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1 Spacecraft design

This section describes how to create a new vessel class for Orbiter by writing a vessel DLL
module. Although it is possible to create simple vessel classes without a custom module, by
writing a vessel configuration file, the full potential of Orbiter's custom spacecraft design
capabilities can only be realised with a specialised module.

All vessels of a given class share the same DLL module. Orbiter only loads a single
instance of the DLL. This means that global variables are shared between all vessels of that
class. Do not store data which are specific for individual vessels in global variables,
because they can be overwritten by another vessel.

1.1 Vessel module callback functions

Orbiter talks to your vessel module via callback functions. Callback functions are invoked as a
result of particular events in the simulation. By implementing callback functions in your
module you can react to such events and make your vessel behave in a specific way. Note
that you do not need to implement all callback functions. Any callback functions which are not
defined in the module are simply skipped by Orbiter. For a list of available callback functions,
see section Vessel callback functions in the Reference Manual.

1.1.1 Vessel creation and destruction

ovclnit

This function is called whenever a vessel instance of your vessel class is created. It allows
the module to perform all necessary initialisation steps to create the new vessel. A module
should always implement this function, and should normally create an instance of the
VESSEL interface class (see next section) or a derived class and return a pointer to it.

#include "orbitersdk.h"

DLLCLBK VESSEL *ovclnit (OBJHANDLE hvessel, int flightmodel)

{
return new VESSEL (hvessel, flightmodel);

}

The VESSEL constructor requires two parameters, the vessel handle and flight model level,
which are both passed by ovclinit.

The VESSEL instance is your interface to the vessel, and most other callback functions will
return a pointer to it to provide access.

oVvCcEXit

This function is called before the vessel is destroyed. It should be used for cleanup
operations, including the destruction of the VESSEL instance created in ovclnit. In its simplest
version it would look like this:

DLLCLBK void ovcExit (VESSEL *vessel)

delete vessel;

}

1.1.2 Reading and saving vessel states

ovclLoadStateEx

Whenever a simulation is started, Orbiter loads the current status of all vessels from a
scenario file. The scenario contains all information required to completely define the status of
a vessel at a given time (its position, velocity, thruster levels, fuel levels, etc.) Most modules
will need to save and load specific parameters of their own, which are not recognised by
Orbiter’s generic scenario parser. For this purpose, Orbiter will call the ovcLoadStateEx
callback function to allow the module to process its own scenario data.
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If the module does not require any non-standard status parameters, ovclLoadStateEx need
not be defined. Orbiter will then automatically parse its own generic data. For a list of generic
vessel data in a scenario file, see section Scenario files in the Orbiter User Manual.

If the module does implement ovcLoadStateEX, it should define a loop which reads lines from
the scenario by using the oapiReadScenario_nextline function. Any lines not recogised by the
module should be passed on to Orbiter by using the VESSEL.::ParseScenarioLineEx function,
to allow initialisation of generic data.

This is a typical implementation of ovcLoadStateEx:

DLLCLBK void ovcLoadStateEx (VESSEL *vessel, FILEHANDLE scn, void *vs)

char *line;
int my_value;

while (oapiReadScenario_nextline (scn, line)) {
if (Istrnicmp (line, “my_option”, 9)) {
sscanf (line+9, “%d”, &my_value);
}else if (...) { // more items

} else { // anything not recognised is passed on to Orbiter
vessel->ParseScenarioLineEx (line, vs);
}
}
}

The vs parameter passed by ovcLoadStateEx points to a VESSELSTATUSX struct (x = 2).
Currently this VESSELSTATUS2, but this may change in future versions to incorporate
additional vessel properties. You don't need to worry about a change in the interface provided
you don't use vs for anything else than passing it on to ParseScenarioLineEx. Even if the
VESSELSTATUS interface changes, your module will still remain valid without re-compilation.

There is an older version of this function available, ovcLoadState (and corresponding
ParseScenarioLine). This uses the original VESSELSTATUS interface (version 1). It can still
be used, but is mainly provided for backward compatibility. This interface doesn’t make use of
the latest vessel capabilities, so should be avoided for new modules.

ovcSaveState

When the simulation is closed, or when the user saves by pressing Ctrl-S, a scenario file is
written which contains the current simulation status, so that the simulation can be resumed
from the current position. Whenever a vessel must save its state in a scenario, Orbiter will call
the ovcSaveState callback function to allow the module to save any module-specific
parameters. The programmer is responsible to match up the ovcSaveState and
ovcLoadStateEx implementations, i.e. to make sure any parameters written by ovcSaveState
can be parsed back in by ovcLoadStateEx.

ovcSaveState is not required if the vessel doesn’t need to save any specific data.

To allow Orbiter to save its generic state data, VESSEL::SaveDefaultState should be called
from within ovcSaveState. For example:

DLLCLBK void ovcSaveState (VESSEL *vessel, FILEHANDLE scn)
vessel->SaveDefaultState (scn); // write all generic data
oapiWriteScenario_int (scn, “my_option”, my_value);

... Il more items

}

The oapiWriteScenario_int, oapiWriteScenario_float, oapiWriteScenario_vec, and
oapiWriteScenario_string functions provide a convenient way to write parameters to the
scenario.
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1.2 Creating engines

To propel your ship in space, you must equip it with engines. There exist a variety of different
rocket engine types, such as liquid and solid fuel engines, or more futuristic ones such as ion
or photon drives.

1.2.1 A bit of theory

Thrust force

Despite their very different design, all engines work by the same principle: generating a thrust
force in one direction by expelling particles in the opposite direction at high velocity. A liquid-
fuel engine, for example, consists of a burn chamber in which a mixture of propellant and
oxydiser are ignited, and a nozzle through which the expanding gas is forced at high velocity.
The force Fy, generated by the engine is proportional to the propellant mass flow dm/dt and
the velocity vy of the expelled gas:

= _dm, . _
Fo =— )V
th dt()o

When creating a thruster, you need to specify the maximum force Fy, it can generate when it
is driven at full power, and the propellant exit velocity vo. (in Orbiter, v, is called the fuel-
specific impulse, or Isp). The Isp value determines how much fuel per second is consumed to
obtain a given thrust force. The higher the Isp value, the more fuel-efficient the engine.

