ORBITER
APl Reference Manual

© 2001-2003 Martin Schweiger
www.medphys.ucl.ac.uk/~martins/orbit/orbit.html

SP?CE H'ghm B v £-rirignr 05 November 2003

1 INTRODUGCTION ..ottt ettt ettt e e rab e e s et et e e et b e e e ebbe e e e enreas 3
2 REQUIREMENTS ...ttt ettt ettt e e e e e s nn e ennne e e e e e 3
3 PREPARATIONttt e e ekttt e e s st bt e e e s aabe e s sabneeeeaae 3
4 SDK FILES .. ittt e et e e skt et e b bt s s 3
5 COMPATIBILITY ISSUES.......oiiiiiiiiiieiiieit ettt rre e 4
6 CON CEPPT ettt ettt ettt e e ettt e s kbt e e sttt e e s bbbt e e e anbneeas 4
7 SOME USEFUL HINTS ...ttt e e e e e s 5
8 SAMPLE MODULESottt saeee s 5
9 DATA TYPES .ttt ettt ettt e e s sttt e e e s bt et e e ste e e e s abaeeeene 5
1O CONST ANT Sttt e ek e e s e bt e e e st e e s e b e s e nre e e e e nannes 10
11 CLASS VESSEL. ...ttt ettt ettt et nre e e e 11
11.1 CONSIIUCHION/CIEALION ...ttt ittt ettt st e e st e e e e ebee e e 11
11.2 Vessel parameters and capabilitieS ... 12
11.3 CUMENt VESSEI STALUS ...eeeiiiiiie ittt sttt e st e e s e e e 18
11,4 SHALE VECIOIS ..ottt r e e e e s s s e e s s 23
11.5 FUEI MANAGJEMENTottt e e e e et et e e e e e e e e e abb b e e e e e e e e e sabbneeeeas 25
11.6 ThruSter MANAGEMENTooiiiiiiiiii ettt e e e e e bbb e e e e s bbb e e e e e e e e s e annneeee s 30
11.7 DocKing POt MaNAQEMENT.........ueiiiiiaiiiiitiie ettt e e e e e e e e e s bbb e e e e e e e e e sneebeees 48
11.8 AttaChment Man@QEMENT...........uiiiiii ittt e e e e e e e e e e e e snnebeees 50
11.9 Orbital €lEMENTS. ... 54
11.10 Surface-relative PAramMELEISoii i 56
I O I = Vg o1 . = LT PSS 57
11.12 AtMOSPNETIC PAFAMELEIS. . .eiiiiiiiiie ettt ettt e e et e e s sbb e e e e aeee 59
11,13 ACTOUYNAMICS ...eveeeeitiiee ettt e ettt e et e e e ettt e e e sabb e e s bt e e e e aab bt e e e anbb e e e e e snbbeesnbbe e e e enaeas 60
11.14 Surface CONACT PArAMELEIS.uiii ittt sbbe e 66
11.15 Communications/radio INTEITACEcooiiiiiieiii e 67
11.16 Visual ManipUIBLION........cooiiiiiiii ettt e e e e e e e e e e e s eeeee s 68
11,07 PArtICIE SYSTEIMSeiiiiiiiiee ittt e ettt e e s bbbt e e e e e e e e aanbb e e e e e e e nnnbneeeeas 75
12 CLASS MED ...ttt e 77
12,1 CONSIIUCHION/CIEALION ... viiieiiieite ettt ettt e e st e e e e ebee e e 77
12.2 DISPIAY FEPAINTeeiiiiiiiie ittt ettt e e s st e e e e bbb e e e e nneas 77
G T 1 o1 | S PP PP RP PP 80
12.4 LOAO/SAVE STALE.......cctveiieiiieee ettt ettt e et e s e e s n e e e n e 81
13 CLASS GRAPHMEDcoiitiiiiitt et 82
13,1 CONSIIUCHION/CIEALION ... veiieiiieit ettt et st e e st e e e e nbeeeeneee 82
13.2 Graph/plot MANAGEMENTcoiiiiiiie ittt e e e 82

