle. You can obtain it from the DllMain callback function, for
example

HINSTANCE hDLL; // global: module handle

BOOL WINAPI DllMain (HINSTANCE hModule, DWORD ul_reason_for_call,
 LPVOID lpReserved)
{
 hDLL = hModule;
}

If the vessel defines multiple panels, the user can switch between them by using Ctrl-Arrow
keys. Orbiter must know the relative location of bitmaps to each other, so that the correct
panel can be loaded. This connectivity is provided by the oapiSetPanelNeighbours function.
This function tells Orbiter which panels are to the left, right, top and bottom of the current
panel. A value of –1 indicates that no panel is located at that side.

Important: All the panel id’s defined during oapiSetPanelNeighbours must be supported
by ovcLoadPanel . For example, if panel 0 calls oapiSetPanelNeighbours (2,-1,1,-
1) , then panels 1 and 2 must be handled by ovcLoadPanel .

All panels must call the oapiSetPanelNeighbours function, otherwise there is no way for
the user to switch back to a different panel. Panel connectivities should usually be reciprocal,
i.e. if panel 0 defines panel 1as its top neighbour, then panel 1 should define panel 0 as its
bottom neighbour. If only a single panel (panel 0) is supported, calling
oapiSetPanelNeighbours is not necessary.

ovcLoadPanel should return true if the panel was loaded successfully. It should return false
if the panel initialisation failed for any reason.

1.5.2 Defining active panel areas
< To be completed >

1.5.3 The mouse event handler
To intercept mouse events generated by a panel you must implement the
ovcPanelMouseEvent callback function:

DLLCLBK bool ovcPanelMouseEvent (VESSEL *vessel, int id, int event, int mx,
int my)
{
 ...
}

Orbiter Programmer’s Guide (c) 2001-2002 Martin Schweiger 14

where vessel is a pointer to the VESSEL interface instance for which the mouse event was
generated, id is the identifier of the panel area for which the event was generated (as
specified in oapiRegisterPanelArea), event specifies the mouse event type, and mx,my are
the panel coordinates at which the event occured.

To make a panel area generate mouse events, the required events must be defined during
the registration of the area. For example, to create an instrument which generates mouse
events whenever the left mouse button is pressed, oapiRegisterPanelArea must be defined
with the PANEL_MOUSE_LBDOWN flag. Mouse bitflags can be combined. If you want to
generate an event whenever the right mouse button is pressed or released, use the
PANEL_MOUSE_LBDOWN | PANEL_MOUSE_LBUP flags.
A panel area defined with PANEL_MOUSE_IGNORE will never generate any mouse events.

Important: A button-up event is always generated for the instrument which produced the
preceding button-down event, even if the mouse has been dragged out of the panel area in
the mean time.

The following mouse events are available:
PANEL_MOUSE_LBDOWN Left mouse button pressed down.
PANEL_MOUSE_RBDOWN Right mouse button pressed down.
PANEL_MOUSE_LBUP Left mouse button released.
PANEL_MOUSE_RBUP Right mouse button released.
PANEL_MOUSE_LBPRESSEDLeft mouse button down
PANEL_MOUSE_RBPRESSEDRight mouse button down.

The PANEL_MOUSE_LBPRESSED and PANEL_MOUSE_RBPRESSED events are sent
continuously while the buttons are held down. This allows the implementation of mouse-
dragging event, for example to move sliders with the mouse.

1.5.4 The redraw event handler
< To be completed >