4 |
'Fth I Fth

Note: In Orbiter, the thrust is specified as a force, and has units of Newton [IN = 1kg m s?].
In the literature, thrust is often specified in units of kg. To convert such data into Orbiter units,
multiply by 1g = 9.81 m s™. Isp is specified as a velocity in Orbiter, with units of m s™. In the
literature it is often given in units of seconds [s]. To convert to Orbiter units, again multiply by

1g.

How long will my fuel last?
The burn time T, at full thrust F for fuel mass me is given by
m. Isp

T, =~

max

Pressure-dependent thrust efficiency
Most conventional rocket engines work less efficiently in the presence of ambient atmospheric
pressure, because the ignited gas must be expelled through the nozzle against the outside
pressure of the atmosphere. This leads to a reduction of the thrust force at ambient pressure
p:

F(p)=F, - pA
where Fq is the vacuum thrust rating and A has units of an area [mz] and can be regarded as
the effective nozzle cross section. If we know the force F; generated at ambient pressure py,
then

F, - F,
F=F,-pA O A=—° 3%
P.

and therefore

F.-F F.-F
F(p)=F,—-p— 1=F§-|0—° 1E=F(1-|on)
° p ° Fo b, °

1
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and likewise

Isp(p) = 1sp, (1- pr)
In the literature, the pressure-dependency of engine thrust is often defined by specifying the
Isp value for both vacuum and a given reference pressure (e.g. atmospheric pressure at sea
level). Orbiter uses the same convention to apply pressure-dependency.

Thrust level
In Orbiter, thrusters can be driven at any level L between 0 (cutout) and 1 (full thrust). The
actual thrust force generated by the engine is thus calculated as

F(p) = Fra(P) L
In reality, thrusters can often only be driven at maximum, or within a limited range below
maximum. This is not currently implemented in Orbiter, but may be introduced in a future
version.

Thruster placement and thrust direction

The effect of a thruster depends on its placement on the vessel, and the direction in which the
thrust force is generated. In the most general case, a thruster will produce both a linear
acceleration (due to a force) and an angular acceleration (do to torque).

Torque is generated if the force vector does not pass through the vessel's centre of gravity

(CG)
F

G/T"CG >

The torque is then given by the cross product

M =F xF
(remember that Orbiter uses a left-handed coordinate system!) To avoid uncontrollable spin
you should design your ship’s main engines so that their force vector passes through the CG.
Vessel coordinates are always defined so that the CG is at the origin (0,0,0). Therefore, a
thruster located at (0,0,-10) and generating thrust in direction (0,0,1) would not generate
torque.

Attitude thrusters: Rotation
Sometimes generating torque is desired in order to rotate the spacecraft. For controlled
attitude manouevres one then usually wants to change only the angular moment, without also
inducing a linear acceleration. This requires the simultaneous operation of at least 2 thrusters
so that their linear moments cancel.

G

F

Attitude thrusters: Translation

In order to provide small linear accelerations in various directions (for example, to line the
ship up with the docking port of a space station), thrusters must be driven single or in groups
so that they don’t generate torque. Sometimes it is possible to re-use the rotational attitude
thrusters for this task, but it is equally possible to add separate linear thrusters.
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Engine gimbal and thrust vectoring

Using attitude thrusters in a launch vehicle during the burn phase of the main engines is
usually not practical. Instead, attitude control is performed by tilting the main engines and
thereby generating a torque as described above. In practice this may be done by suspending
the engines in a gimbal system which allows rotation around one or two axes. In Orbiter, this
can be implemented by modifying the thrust direction of the engine.

Another way to change the thrust direction is by inserting deflector plates into the exhaust
stream.

Torque, angular momentum and angu lar velocity
The relationship between torque M and angular velocity is given by Euler's equations for a
rotating rigid body:

J,w, =M, -(J,-J,)w,w,

Jow, =M, -, -J,)w,0,

J,w, =M
where (J, J,, J,) are the principal moments of the inertia tensor (PMI), (M, My, M,) are the
components of the torque tensor, and (w, &, @) are the angular velocity components around
the x, y, and z-axes. In Orbiter, this system of differential equations is solved by a trapeziod
rule.

1.2.2 Putting it all into the module

Now that you know how thrusters work, it is time to add a few to your new ship. As with other
vessel capabilities, thrusters should usually be designed in the ovcSetClassCaps callback
function, for example like this (assuming that MyVessel is a class derived from VESSEL):

z

—(Jy—JX)wxwy

void MyVessel::SetClassCaps (FILEHANDLE cfg)

Il vessel caps definitions

}
DLLCLBK void ovcSetClassCaps (VESSEL *vessel, FILEHANDLE cfg)

((MyVessel*)vessel)->SetClassCaps (cfg);

Propellant resources
Thrusters can only be operated if they are connected to propellant resources (e.g. fuel tanks).
To create a propellant resource:

class MyVessel: public VESSEL
{

PROPELLANT_HANDLE ph_main:
}

void MyVessel::SetClassCaps (FILEHANDLE cfg)
{

const double MAX_MAIN_FUEL = 1e5;
ph_main = CreatePropellantResource (MAX_MAIN_FUEL);
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which creates a fuel tank of capacity 105kg. CreatePropellantResource returns a handle to the
new tank, which is used later to connect thrusters to the tank.
CreatePropellantResource accepts two further optional parameters: the initial fuel mass, and
a fuel efficiency factor eff between 0 and 1. By default, the tank is full, with fuel efficiency 1. If
an eff < 1 is specified, then the thrust force generated by all connected thrusters is modified
by

F'=F [&ff

Creating thrusters
To add a new thruster, use the CreateThruster command:

class MyVessel: public VESSEL
{

THRUSTER_HANDLE th_main;
}

void MyVessel::SetClassCaps (FILEHANDLE cfg)
{

const double MAX_MAIN_THRUST = 2e5;

const double VAC_MAIN_ISP = 4200.0;

th_main = CreateThruster (_V(0,0,-8), _V(0,0,1), MAX_MAIN_THRUST,
ph_main, VAC_MAIN_ISP);