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 1

14 PLUGIN CALLBACK FUNCTION REFERENCEccooiiiiiiiiiiiee e 85

15 VESSEL CALLBACK FUNCTIONS. ...ttt 86
16 PLANET CALLBACK FUNCTION REFERENCEcccoiiiiiiiie e 95
16.1 OrDital PArGMELEISceiii ittt ettt e e e e e e e e e e e s sabeeeeeas 96
16.2 PhySICal PArAMELEIS ..ot e e e 97
17 APIFUNCTION REFERENCEcoctiiiiiiiee ettt 97
17.1 Obtaining ObJECt NANAIESccoiiiiiiiiiie e 97
17.2 GeNeriC ODJECT PAFAMELEIS ...ociiiiii ettt e e st e e e nabeeeeees 103
17.3 Vessel fuel ManagemMENTeii it e e 104
17.4 ODJECE SALE VECLOIS ...eeiiieiiiiiitie it e ettt e ettt e e e e e st e et e e e e e e s e e anbbb e e e e aaeeesaneees 106
17.5 Surface-relative PAramEters ... 108
17.6 ACTOUYNAIMICSiiiiiieiiee ettt et e e e e e et et e e s e bbb b ettt e e e e e e saeanbbe e e e e e s e aannbenneeas 111
L17.7 ENQING SEALUSoeeiieieiee ettt e e e e ettt e e e s bbb b ettt e e e e e e s e sanabeeeees s e annnbeeneeas 114
17.8 Functions for planetary DOIES..........ccuuviiiiiiiii e 117
17.9 Surface base fUNCLONScoiiiiiii e 119
17.10 Navigation radio transmitter fUNCLONSooiiiiiiiiiiii e 121
17.21 SIMUIALION TIMIE 1.eeiiiiiieie ettt ettt ettt e e s st e e e e e sbbe e e e e sabbeeesabneeeeanes 123
17.12 Camera fUNCHIONSueeie ittt et e et e e e s bt e e e s sabae e e e aneeeesaaes 125
17.13 KEYDOAN INMPUL.....eeiiiiiiiie ittt ettt e e st e e e s seb e e e e e sabbeeesabneeeeanes 128
17.14 MeSh MANAGEIMENTeiiiiiiiiie ettt ettt e et e e s e bb e e e e snbeeeanees 128
17.15 HUD, Panel and MFD Man@gemMeNtcccceeuiiiiruiiiieeaaiiiieeeeaaa e e e seiiiieeeeeaeesenneeeeeeas 129
17.16 CUSIOM MFD MOUESccoiiiiieeiiiiee ettt e e eanee 136
17.17 Fil& MANAGEIMENTueiiiiieiiiite ettt e ettt e e e e et bbbttt e e e e e s e bbbbe e e e e e e e e s abeeaeaeas 138
L7.08 USEE INPUL. e etteiee ettt ettt e ettt e e e e e e s et et e e e e e e s e e b bbbt e e e e e e e e s e anaeeeeeeesesnnrnnneeas 139
R BT o 18 o o oo TP TP PUPPP TR 142
18 CUSTOM DIALOG CONTROLSciiiiiiiiiiee ittt e e 142
18.1 GAUGE CONIOL ...eeiiiiiiieie ettt e et e st e e s s e e e s sn e e e e snneesnnnneeeeanes 143
19 STANDARD ORBITER MODULES ...ttt 145
T R Vo 1 OO OO PP PP PR PPP PP PTPP 145
R 0 I - PSPPSR 146
20 INDEX oottt ettt e e et s 146

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 2

1 Introduction

This reference document contains the specification for the Orbiter Programming Interface. It is
not required for running Orbiter.

The programming interface allows the development of third party modules to enhance the
functionality of the Orbiter core. Examples for modules are:

» Additional instruments, simulation monitoring devices, and spacecraft controls
* Custom flight models

» Custom instrument panels

* Multiplayer modules

» Custom calculation of planetary positions

The APl is in an early stage of development. Future versions will probably change
significantly, mainly by expanding the list of supported functions.

2 Requirements
The following components are required to build an addon module:

* The latest Orbiter package

* The Orbiter SDK libraries and include files (contained in the Orbiter SDK package)

* A C++ compiler running under Windows (the SDK was developed with VC++, but other
compilers should also work)

3 Preparation

» Install the Orbiter package, if you haven't already done so.

» Install the Orbiter SDK package. This will generate the OrbiterSDK subdirectory
containing the header files and libraries required for building plugins.

» Create a project for your plugin DLL (the method depends on the compiler used). Make
sure you use thread-safe system libraries (“Multithread DLL"). Add OrbiterSDK\include to
the include search path, and add OrbiterSDK\lib\Orbiter.lib and
OrbiterSDK\lib\Orbitersdk.lib to the link stage.

* Write the code for your plugin, compile and link it, and move the resulting DLL to the
Orbiter\Modules\Plugin folder.

* Run Orbiter, go to the Modules tab in the launchpad dialog, and activate your new plugin.

4 SDK files
The following files are contained in the Orbiter development Kit:
Orbitersdk\doc* SDK documentation
Orbitersdk\include

Orbitersdk.h The interface header file

Orbitersdk\lib

Orbitersdk.lib The DLL auxiliary library

Orbiter.lib The Orbiter API library
Orbitersdk\tools* Tools for model and texture generation
Orbitersdk\samples* Sample source code

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 3

5 Compatibility issues

Orbiter will change its addon compatibility strategy beginning with the next release. In the
future, each Orbiter release will run only addons which have been compiled with the SDK of
that release. To migrate an addon to a new Orbiter release will therefore require a
recompilation with the new SDK. This should help to keep addons up to date and reduce
compatibilty problems. At the same time, this will allow me to purge obsolete API functions.

Latest release

* The latest release introduces a new more realistic atmospheric flight model. As a result,
some aerodynamics-related vessel functions have become obsolete and are retained for
backward compatibility only.

SetWingAspect
GetWingAspect
SetWingEffectiveness
GetWingEffectiveness
SetLiftCoeffFunc

The old atmospheric flight model will be dropped in a future version, so developers should
migrate to the new model if they want to compile vessel addons against future API
versions.

Definition of terms used in this document:

Module
A module is a dynamic link library (DLL) which extends or replaces functionality of the
core Orbiter program. Modules interact with Orbiter via callback functions conforming to
the public interface defined below.

Plugin
Plugins are generic modules not linked to any particular object. They may include
popup windows for displaying or manipulating general simulation information,
multiplayer interfaces, etc. Plugins can be activated or deactivated by the user via the
Modules tab in the Orbiter Launchpad dialog.

Planet module
Planet modules are linked to planets or moons and are used specifically for updating
planetary position and velocity data. Planet modules are referenced via the
planet/moon’s configuration file.

Vessel module
Vessel modules are linked to specific spacecraft, to allow customisation of the vessel's
behaviour. Vessel modules are referenced via the vessel class configuration file.

In all active modules, Orbiter executes callback functions corresponding to certain simulation
conditions. For example, whenever the simulation window is opened after the user presses
the Orbiter button in the launchpad dialog, Orbiter calls the opcOpenRenderViewport callback
function in all plugins to allow initialisation routines to be performed. A plugin doesn't need to
implement all callback functions defined in the interface. However, the programmer is
responsible for implementing callback functions in a consistent way. For example, if the plugin
allocates memory for data in opcOpenRenderViewport, then this memory should be
deallocated in opcCloseRenderViewport. The SDK allows access to core parts of the Orbiter
simulator, and bugs in active plugins may cause the program to crash.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 4

All callback functions use a C stack frame, so they need to be defined as extern “C” for
compilation with a C++ compiler. For convenience the DLLCLBK macro is provided in
Orbitersdk.h to use as maodifier for callback function definitions.

The code for the callback functions may contain calls to the Orbiter API functions, to obtain
and set simulation parameters such as object positions and speed, simulation time, etc. API
functions use an oapi (“orbiter API") prefix. API functions use a C++ stack frame.

7 Some useful hints

* Your plugin should not open popup windows or dialogs outside the render window when
running in fullscreen mode. Check the fullscreen flag passed to the
opcOpenRenderViewport callback function to see whether it is safe to open a window.

» If you intercept a callback function which is called at each frame (like opcTimestep),
make it as efficient as possible, or simulation performance will suffer.

8 Sample modules

The Orbitersdk\samples folder contains a few projects which can be used as a starting point

for creating your own plugins. To compile a sample using VC++:

* Load the project file (*.dsw) into VC++.

» Build the project.

e Copy the DLL from the Debug or Release subdirectory into the Orbiter\Modules\Plugin
directory (plugins) or into the Orbiter\Modules directory (planet and vessel modules).

* To activate new plugins, run Orbiter, activate the plugin under the Modules tab, and
launch the simulation.

* New planet or vessel modules are used automatically if they are referenced by the
relevant definition files.

DialogTemplate
A trivial example demonstrating the use of Windows-style dialog boxes and custom functions
in Orbiter.

Rcontrol
A more sophisticated dialog example. This plugin opens a dialog which allows to switch
between spacecraft and remotely control the engines.

FlightData
Opens a dialog which allows to monitor vessel flight data.

CustomMFD
An example for an MFD plugin. This implements the Ascent profile MFD.

Deltaglider
Orbiter’s standard implementation of the vessel module for the Delta-glider.

Atlantis
The complete code for Orbiter’s reference implementation of the Atlantis (Space Shuttle)
module, including modules for post-separation SRBs (solid rocket boosters) and main tank.

9 Data types

OBJHANDLE
A handle for a logical object. Objects can be vessels, orbital stations, spaceports,
planets, moons or suns.

VISHANDLE
A handle for a visual object. These are representations for logical objects for the
purpose of rendering. Visuals exist only if the object is within visual range of the
camera, and are created and deleted as needed.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 5

MESHHANDLE
A handle for object meshes.

SURFHANDLE
A handle for a bitmap surface. Surfaces are currently used for drawing instrument
panel areas.

THRUSTER_HANDLE
Handle for (logical) thruster definitions.

THGROUP_HANDLE
Handle for thruster groups.

PROPELLANT_HANDLE
Handle for propellant resources.

NAVHANDLE
Handle for a navigation radio transmitter (VOR, ILS, IDS, XPDR)

VECTOR3
Double precision vector 0 R®

Synopsis:
typedef union {

double data[3];
struct {doublex,y, z; };
} VECTORS;

MATRIX3
Double precision matrix 0 R*®

Synopsis:
typedef union {

double data[9];

struct { double m11, m12, m13,
m21, m22, m23,
m31, m32, m33; };

} MATRIX3;
ELEMENTS
Keplerian orbital elements.
Synopsis:
typedef struct {
double a; semi-major axis [m]
double e; eccentricity
double i; inclination [rad]
double theta; longitude of ascending node [rad]
double omegab; longitude of periapsis [rad]
double L; mean longitude at epoch
} ELEMENTS;
ATMPARAM
Atmospheric parameters.
Synopsis:
typedef struct {
double T; temperature [K]

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger

double p; pressure [Pa]
double rho; density [kg/m"3]
} ATMPARAM,;

ENGINESTATUS
Defines the thruster status for a spacecraft

Synopsis:
struct {
double main; main/retro thruster level [-1,+1]
double hover; hover thruster level [0,+1]
int attmode; attitude thruster mode [O=rot, 1=lin]

} ENGINESTATUS;

ENGINETYPE
Enumerates thruster types

Synopsis:
typedef enum {

ENGINE_MAIN,

ENGINE_RETRO,

ENGINE_HOVER,

ENGINE_ATTITUDE
} ENGINETYPE;

EXHAUSTTYPE
Enumerates engine groups for exhaust rendering.

Synopsis:
typedef enum {

EXHAUST_MAIN,

EXHAUST_RETRO,

EXHAUST_HOVER,

EXHAUST_CUSTOM
} EXHAUSTTYPE;

PARTICLESTREAMSPEC
Defines the parameters of a particle stream.