-

This adds a thruster at position (0,0,-8) with a thrust vector in the positive z-direction, with the
specified max. thrust and Isp values, and connected to the tank we added earlier. In this
configuration, the engine efficiency is assumed not to be affected by atmospheric pressure.
For increased realism, we could introduce pressure-dependency by adding an additional Isp
value at a reference pressure, and the reference pressure itself:

void MyVessel::SetClassCaps (FILEHANDLE cfg)
{

const double MAX_MAIN_THRUST = 2e5;

const double VAC_MAIN_ISP = 4200.0;

const double NML_MAIN_ISP = 3500.0;

const double P_NML =101.4e3;

th_main = CreateThruster (_V(0,0,-8), _V(0,0,1), MAX_MAIN_THRUST,
ph_main, VAC_MAIN_ISP, NML_MAIN_ISP, P_NML);

-

This reduces the Isp value at sea level to 3500 and performs a linear interpolation to obtain
the Isp at arbitrary pressures. Note that we could have omitted the last parameter, P_NML,
because the reference pressure defaults to 101.4 kPa (atmospheric pressure at Earth sea
level).

If you descend into a very dense planetary atmosphere, Orbiter will exprapolate the Isp value
beyond sea level pressure, until Isp drops to zero. At this point, the thruster will stop working
altogether.

Grouping thrusters

Although it is possible to address thrusters individually in your module, it is often easier to
engage them in groups. Groups are also required to activate manual user thruster control via
the keyboard or joystick, and the automatic navigation modes such as killrot.
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Orbiter has a number of standard thruster groups, such as THGROUP_MAIN,
THGROUP_RETRO, THGROUP_HOVER, and a full set of attitude thruster groups. For a full
listing, see VESSEL.::CreateThrusterGroup in the Reference Manual.

It is the responsibility of the vessel designer to make sure that thrusters are grouped in a
sensible way. For example, whenever the user presses the “+” key on the numerical keypad,
all thrusters in THGROUP_MAIN will fire. If the thrusters grouped in THGROUP_MAIN
behave in an unexpected or non-intuitive way it will be confusing to the user. Furthermore, if
attitude thrusters are not appropriately grouped, some or all of the navigation modes may fail.
To group thrusters, use the CreateThrusterGroup command:

void MyVessel::SetClassCaps (FILEHANDLE cfg)
{

{Hg_main = CreateThrusterGroup (th_main, 2, THGROUP_MAIN);

-

(this assumes that th_main is an array of 2 thruster handles which have been created
previously). The function returns a handle to the group which can be used later to address the
group.

Apart from the standard groups, Orbiter allows to create custom groups by using the
THGROUP_USER label. Custom groups are not engaged by any of the standard manual or
automatic control methods, therefore the module must implement a suitable control interface
for these groups.

1.2.3 Defining exhaust flames

When you define a thruster with CreateThruster, Orbiter will not automatically generate
visuals for the exhaust flames when the thruster is engaged. Sometimes exhaust flames may
not be appropriate, or, more importantly, you may want to detach the logical thruster definition
from the physical definition (more about this below).

To create an exhaust flame definition use the AddExhaust function. AddExhaust comes in two
flavours:
* UINT AddExhaust (THRUSTER_HANDLE th, double Iscale, double wscale,
SURFHANDLE tex = 0) const
* UINT AddExhaust (THRUSTER_HANDLE th, double Iscale, double wscale,
const VECTORS3 &pos, const VECTORS &dir, SURFHANDLE tex = 0) const
Both versions require a handle to the logical thruster they are linked to, and two size
parameters (longitudinal and transversal scaling), but while the first version takes exhaust
location and direction directly from the thruster definition, the second version gets location
and direction passed as parameters.

Here is an example demonstrating how you would use the second version of AddExhaust:
Let’'s assume you build a rocket propelled by 4 main engines arranged in a regular square
pattern. The engines have fixed orientation (no individual gimbal mode) and all thrust force
vectors are parallel. In addition, the engines produce identical thrust magnitudes at all times.
Then the 4 engines can be represented by a single logical thruster, whose magnitude is the
sum of the 4 actual engines, and positioned in the geometric centre. This simplifies the code,
and is more efficient, because Orbiter does not need to add up 4 individual force vectors.
However, you still want to see exaust flames for each of the 4 engines, so you would use the
second version of AddExhaust to define 4 exhaust flames at the correct positions.

The disadvantage of the second version is that changes in the position or orientation of the
thruster (for example as a result of SetThrusterPos or SetThrusterDir) are not automatically
propagated to the exaust flames. Therefore, if you plan to move or tilt the thrusters, you
should create them individually and use the first version of AddExhaust.

Custom exhaust textures
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By default, Orbiter uses a standard texture to render exhaust flames. If you want to customise
the exhaust appearance on a per-thruster basis, you can pass a nonzero surface handle tex
to both of the AddExhaust versions. To obtain a surface handle for a custom texture, use the
oapiRegisterExhaustTexture function.

SURFHANDLE tex = oapiRegisterExhaustTexture (“MyExhaust”);
AddExhaust (th_main, 10, 2, tex);

The texture file must be stored in DDS format in Orbiter’s default texture directory. Note that
oapiRegisterExhaustTexture can be safely called multiple times with the same texture.

1.3 Rendering re-entry flames

To visualise the friction heat dissipation during atmospheric reentry, Orbiter supports the
rendering of “re-entry flames”. To calculate the amount of heat generated per surface area
and time (and to scale the exhaust flames) Orbiter uses this formula:

_1 s
5 v
where p is the atmospheric density, and v is the vessel's airspeed. Orbiter renders exhaust

flames if P > Py where Py is a user defined limit. The size and opacity of the reentry flames is

scaled by
s=min P—F
5P,

In addition, the user can specify scaling factors for length and width of the reentry texture, as
well as the texture itself.

Orbiter by default uses its own texture to render reentry flames. If you want to change the
texture globally, you need to replace reentry.dds in the Textures subdirectory. If you only want
to modify the texture for a specific vessel class, you need to load a custom texture, and then
set your render options:

ovsSetClassCaps (VESSEL *vessel, FILEHANDLE cfg)
{

SURFHANDLE tex = oapiRegisterReentryTexture (“MyReentryFlame”);
vessel->SetReentryTexture (tex, my_plimit, my_|scale, my_wscale);

.