Synopsis:

typedef struct {
DWORD flags;
double srcsize;
double srcrate;
double v0;
double srcspread;
double lifetime;
double growthrate;
double atmslowdown;
enum LTYPE { EMISSIVE, DIFFUSE } Itype;
enum LEVELMAP { LVL_FLAT, LVL_LIN, LVL_SOQRT,

LVL_PLIN, LVL_PSQRT } levelmap;

double Imin, Imax;
enum ATMSMAP { ATM_FLAT, ATM_PLIN } atmsmap;
double amin, amax;
SURFHANDLE tex;

} PARTICLESTREAMSPEC;

flags currently not used
srcsize particle size at creation [m]

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger

srcrate

vO
srcspread
lifetime
growthrate
atmslowdown
Itype
levelmap
Imin, Imax
atmsmap
amin, amax

average particle generation rate [Hz]

average particle emission velocity [m/s]

emission velocity distribution randomisation

average particle lifetime [s]

particle growth rate [m/s]

deceleration rate 8in atmosphere, defined as v = v, e

lighting type (EMISSIVE or DIFFUSE)

mapping between level parameter and particle opacity.
minimum and maximum levels for alpha mapping.

mapping between atmospheric parameters and particle opacity.
minimum and maximum atmospheric values for alpha mapping.

See the Programmer’s Guide for more details on these parameters.

VESSELSTATUS

Defines vessel status parameters at a given time. This is version 1 of the vessel status
interface. It is retained for backward compatibility, but new modules should use
VESSELSTATUS2 instead to exploit the latest vessel capabilities such as individual
thruster and propellant resource settings.

Synopsis:

typedef struct {
VECTORS3 rpos;
VECTORS rvel;
VECTORS vrot;
VECTORS arot;
double fuel;
double eng_main;
double eng_hovr;
OBJHANDLE rbody;
OBJHANDLE base;

int port;
int status;
VECTORS vdata[10];
double fdata[10];
DWORD flag[10]
} VESSELSTATUS;
rpos position relative to reference body in ecliptic frame
rvel velocity relative to reference body in ecliptic frame
vrot rotation velocity about principal axes in ecliptic frame
arot vessel orientation against ecliptic frame (see notes)
fuel fuel level [0...1]
eng_main main engine setting [-1...1]
eng_hovr hover engine setting [0...1]
rbody handle of reference body
base handle of docking or landing target
port designated docking or landing port
status O=freeflight, 1=landed, 2=taxiing, 3=docked, 99=undefined
vdata vector buffer for future extensions. Currently used:
vdata[0] contains landing parameters if status==1:
vdata[0].x = longitude [rad], vdata[0].y = latitude [rad] of landing site,
vdata[0].z = orientation of vessel [rad].
fdata Not currently used.
flag[0]&1 0: ignore eng_main and eng_hovr entries, do not change thruster

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger

settings
1: set THGROUP_MAIEnd THGROUP_RETR®ruster groups from
eng_main , and THGROUP_HOVERM eng_hovr .

flag[0]&2 0: ignore fuel entry, do not change fuel levels

1: set fuel level of first propellant resource from fuel
flag[1]-flag[9]

Not currently used.

VESSELSTATUS?2
Version 2 of the vessel status interface. This interface has been introduced in post-
020419 versions.

Synopsis:
typedef struct {

DWORD version;
DWORD flag;
OBJHANDLE rbody;
OBJHANDLE base;
int port;
int status;
VECTORS rpos;
VECTORS rvel;
VECTORS vrot;
VECTORS arot;
double surf_Ing;
double surf_lat;
double surf_hdg;
DWORD nfuel;
struct FUELSPEC {
DWORD idx;
double level,;
} *fuel;
DWORD nthruster;
struct THRUSTSPEC {
DWORD idx;
double level,;
} *thruster;
DWORD ndockinfo;
struct DOCKINFOSPEC {

DWORD idx;

DWORD ridx;

OBJHANDLE rvessel;

} *dockinfo;
DWORD xpdr;
} VESSELSTATUS2;
Parameters:

version interface version (2)
flag bitflags (see below)
rbody handle of reference body
base handle of docking or landing target
port designated docking or landing port
status O=active, 1=landed (inactive), 3=docked to station
rpos position relative to reference body (rbody) in ecliptic frame
rvel velocity relative to reference body in ecliptic frame
vrot rotation velocity about principal axes in ecliptic frame
arot vessel orientation against ecliptic frame
surf_Ing longitude: vessel position in equatorial coordinates of rbody [rad]
surf_lat latitude: vessel position in equatorial coordinates of rbody [rad]
surf_hdg heading: vessel orientation on the ground
nfuel number of entries in the fuel list
fuel propellant resource list

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 9

fuelli].idx propellant resource index (0 < i < nfuel)
fuelli].level propellant resource level [0..1]

nthruster number of entries in the thruster list

thruster thruster definition list
thrusterf[i].idx thruster index (0 < i < nfuel)
thrusterfi].level thruster level [0..1]

ndockinfo number of entries in the dockinfo list
dockinfoli].idx dock index (0 < i < ndockinfo)
dockinfol[i].ridx dock index of docked vessel
dockinfo[i].rvessel handle of docked vessel

xpdr transponder setting (in steps of 0.05kHz from 108.00kHz)

The meaning of the bitflags in flag depends on whether the VESSELSTATUS2
structure is used to get (GetStatus) or set (SetStatus) a vessel status. The
following flags are currently defined:

e VS_FUELRESET
Get — not used
Set —reset all fuel levels to zero, independent of the fuel list.
e VS_FUELLIST
Get — request a list of current fuel levels in fuel . The module is responsible
of deleting the list after use.
Set — set fuel levels for all resources listed in fuel
¢ VS _THRUSTRESET
Get — not used
Set — reset all thruster levels to zero, independent of the thruster list
¢ VS _THRUSTLST
Get — request a list of current thrust levels in thruster. The module is
responsible of deleting the list after use.
Set — set thrust levels for all thrusters listed in thruster.
¢ VS _DOCKINFOLIST
Get — request a docking port status list in dockinfo. The module is
responsible of deleting the list after use.
Set — initialise docking status for all docking ports in the list.

Notes:

« surf Ing ,surf lat andsurf_hdg are currently only defined if the
vessel is landed (status=1)

» arot=(a,B,y) contains angles of rotation [rad] around X,y,z axes in ecliptic
frame to produce this rotation matrix R for mapping from the vessel’s local
frame of reference to the global frame of reference:

a 0 0 [eosB 0O =-sinBdcosy siny 0O

Rzgl cosa sina%o 1 0 %—siny cosy OE

B -sina cosaF$inB 0 cosBEH 0 0 1E
such that
rglobal =R rlocal +p
where p is the vessel's global position.
e The status field is set to 3 (docked) only if the vessel is docked to a

traditional orbital station. The docking between vessels is defined by
appropriate referencing in the dockinfo list, with status set to 0 (freeflight).

Navmode constants

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 10

NAVMODE_KILLROT engage attitude thrusters to kill rotation
NAVMODE_HLEVEL engage attitude thrusters to keep level with horizon
NAVMODE_PROGRADE engage attitude thrusters to turn prograde
NAVMODE_RETROGRADE engage attitude thrusters to turn retrograde
NAVMODE_NORMAL engage attitude thrusters to turn orbit-normal
NAVMODE_ANTINORMAL engage attitude thrusters to turn orbit-antinormal
NAVMODE_HOLDALT engage hover thrusters to maintain altitude

HUD mode constants
HUD_NONE
HUD_ORBIT
HUD_SURFACE
HUD_DOCKING

MFD mode constants
MFD_NONE
MFD_ORBIT
MFD_SURFACE
MFD_MAP
MFD_HSI
MFD_LANDING
MFD_DOCKING
MFD_OPLANEALIGN
MFD_OSYNC
MFD_TRANSFER
MFD_USERTYPE

MFD identifier constants
MFD_LEFT
MFD_RIGHT
MFD_USER1
MFD_USER2
MFD_USER3

11 Class VESSEL

This class constitutes the interface with Orbiter’s internal vessel implementation, and provides
access to the various status parameters and methods of individual spacecraft. Typically, an
instance of VESSEL or a derived class will be constructed in each vessel module. Examples
for various applications of the VESSEL class can be found in the sample vessel module
implementations in the Orbitersdk\samples folder.

Public member functions

11.1 Construction/creation

VESSEL
Constructor. Creates a vessel interface instance from a vessel handle.

VESSEL (OBJHANDLE hVessel, int flightmodel)
Parameters:
hVessel vessel handle

flightmodel level of realism requested. (O=simple, 1=realistic)

Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 11

e This function creates an interface to an existing vessel. It does not create a
new vessel. New vessels are created with the oapiCreateVessel and
oapiCreateVesselEx functions.

e The VESSEL constructor (or the constructor of a derived specialised vessel

class) will normally be invoked in the ovclinit callback function of a vessel
module:

class MyVessel: public VESSEL

/I MyVessel interface definition

s

DLLCLBK VESSEL *ovclnit (OBJHANDLE hvessel, int flightmodel)
{

}

DLLCLBK void ovcExit (VESSEL *vessel)

return new MyVessel (hvessel, flightmodel);

delete (MyVessel*)vessel;

}

« The VESSEL interface instance created in ovclnit should be deleted in
ovcExit.

See also:
oapiCreateVessel, oapiCreateVesselEx, ovclnit

Create

OEJEIs. This function has been replaced by oapiCreateVessel and
oapiCreateVesselEX.

GetHandle
Returns a handle to the vessel object.

Synopsis:
const OBJHANDLE GetHandle (void) const

Return value:
vessel handle, as passed to the VESSEL constructor.

Notes:
* The handle is useful for various API function calls.

11.2 Vessel parameters and capabilities

GetName
Returns the vessel’'s name.

Synopsis:
char *GetName (void) const

Return value:
Pointer to vessel’'s name.

GetClassName
Returns the vessel’s class name.

Synopsis:
char *GetClassName (void) const

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 12

Return value:
Pointer to vessel’s class name.

GetFlightModel
Returns the requested realism level for the flight model.

int GetFlightModel (void) const

Return value:
Realism level. These values are currently supported:
0 = simple
1 = realistic

GetEnableFocus
Returns true if the vessel can receive the input focus, false otherwise.

Synopsis:
bool GetEnableFocus (void) const

Return value:
Focus enabled status.

GetSize
Returns the vessel's mean radius.

Synopsis:
double GetSize (void) const

Return value:
Vessel mean radius [m].

GetEmptyMass
Returns vessel's empty mass excluding fuel. Equivalent to the oapiGetEmptyMass API
function.

Synopsis:
double GetEmptyMass (void) const

Return value:
Vessel empty mass [kg].