Reentry textures require a specific layout. They consist of an elongated part in the left half of
the texture map, and a circular part in the upper right corner. The lower right corner is not
currently used. This is how the alpha channel of the default reentry.dds looks like:

Note that Orbiter automatically adds a colour component to the texture depending on the
value of s, from red to white. If this is sufficient for your custom reentry flame, leave the RGB
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channels of the texture pure white. Otherwise you may want to experiment with additional
texture colours.

If you want to suppress rendering of reentry flames for your vessel altogether, use

SetReentryTexture (NULL);

1.4 Adding particle streams for exhaust and reentry effects

Orbiter supports particle streams for rendering contrails, exhaust gases, reentry plasma trails
etc. Particle streams consist of a series of textured “billboard” objects which always face the
camera. The streams can be customised with a set of parameters and allow the simulation of
a variety of effects.

The PARTICLESTREAMSPEC structure

At creation, the particle stream can be customised by passing a PARTICLESTREAMSPEC
structure to VESSEL::AddExhaustStream and VESSEL::AddReentryStream. The structure is
defined as follows:

typedef struct {
DWORD flags;
double srcrate;
double vO;
double srcspread;
double lifetime;
double growthrate;
double atmslowdown;
enum LTYPE { EMISSIVE, DIFFUSE } Itype;
enum LEVELMAP { LVL_FLAT, LVL_LIN, LVL_SQRT, LVL_PLIN, LVL_PSQRT }
levelmap;
double Imin, Imax;
enum ATMSMAP { ATM_FLAT, ATM_PLIN } atmsmap;
double amin, amax;
SURFHANDLE tex;
} PARTICLESTREAMSPEC;

srcrate

The (average) rate at which particles are created by the emission source [Hz].

vO

The (average) emission velocity of particles by the emission source [m/s]

I type

Defines the material lighting method when rendering the particles.

EMISSIVE: Particles are rendered emissive (self-radiating). This is appropriate for
streams representing ionized exhaust gases, or plasma streams during
reentry.

DIFFUSE: Particles are rendered diffuse (diffuse reflection of external light sources).
This is appropriate for smoke and vapour trails.

| evel map

Defines the mapping between the level parameter L (e.g. thruster level) and the alpha

value a (opacity) of the generated particle. The higher the alpha value, the more solid

the stream will appear. This parameter is only used for exhaust streams. The following
options are available:

LVL_FLAT: constant mapping, i.e. alpha is independent of th reference level: a =

Imin
LVL_LIN: linear mapping: a =L
LVL_SQRT: square root mapping: a = JL
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0 if L<Imin

LVL_PLIN: linear mapping in sub-range: a = : L—Imln. if Imin <L <Imax
max—Imin
if L >Imax
0 if L<Imin

LVL_PSQRT: square root mapping in sub-range: a = é,ﬂ if Imin <L <lImax
oV Imax—Imin

é- if L >Imax

[ min, |max
Defines min and max levels for alpha mapping. Only used if levelmap is CONSTPLI
or PSQRT(see above). For CONSTonly Imin is used. For PLIN and PSQRTImin <
Imax is required. Note that Imin < 0 is valid — this will cause the stream to produce
particles even when the reference level is 0. Likewise, Imax > 1 is valid — this will
cause the alpha value of the particles to remain < 1 even at reference level 1.

at msmap

N

Defines the mapping between atmospheric parameters and the alpha value a (opacity)

of the generated particle. The following options are available:

ATM_FLAT constant mapping, i.e. alpha is independent of atmospheric
parameters: o = amin

ATM_PLIN: linear mapping of ambient atmospheric parameter x:

0 if Xx<amin

8 x-amin . .
= — if amin< x < amax
max-amin
if x >amax

ATM_PLOG: logarithmic mapping of ambient atmospheric parameter x:

[0 if x<amin
_H Inx/amin
namaxamin

a

if amin< x < amax

if x>amax
For exhaust streams, atmospheric parameter x is the ambient atmospheric density, p.

For reentry streams, x is defined as x =1 pv® (v: airspeed) which is proportional to the

friction power in turbulent airflow (omitting geometry-related parameters).

am n, anmax
Defines min and max atmospheric parameter (ambient density or friction power) for
alpha mapping. amin < amax is required. For PLIN, amin < 0 is admissible to enable
particle generation at zero density. For PLOG amin > 0 is required.

1

T
— LIN

— SORT 09}

0.8

PSQRT
—— FLAT

Imax 1 06F
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|
|
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| 1 o4
|
|
T
|
L
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Figure 1: The particle alpha value as a function of reference level (left) and atmospheric
parameter (right) for different ‘levelmap’ and ‘atmsmap’ modes.
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1.5 Atmospheric flight model

Drag is a force acting on the vessel in the direction of the freestream airflow. It is composed

from several components:

1. The skin friction drag caused by the boundary layer surrounding the airfoil.

2. The pressure drag caused by separation of flow from the surface.

3. The wave drag at supersonic velocities.

4. Induced drag, caused by airflow around the wingtip (finite wing) from the lower to the
upper surface.

The combination of components 1-3 is defined as profile drag or parasite drag.

Lift is an upward force (perpendicular to the airflow) caused by the shape of the airfoil and its
orientation to the airflow.

Drag D and lift L of an airfoil are expressed by the drag and lift coefficients ¢y and c,, with
D L

1 C|_
qOOS qOOS
where q, =% p.V.? is the freestream dynamic pressure, and Sis the wing area. Generally, ¢

and c., will be functions of the angle of attack, the Mach number, and the Reynolds number.
We now split ¢p in the components of profile and induced drag. Induced drag is a result of lift
and can be expressed as a function of c;:

Co

ot

CD = CD,e +

where eis a span efficiency factor, and A is the wing aspect ratio, defined as b%Swith wing
span b.

T[;\e profile component ¢y ¢ will change with angle of attack. We assume that ¢, can be
expressed as the combination of a zero-lift component ¢ o and a component depending on ¢;:
CD,e = CD,O + rCE
Here, r is a form constant which is usually determined empirically. We can now incorporate

the lift-dependent term of ¢p into the factor e, to give
c
TEA
where € =e/(rreA+1) is the Oswald efficiency factor.