GetCOG_elev
Returns the altitude of the vessel’s centre of gravity over ground level when landed [m].

Synopsis:
double GetCOG_elev (void) const

Return value:
elevation of vessel’s centre of mass [m].

GetCrossSections
Returns the vessel's cross sections projected in the direction of the vessel’s principal
2
axes [m7]

void GetCrossSections (VECTORS &cs) const

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 13

Parameters:
cs vector receiving the cross sections of the vessel's projection into the
y-Z, X-z, and x-y planes, respectively [mz]

GetPMI
Returns principal moments of inertia, mass-normalised [m?]

void GetPMI (VECTORS3 &pmi) const
Parameters:

pmi Diagonal elements of the inertia tensor
Notes:

For the meaning of the pmi vector, see SetPMI .

GetCameraOffset
Returns the camera position for internal (cockpit) view.

Synopsis:
void GetCameraOffset (VECTOR3 &ofs) const
Parameters:
ofs camera offset in the vessel’s local frame of reference [m,m,m]

SetEnableFocus
Set the vessel’s ability to receive the input focus.

void SetEnableFocus (bool enable) const

Parameters:
enable focus enabled status

Notes:
* The default focus status before the first call to SetEnableFocus is true,
unless overridden by the config file.

SetSize
Sets the vessel's mean radius [m].

Synopsis:

void SetSize (double size) const
Parameters:

size vessel mean radius [m]
Notes:

e This value is used for visibility calculations, but normally has no influence on
the actual visual representation of the object (which is defined by the mesh)
unless the module performs mesh scaling operations.

SetEmptyMass

Sets the vessel's empty mass excluding fuel. Equivalent to the oapiSetEmptyMass API
function.

void SetEmptyMass (double m) const

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 14

Parameters:

m vessel empty mass [kg]
SetCOG_elev
OlEe[El(=. Sets the altitude of the vessel’s centre of gravity over ground level when
landed [m].
Synopsis:
void SetCOG_elev (double h) const
Parameters:
h elevation of the vessel's centre of gravity above the surface plane
when landed [m].
Notes:

e This function is obsolete and has been replaced by SetTouchdownPoints.

SetTouchdownPoints
This defines 3 surface contact points for ground contact calculations (e.g. the points
where the landing gear touches the ground).

Synopsis:
void SetTouchdownPoints (
const VECTORS &pt1,
const VECTORS &pt2,
const VECTORS3 &pt4) const

Parameters:
ptl touchdown point of nose wheel (or equivalent)
pt2 touchdown point of left wheel (or equivalent)
pt3 touchdown point of right wheel (or equivalent)
Notes:

e The points are the positions at which the vessel's undercarriage (or
equivalent) touches the surface, specified in local vessel coordinates.

e The points should be specified such that the cross product pt3-ptl x pt2-ptl
defines the horizon UP direction for the landed vessel (given a left-handed
coordinate system).

SetSurfaceFrictionCoeff
Sets the coefficients of surface friction which define the deceleration forces during
taxiing. mu_lIng is the coefficient acting in longitudinal (forward) direction, mu_lat the
coefficient acting in lateral (sideways) direction. The friction forces are proportional to
the coefficient and the weight of the vessel:

F friction = HG

Synopsis:
void SetSurfaceFrictionCoeff (
double mu_Ing,
double mu_lat) const

Parameters:
mu_lIng friction coefficient in longitudinal direction
mu_lat friction coefficient in lateral direction
Notes:

* The higher the coefficient, the faster the vessel will come to a halt.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 15

* Typical parameters for a spacecraft equipped with landing wheels would be
mu_Ing = 0.1 and mu_lat = 0.5. If the vessel hasn’t got wheels, mu_Ing =
0.5.

e The coefficients should be adjusted for belly landings when the landing gear
is retracted.

e The longitudinal and lateral directions are defined by the touchdown points:

Tng T Mo S, \MLY M2 Vet T M2 M

See also:
SetTouchdownPoints

SetCrossSections
Sets the vessel's cross sections projected in the direction of the vessel’s principal axes
[m?]

void SetCrossSections (const VECTORS3 &cs) const

Parameters:
cs vector of cross sections of the vessel’s projection into the y-z, x-z, and x-
y planes, respectively [m?]

SetPitchMomentScale
Sets the magnitude of the moment acting on the vessel's pitch angle which rotates the
vessel’s longitudinal direction towards the airspeed vector.

Synopsis:

void SetPitchMomentScale (double scale) const
Parameters:

scale scale factor for pitch moment

SetBankMomentScale
Sets the magnitude of the moment acting on the vessel's bank angle which rotates the
vessel’s longitudinal direction towards the airspeed vector.

Synopsis:
void SetBankMomentScale (double scale) const
Parameters:
scale scale factor for bank moment
SetPMI

Sets principal moments of inertia, mass-normalised [m?].

void SetPMI (const VECTOR3 &pmi) const
Parameters:

pmi Principal moments of inertia
Notes:

* The principal moments are the diagonal elements of the inertia tensor in a
frame of reference where the off-diagonal elements are zero.
e The elements of pmi should be calculated as follows:

where M is the total vessel mass, pis the density, and the integration is

MRS T g J PNy e

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 16

performed over the vessel volume. The reference frame is chosen so that

the off-diagonal elements of the tensor vanish.
e The shipedit utility allows to calculate the inertia tensor from a mesh,

assuming a homogeneous mass distribution.

void SetTrimScale (double) const
Sets the max. magnitude of the pitch trim control.

void SetTrimScale (double scale) const

Parameters:
scale pitch trim scaling factor

Notes:
e If scale is set to zero (default) the vessel does not have a pitch trim control.