When implementing an airfoil in Orbiter, the user must supply a function which calculates ¢,
and ¢ for a given set of parameters (angle of attack, Mach number and Reynolds number).
Orbiter provides a helper function (oapiGetinducedDrag) to calculate the induced drag
component with the above formula.

CD = CD,O +

1.5.2 Lift and drag in transonic and supersonic flight
(to be completed)

1.5.3 Angular moments and vessel stability

(to be completed)

1.5.4 Angular drag
Similar to (linear) drag which produces a force acting against a vessel's airspeed vector, a
rotating vessel will experience angular drag which acts against the angular velocity, thus
slowing the rotation. Orbiter uses the following formulae to calculate angular damping:

dM X = _q,SyCG,XwX

dM, =-g'S;c, ,w,

dM, =-q'S,c, ,w,
where q' =% p., (V. +V,)“ is a modified dynamic pressure which ensures that angular drag
also occurs at low airspeeds (Orbiter currently uses a fixed Vo = 30m/s). S is the vessel's

cross section projected along the vertical (y) axis, used as a reference area. S is the y-
component of the vector passed to VESSEL::SetCrossSections(). Cqx, Cay and c,, are the
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drag coefficients for rotations around the x, y, and z vessel axes as defined by
VESSEL::SetRotDrag(). w, w, and w, are the angular velocities around the vessel axes, and
dM,, dM, and dM, are the changes in torque due to damping.

Angular drag is determined by the vessel shape. Developers can adjust the effect of angular
damping in the atmosphere by adjusting the coefficients passed to VESSEL.::SetRotDrag().
Higher coefficients make a vessel less responsive to control input, and reduce oscillations
around equilibrium orientation.

1.5.5 APlinterface for airfoil definitions

To define the lift and drag characterisitics for a spacecraft in the DLL module, use the
VESSEL.::CreateAirfoil method. An airfoil is defined as a cross section through a wing. In
Orbiter, we use the term airfoil for any components of the vessel which produce lift and/or
drag forces. Multiple airfoils can be defined for a single vessel (for example for the left and
right wing, the body, the horizontal and vertical stabilizers in the tail, etc.). It is usually best to
keep the number of airfoils low to keep the flight model predictable and to improve simulation
performance.

Orbiter distinguishes two different types of airfoil orientations: airfoils which create vertical lift
(e.g. wings) and airfoils which create horizontal “lift”, e.g. vertical stabilisers. Even vessels
without any wings or other aerodynamic surfaces should define at least one horizontal and
one vertical airfoil to define their atmospheric drag behaviour (even blunt objects such as
reentry capsules which have no similarity to an aircraft produce drag and lift forces).

When calling the CreateAirfoil method, the user must provide

» basic airfoil parameters (orientation, wing area, chord length and wing aspect ratio).

» the force attack point (i.e. the point on the vessel on which the lift and drag forces for this
airfoil act). This influences the angular momentae generated by the forces.

» acallback function which calculates the lift, drag and moment coefficients of the airfoil as
a function of angle of attack a, Mach number M and Reynolds number Re.

The coefficients decide how much lift and drag is generated by the airfoil. The lift and drag
forces (L and D) are obtained from the moments (c_ and cp) by

L(a,M,Re)=c (a,M,Re)Q,,S
D(a,M,Re)=c,(a,M,Re),S

with freestream dynamic pressure q,, =1/2 pv*, and reference area S. The function which

calculates ¢, and ¢, must be able to handle arbitrary angles of attack (-1tto 1) and very high
Mach numbers which may occur during LEO insertion and atmospheric entry (orbital velocity
for a low Earth orbit is equivalent to M > 201)

The Reynolds number is a parameter dependent on atmospheric viscosity p:
Re= e
u
with freestream airspeed v and density p. In the current Orbiter version, uis assumed
constant (1 = 1.689410° kg m™ s™). In future versions, u will depend on the atmospheric
composition and temperature.

The direction of the lift force vector is defined in Orbiter as

L, = (0,-v,,v,) /|fVi +V7
Ly = (-,,0,V,) /| V2 + V2

for vertical and horizontal lift components, respectively, where (v,,W,V,) is the freestream
airflow vector in vessel coordinates. This means that L, is rotated 90° counter-clockwise

against the projection of the airflow vector into the yz-plane, and I:ﬁ is rotated 90° counter-
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clockwise against the projection of the airflow vector into the xz-plane. Since a and 8 are
defined as

a =arctarv, /-v,

B =arctarv, /-v,
we find the following relations between o or 8 and the direction of lift:

a lift direction B lift direction
0° up (+y) 0° right (+x)

90° forward (+2) 90° forward (+2z)
180° down (-y) 180° left (-x)

270° backward (-2) 270° backward (-2)

This convention must be taken into account when defining the lift coefficient profile. For
example, the ¢, profile for a vertical stabiliser with symmetric airfoil should be positive for 0° <
B=<90° and 180° < 3= 270°, and negative for 90° < < 180° and 270° < 3< 360°. The lift
profile in this case may therefore resemble sin 26. For asymmetric airfoils the lift profile will
look more complicated (for example, the zero-lift angle will usually usually not be exactly 0°).

1.6 Defining an animation sequence

Animation sequences can be used to simulate movable parts of a vessel. Examples are the
deployment of landing gear, cargo door operation, or animation of airfoils.

Animations are implemented in vessel modules, using the VESSEL interface class.

Orbiter allows 3 types of animation: rotation, translation and scaling. More complex can be
built from these basic operations.

1.6.1 Semi-automatic animation

Mesh requirements:

Animations are performed by transforming mesh groups. Therefore, all parts of the mesh
participating in an animation must be defined in separate groups. Multiple groups can
participate in a single transformation.

Modu le prerequisites:
If it doesn't exist already, create a C++ project for the vessel module.
Derive a class from VESSEL, e.g.

class MyVessel: public VESSEL {
...

I}

Implement the ovclnit  and ovcExit callback functions to create and destroy an instance
of MyVessel , e.g.

DLLCLBK VESSEL *ovclnit (OBJHANDLE hvessel, int flightmodel)
{

}

DLLCLBK void ovcExit (VESSEL *vessel)

return new MyVessel (hvessel, flightmodel);

delete (MyVessel*)vessel;

Defining an animation sequence:
Create a member function for MyVessel to define animation sequences, and call it from the
constructor, e.g.

MyVessel::MyVessel (OBJHANDLE hObj, int fmodel)
: VESSEL(hObj, fmodel)

{
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DefineAnimations();

}

In the body of DefineAnimations(), you now have to specify how the animation should be
performed. Here is an example for a nose wheel animation:

void MyVessel::DefineAnimations()
static UINT groups[4] = {5,6,10,11}; // participating groups

static MGROUP_ROTATE nosewheel (

0, /I mesh index

groups, 4, /I group list and # groups
_V(0,-1.0,8.5), /I rotation reference point
_V(1,0,0), // rotation axis
(float)(0.5*PI) /I angular rotation range

anim_gear = CreateAnimation (0.0);
AddAnimationComponent (anim_gear, 0, 1, &nosewheel);

}

You first need to determine which mesh groups take part in the animation. In this case, the
nose wheel consists of the four groups 5, 6, 10 and 11, and these are listed in the “groups”
array.

Next, you must define the parameters of the rotation. This is done by creating a
MGROUP_ROTATE instance. Besides the mesh index and group indices, this also requires
the rotation reference point (i.e. the point around which the mesh groups are rotated), the axis
of rotation, and the rotation range.

A new animation is created by calling CreateAnimation. The parameter passed to
CreateAnimation defines the animation state in which the mesh groups are stored in the
mesh. The return value identifies the animation.

Finally, the rotation of the nose wheel is added to the animation by calling
AddAnimationComponent. The parameter are the animation identifier, the cutoff states of the
component, and the transformation. The cutoff states define over which part of the animation
the component transformation is applied. In this example, the cutoff states are 0 and 1, that is,
the rotation of the nose wheel occurs over the full duration of the animation.

Now let’s consider a slightly more complicated example, where the animation consists of two
components: (a) opening the wheel well cover, and (b) deploying the gear.

void MyVessel::DefineAnimations()

static UINT cover_groups[2] = {0,1};
static MGROUP_ROTATE cover (0, cover_groups, 2,
_V(-0.5,-1.5,7), _V(0,0,1), (float)(0.45*PI));

static UINT wheel_groups[4] = {5,6,10,11};
static MGROUP_ROTATE nosewheel (0, wheel_groups, 4,
_V(0,-1.0,8.5), _V(1,0,0), (float)(0.5*PI));

anim_gear = CreateAnimation (0.0);
AddAnimationComponent (anim_gear, 0, 0.5, &cover);
AddAnimationComponent (anim_gear, 0.4, 1, &nosewheel);

}

The rotations for the gear well cover and the landing gear are defined by two separate
MGROUP_ROTATE variables. After creating the animation, both rotations are added as
components. The cover is opened during the first part of the animation (between states 0 and
0.5) while the gear is deployed in the final part (between states 0.4 and 1). Note that there is a
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small overlap (between 0.4 and 0.5), which means that the gear begins to rotate before the
cover is fully opened.

When the animation is played backward to retract the gear, the components are rotated in the
inverse order: the gear is retracted first, then the cover is closed.

Animations can be arranged in a hierarchical order, so that a parent animation can transform
mesh groups which are themselves animations. Consider for example the wheel on a landing
gear which is spinning while the gear is being retracted. In this case, the gear animation is
defined as a rotation around the gear hinge point, while the wheel animation is a rotation
around the wheel axis. The wheel animation must be defined as a child of the gear animation,
because the wheel is rotated together with the gear.

void MyVessel::DefineAnimations()
ANIMATIONCOMPONENT_HANDLE parent;

static UINT gear_groups|[2] = {5,6};
static MGROUP_ROTATE gear (0, gear_groups, 2,
_V(0,-1.0,8.5), _V(1,0,0), (float)(0.45*Pl));

static UINT wheel_groups[2] = {10,11};
wheel = new MGROUP_ROTATE nosewheel (0, wheel_groups, 2,
_V(0,-1.0,6.5), _V(1,0,0), (float)(2*PI));

anim_gear = CreateAnimation (0.0);
parent = AddAnimationComponent (anim_gear, 0, 1, &gear);

anim_wheel = CreateAnimation (0.0);
AddAnimationComponent (anim_wheel, 0, 1, wheel, parent);

}

The gear and wheel rotations are defined by the MGROUP_ROTATE variables “gear” and
“wheel”. Note that in this case “wheel” is not defined static, since reference point and axis will
be modified by the parent. Therefore, “wheel” must be defined as a data member of the
MyVessel class. Since “wheel” is allocated dynamically, don't forget to deallocate it with

MyVessel::~MyVessel()
{

delete wheel,;

-

The return value of the AddAnimationComponent() call for the gear animation is a handle
which identifies the transformation. We use this value for the optional parent parameter when
defining the animation component for the wheel animation. This makes the wheel animation a
child of the gear animation.

A complex example for hierarchical animations can be found in the RMS arm animation of
Space Shuttle Atlantis in Orbitersdk\samples\Atlantis\Atlantis.cpp.

Apart from rotations, mesh groups can also be transformed by translating and scaling. The
corresponding MGROUP_TRANSFORM derivates are MGROUP_TRANSLATE and
MGROUP_SCALE:

MGROUP_TRANSLATE t1 (0, groups, 2, _V(0,10,5));
MGROUP_SCALE t2 (0, groups, 2, _V(5,0,2), _V(2,2,2));

In both cases, the first three parameters are the same as for MGROUP_ROTATE (mesh,
index, group list and number of groups). For MGROUP_TRANSLATE, the last parameter
defines the translation vector. For MGROUP_SCALE, the last two parameters define the
scale origin, and the scale factors in the three axes.
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Performing the animation:

To animate the nose wheel now, we need to manipulate the animation sequence state by
calling SetAnimation() with a value between 0 (fully retracted) and 1 (fully deployed). This is
typically done in the Timestep() member function, e.qg.

void MyVessel::Timestep (double simt)

if (gear_status == CLOSING || gear_status == OPENING) {
double da = oapiGetSimStep() * gear_speed;
if (gear_status == CLOSING) {
if (gear_proc > 0.0)
gear_proc = max (0.0, gear_proc-da);
else
gear_status = CLOSED;
} else {// door opening
if (gear_proc < 1.0)
gear_proc = min (1.0, gear_proc+da);
else
gear_status = OPEN;
}

SetAnimation (anim_gear, gear_proc);
}
}

Here, gear_status is a flag defining the current operation mode (CLOSING, OPENING,
CLOSED, OPEN). This will typically be set by user interaction, e.g. by pressing a keyboard
button. If the animation is in progress (OPENING or CLOSING), we determine the rotation
step (da) as a function of the current frame interval (oapiGetTimeStep()). The value of
gear_speed defines how fast the gear is deployed.