SetCameraOffset
Sets the camera position for internal (cockpit) view.

Synopsis:

void SetCameraOffset (const VECTOR3 &ofs) const
Parameters:

ofs camera offset in the vessel’s local frame of reference [m,m,m]
Notes:

e Currently the camera direction in cockpit view is always the vessel’s local +z
axis (forward).

ParseScenarioLine
Process an input line from a scenario file by updating a VESSELSTATUS status struct.

void ParseScenarioLine (

char *line,
VESSELSTATUS *status) const

Parameters:
line line to be interpreted

status status parameter set

Notes:
* Normally, this function will be called from within the body of ovcLoadState to

allow Orbiter to process any generic status parameters which are not

processed by the module.
e This function is retained for backward compatibility. New modules should

use the ovcLoadStateEx and ParseScenarioLineEx functions.

ParseScenarioLineEx
Process an input line from a scenario file by updating a VESSELSTATUSKX status struct

(x=2).

void ParseScenarioLineEx (char *line, void *status) const
Parameters:

line line to be interpreted

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 17

status status parameters (points to a VESSELSTATUSX variable).

Notes:

e This function should be used within the body of ovcLoadStateEx.

e The parser in ovcLoadStateEx should forward all lines not recognised by the
module to Orbiter via ParseScenarioLineEx to allow processing of standard
vessel settings.

e ovcLoadStateEx currently provides a VESSELSTATUS2 status definition.
This may change in future versions, so status should not be used within
ovcLoadStateEx other than passing it to ParseScenarioLineEXx.

See also:
ovcLoadStateEx
11.3 Current vessel status
GetStatus

Returns vessel's current status parameters.

Synopsis:

void GetStatus (VESSELSTATUS &status) const
Parameters:

status struct receiving current vessel status
Notes:

¢ For a definition of VESSELSTATUS see Section 9.

GetStatusEx
Returns vessel's current status parameters in a VESSELSTATUSX structure (version x
>2).

void GetStatusEx (void *status) const

Parameters:
status pointer to a VESSELSTATUSKX structure

Notes:

e This method can be used with any VESSELSTATUSX interface version
supported by Orbiter. Currently only VESSELSTATUS2 is supported.

e The version field of the VESSELSTATUSKX structure must be set by the
caller prior to calling the method, to tell Orbiter which interface version is
required.

< In addition, the caller must set the VS_FUELLIST, VS_THRUSTLIST and
VS_DOCKINFOLIST bits in the flag field, if the corresponding lists are
required. Otherwise Orbiter will not produce these lists.

e If VS_FUELLIST is specified and the fuel field is NULL, Orbiter will allocate
memory for the list. The caller is responsible for deleting the list after use. If
the fuel field is not NULL, Orbiter assumes that a list of sufficient length to
store all propellant resources has been allocated by the caller.

e The same applies to the thruster ~ and dockinfo lists.

See also:
SetStateEx, VESSELSTATUS2

DefSetState

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 18

Calls the default Orbiter vessel state initialisation with the specified status.

Synopsis:
void DefSetState (const VESSELSTATUS *status) const

Parameters:
status vessel status parameters.

Notes:
e This function is most commonly used in ovcSetState to enable default state

initialisation.
DefSetStateEx

Calls the default Orbiter vessel state initialisation with the provided VESSELSTATUSX
interface (version x = 2).

void DefSetStateEx (const void *status) const

Parameters:
status pointer to a VESSELSTATUSKX structure

Notes:

e status must point to a VESSELSTATUSKX structure. Currently only
VESSELSTATUS?2 is supported, but future Orbiter versions may introduce
new interfaces.

* Typically, this function will be called in the body of ovcSetStateEx to enable
default state initialisation.

SaveDefaultState
Causes Orbiter to write default vessel parameters to a scenario file.

Synopsis:

void SaveDefaultState (FILEHANDLE scn) const
Parameters:

scn scenario file handle
Notes:

e This method should normally only be invoked from within ovcSaveState, to
allow Orbiter to save its default vessel status parameters.

« If ovcSaveState is implemented but does not call SaveDefaultState, no
default parameters are written to the scenario.

GroundContact
Flag indicating contact with a planetary surface.

Synopsis:
bool GroundContact (void) const

Return value:
true indicates ground contact (at least one of the vessel's touchdown reference
points is in contact with a planet surface).

GetMass
Returns current (total) vessel mass. Equivalent to the oapiGetMass API function.

Synopsis:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 19

double GetMass (void) const

Return value:
Current vessel mass [kg].

GetAttitudeMode
Returns the current attitude thruster mode.

int GetAttitudeMode (void) const

Return value:
Current attitude mode (O=disabled or not available, 1=rotational, 2=linear)

SetAttitudeMode
Set the vessel’s attitude thruster mode.

Synopsis:
bool SetAttitudeMode (int mode) const
Parameters:
mode attitude mode (O=disable, 1=rotational, 2=linear)

Return value:
Error flag; false indicates error (requested mode not available)

GetADCtrIMode
Returns current input mode for aerodynamic control surfaces (elevator, rudder,
ailerons).