Next, we update the deployment state (gear_proc), and check whether the sequence is
complete (<0 if closing, or =1 if opening). Finally, SetAnimation() is called to perform the
animation.

The DeltaGlider sample module (Orbitersdk\samples\DeltaGlider) contains a complete
example for an animation implementation.

1.6.2 Manual animation

As an alternative to the (semi-)automatic animation concept described in the previous section,
Orbiter also allows manual animation. This can be more versatile, but requires more effort
from the module developer, because the complete animation sequence must be implemented
explicitly.

A manual animation sequence is created by the functions

VESSEL::RegisterAnimation() and VESSEL::UnregisterAnimation() .Acallto
RegisterAnimation causes Orbiter to call the module’s ovcAnimate callback function at
each frame, provided the vessel’s visual exists. UnregisterAnimation cancels the
request.

Note that RegisterAn i mation /UnregisterAnimation pairs can be nested. Each call to
RegisterAnimation increments a reference counter, each call to

UnregisterAnimation decrements the counter. Orbiter will call ovcAnimate as long as

the counter is > 0.

It is up to the module to implement its animations in the body of ovcAnimate . Typically this
will involve calls to MeshgroupTransform() , to rotate, translate or scale mesh groups as a
function of the last simulation time step. Note that ovcAnimate is called only once per frame,
even if more than one RegisterAnimation request has been logged. The module must
therefore decide which animations need to be processed in ovcAnimate

UnregisterAnimation should never be called from inside ovcAnimate , since
ovcAnimate is only called if the visual exists. This could cause the unregister request to be
lost. It is better to test for animation termination in ovcTimestep
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1.7 Designing instrument panels

1.7.1 Defining a panel
In order to implement instrument panel support for your vessel you must implement the
ovcLoadPanel callback function:

DLLCLBK bool ovcLoadPanel (VESSEL *vessel, int id)
{

.

where vessel is a pointer to the VESSEL interface instance for which the panel is to be
generated, and id is a panel identifier. Orbiter will call this function whenever it needs to load
a new panel, for example because the user switched to a different panel, selected a different
vessel, or activated panel mode with F8.

If the vessel only supports a single panel, id will always be 0. If multiple panels are
supported, your callback function must test the value of id to determine which panel to load.
To implement multiple panels, each of the panel must define its connectivity to neighbouring
panels via the oapi SetPanelNeighbours function.

Example: If your vessel supports a main panel, an overhead and a left side panel, the
structure of ovcLoadPanel would look like this:

DLLCLBK bool ovcLoadPanel (VESSEL *vessel, int id)

{
switch (id) {
case 0: // main panel
oapiRegisterPanelBackground (LoadBitmap (hDLL,
MAKEINTRESOURCE (IDB_PANELO)));
oapiSetPanelNeighbours (2, -1, 1, -1);
/I register areas for panel O here
break;
case 1: // overhead panel
oapiRegisterPanelBackground (LoadBitmap (hDLL,
MAKEINTRESOURCE (IDB_PANELL1)));
oapiSetPanelNeighbours (-1, -1, -1, 0);
Il register areas for panel 1 here
break;
case 2: // left side panel
oapiRegisterPanelBackground (LoadBitmap (hDLL,
MAKEINTRESOURCE (IDB_PANELZ2)));
oapiSetPanelNeighbours (-1, 0, -1, -1);
Il register areas for panel 2 here
break;

}

return true;

}

Each panel must register a background bitmap via the oapiRegisterPanelBackground

function. The bitmap must be passed in standard Windows HBITMAP format. The easiest
way to include a panel bitmap in your vessel DLL is to include it as a bitmap resource so that
it can be loaded with the Windows LoadBitmap command. The hDLL parameter is the
Windows module instance handle. You can obtain it from the DIIMain callback function, for
example

HINSTANCE hDLL; // global: module handle

BOOL WINAPI DlIMain (HINSTANCE hModule, DWORD ul_reason_for_call,
LPVOID IpReserved)

hDLL = hModule;
}
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If the vessel defines multiple panels, the user can switch between them by using Ctrl-Arrow
keys. Orbiter must know the relative location of bitmaps to each other, so that the correct
panel can be loaded. This connectivity is provided by the oapiSetPanelNeighbours function.
This function tells Orbiter which panels are to the left, right, top and bottom of the current
panel. A value of —1 indicates that no panel is located at that side.

Important: All the panel id’s defined during oapiSetPanelNeighbours must be supported
by ovcLoadPanel . For example, if panel O calls oapiSetPanelNeighbours (2,-1,1,-
1) , then panels 1 and 2 must be handled by ovcLoadPanel

All panels must call the oapiSetPanelNeighbours function, otherwise there is no way for
the user to switch back to a different panel. Panel connectivities should usually be reciprocal,
i.e. if panel 0 defines panel 1as its top neighbour, then panel 1 should define panel 0 as its
bottom neighbour. If only a single panel (panel 0) is supported, calling
oapiSetPanelNeighbours is not necessary.

ovcLoadPanel should return true if the panel was loaded successfully. It should return false
if the panel initialisation failed for any reason.

1.7.2 Defining active panel areas
< To be completed >

1.7.3 The mouse event handler

To intercept mouse events generated by a panel you must implement the
ovcPanelMouseEvent  callback function:

DLLCLBK bool ovcPanelMouseEvent (VESSEL *vessel, int id, int event, int mx,
int my)

-

where vessel is a pointer to the VESSEL interface instance for which the mouse event was
generated, id is the identifier of the panel area for which the event was generated (as
specified in oapiRegisterPanelArea), event specifies the mouse event type, and mxmy are
the panel coordinates at which the event occured.

To make a panel area generate mouse events, the required events must be defined during
the registration of the area. For example, to create an instrument which generates mouse
events whenever the left mouse button is pressed, oapiRegisterPanelArea must be defined
with the PANEL_MOBE_LBDOWIlag. Mouse bitflags can be combined. If you want to
generate an event whenever the left mouse button is pressed or released, use the
PANEL_MOUSE_LBDOWN | PANEL_MOUSE_LBfl#gs.

A panel area defined with PANEL_MOUSE_IGNOREiIl never generate any mouse events.

Important: A button-up event is always generated for the instrument which produced the
preceding button-down event, even if the mouse has been dragged out of the panel area in
the mean time.

The following mouse events are available:
PANEL_MOUSE_LBDOWN Left mouse button pressed down.
PANEL_MOUSE_RBDOWN  Right mouse button pressed down.
PANEL_MOUSE_LBUP Left mouse button released.
PANEL MOUSE_RBUP Right mouse button released.
PANEL_MOUSE_LBPRESSED Left mouse button down
PANEL_MOUSE_RBPRESSEDRIight mouse button down.
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The PANEL_MOUSE_LBPRESSEDd PANEL MOBE RBPRESSERvents are sent
continuously while the buttons are held down. This allows the implementation of mouse-
dragging event, for example to move sliders with the mouse.

1.7.4 The redraw event handler
< To be completed >

2 Planets and moons

2.1 Defining an atmosphere

Planetary atmospheres have a significant influence on the flight behaviour of spacecraft. The
primary atmospheric parameters are temperature, pressure and density as a function of
altitude.

Defining a simple atmospheric model is possible by setting a few parameters in the planet’s
configuration file. More sophisticated models must be coded in the planet's DLL module.

Orbiter currently does not model local atmospheric perturbations (climatic/weather effects).

2.1.1 A simple atmosphere
To define a simple exponentially decaying atmosphere, define the following items in the
planet’s configuration (.cfg) file:
AtmPressure0 : The static atmospheric pressure [Pa] at altitude zero, po.
AtmDensity0 :  The atmospheric density [kg/m?] at altitude zero, pp.
AtmAltLimit :  The altitude above which atmospheric effects can be neglected.
where altitude zero is defined as distance Size (as defined in the configuration file) from the
planet’s centre.

The pressure and density at any altitude h is then calculated by Orbiter as
_Op,e™™ if h <AtmAltLimit o= goef“ if h <AtmAltLimit

P otherwise otherwise

where C =&go, and gy is the gravitational acceleration at altitude zero.
Y

0
This model assumes constant temperature.

2.1.2 A more sophisticated atmosphere

Where the simple model described above is not adequate, the planet's DLL module can be
used to define the Planet_AtmPrm function, which returns atmospheric parameters as a
function of altitude. An example is the implementation of Earth’s standard atmospherel in
Vsop87.dll. This model is commonly used in aviation applications and defines a temperature
distribution as shown in Figure 2 (up to altitude 105 km), consisting of sections of constant
temperature and sections where temperature varies linearly with altitude.
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Figure 2: Temperature distribution in Earth’s standard model (top left), and comparison
between simple exponentially decaying model and standard model for pressure (bottom left)
and density (bottom right). Note that the standard model is only defined up to altitude 105 km.
Above this, Orbiter assumes constant temperature.

The pressure and density in the sections of constant temperature is calculated as
p(h) = p,e @/ FIm 51y = p g TBARDI
1 ’ 1

where h; and p;, p; are the base altitude and corresponding atmospheric parameters for the
section.

The pressure and density in the sections of linearly varying temperature is calculated as
h) = go/(aR) h) [(go/(aR)+1]
h) = , h) =
p(h) = p, EE P =p, n%
where a is the temperature gradient [K/m], and R is the specific gas constant (286.91 JK'lkg'1
for air).

Note that the gravitational acceleration g cannot be assumed constant over the altitude range
required by Orbiter. To take this into account, altitude h in the above equations must be
interpreted as a geopotential altitude. Conversion between geometric altitude hg and
geopotential altitude h is given by
r
r+hg e

where r is the planet’'s mean radius. The graphs in Figure 2 show hg.

Note that even if the atmosphere is defined via a module function, the AtmAltLimit item in the
configuration file is still required to determine the cutoff altitude. The AtmPressureO and
AtmDensity0 values are ignored.

Currently only Earth and Mars feature customised atmosphere models. Other planets will
follow later.

2.1.3 Venus atmosphere

We use the following atmospheric parameter profiles for Venus:

Altitude [km] 0 30 60 70 90 200
Temperature [K] 750 480 230 230 180 180
Pressure [Pa] 9.2M 897k 14.2k 1.85k 18.5 3.4m10™
Density [kg m™] 65 9.9 0.33 0.043 54010* 1.000™
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Atmospheric parameters:

Surface pressure: po = 9.2 MPa
Surface density: 0o =65 kg m™
Ratio of specific heats: y=1.2857

Specific gas constant:

R=188.92JK" kg™

Orbiter defines the upper atmosphere altitude limit as 200 km. The cloud layer is set at an
altitude of 60 km.

2.1.4 The speed of sound

Orbiter uses the equation for an ideal gas to compute the speed of sound as a function of

absolute temperature:
a=.\RT

where yis the ratio of specific heat at constant pressure c,, and specific heat at constant
temperature, c,, for the gas, y =c, /c, For air at normal conditions, y= 1.4. This value is used

by Orbiter as a default. It can be overridden by setting the AtmGammaparameter in the
planet’s configuration file.

Ris the specific gas constant. By default, Orbiter uses the value for air, 286.91 J K* kg™. This
can be overridden by setting the AtmGasConstant parameter in the planet’s configuration
file.

Mach number: The Mach number is an essential parameter in aerodynamics. It expresses a
velocity v in units of the current speed of sound:
M = via

1. J. D. Anderson, Jr. “Introduction to Flight”, 4™ edition, McGraw-Hill, 2000.
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