DWORD GetADCtrIMode (void) const

Return value:
Current control mode

Notes:
e The returned control mode contains bit flags as follows:
bit O: elevator enabled/disabled
bit 1: rudder enabled/disabled
bit 2: ailerons enabled/disabled
Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates
fully enabled.

SetADCtrIMode
Set input mode for aerodynamic control surfaces.

Synopsis:

void SetADCtriMode (DWORD mode) const
Parameters:

mode control mode
Notes:

e See GetADCtrIMode() for the meaning of the bit-flags in mode,.

GetAttitudeRotLevel
Returns the current thrust level for attitude thruster groups in rotational mode.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 20

void VESSEL::GetAttitudeRotLevel (VECTOR3 &th) const

Parameters:
th vector containing thrust levels (-1 to 1)

Notes:
e The components of th are:
th.x — attitude thrusters rotating around lateral axis
th.y — attitude thrusters rotating around vertical axis
th.z — attitude thrusters rotating around longitudinal axis
< To obtain the actual thrust force magnitudes [N], the absolute values must
be multiplied with the max. attitude thrust (see GetMaxThrust())

See also:
VESSEL::GetMaxThrust(), VESSEL::GetAttitudeLinLevel(),
VESSEL::GetAttitudeMode()

SetAttitudeRotLevel (1)
Set attitude thruster levels for rotation in all 3 axes.

Synopsis:

void SetAttitudeRotLevel (const VECTOR3 &th) const
Parameters:

th attitude thruster levels for rotation around x,y,z axes
Notes:

e Thruster levels must be in the range [-1...1]
* This function works even if manual attitude mode is set to linear.

SetAttitudeRotLevel (2)
Set attitude thruster level for rotation around a single axis.

Synopsis:

void SetAttitudeRotLevel (int axis, double th) const
Parameters:

axis rotation axis (0=x, 1=y, 2=2)

th attitude thruster level
Notes:

e Thruster levels must be in the range [-1..1]
* This function works even if manual attitude mode is set to linear.

SetAttitudeLinLevel (1)
Set attitude thruster levels for linear translation in all 3 axes.

Synopsis:

void SetAttitudeLinLevel (const VECTOR3 &th) const
Parameters:

th attitude thruster levels for translation along x,y,z
Notes:

e Thruster levels must be in the range [-1..1]
* This function works even if manual attitude mode is set to rotational.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger

SetAttitudeLinLevel (2)
Set attitude thruster level for linear translation along a single axis.

Synopsis:

void SetAttitudeLinLevel (int axis, double th) const
Parameters:

axis translation axis (0=x, 1=y, 2=2)

th attitude thruster level
Notes:

e Thruster levels must be in the range [-1..1]
* This function works even if manual attitude mode is set to rotational.

GetAttitudeLinLevel
Returns the current thrust level for attitude thrusters groups in linear mode.

Synopsis:

void VESSEL::GetAttitudeLinLevel (VECTOR3 &th) const
Parameters:

th vector containing thrust levels (-1 to 1)
Notes:

e The components of th are:
th.x — attitude thrusters for lateral (sideways) translation
th.y — attitude thrusters for vertical (up/down) translation
th.z — attitude thrusters for longitudinal (forward/backward) translation
e To obtain the actual thrust force magnitudes [N], the absolute values must
be multiplied with the max. attitude thrust (see GetMaxThrust())

See also:
VESSEL::GetMaxThrust(), VESSEL::GetAttitudeRotLevel(),
VESSEL::GetAttitudeMode()

ActivateNavmode
Activates a navmode.

Synopsis:

bool ActivateNavmode (int mode)
Parameters:

mode navmode id to be activated.

Return value:

True if the specified navmode could be activated, false if not available or active
already.

Notes:

» Navmodes are high-level navigation modes which involve e.g. the
simultaneous and timed engagement of multiple attitude thrusters to get the
vessel into a defined state. Some navmodes terminate automatically once
the target state is reached (e.g. killrot), or they remain active until explicitly
terminated (hlevel). Navmodes may also terminate if a second conflicting
navmode is activated.

* For navmodes currently defined in Orbiter see the NAVMODE_xxx
constants.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 22

DeactivateNavmode
Deactivates a navmode.

Synopsis:

bool DeactivateNavmode (int mode)
Parameters:

mode navmode id to be deactivated.

Return value:
True if the specified navmode could be deactivated, false if not available or if
deactivated already.

ToggleNavmode
Toggles a navmode on/off.

Synopsis:

bool ToggleNavmode (int mode)
Parameters:

mode navmode to be toggled.

Return value:
True if the navmode could be changed, false if it remains unchanged.

GetNavmodeState
Returns current state (on/off) of a navmode.

Synopsis:

bool GetNavmodeState (int mode)
Parameters:

mode navmode id to be checked.

Return value:
True if navmode is active, false otherwise.

AddForce
Add a custom body force.

void AddForce (const VECTOR3 &F, const VECTOR3 &r) const
Parameters:

F force vector (N)

r radius vector (m)
Notes:

e This function can be used to implement custom forces (braking chutes,
tethers, etc.) It should not be used for standard forces such as thrusters
which are handled internally.

* The force is applied only for the next time step. AddForce() will therefore
usually be used inside the ovcTimestep() callback function.

11.4 State vectors

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 23

GetGlobalPos
Returns vessel's current position in the global reference frame.

Synopsis:

void GetGlobalPos (VECTOR3 &pos) const
Parameters:

pos: vector receiving position
Notes:

e The global reference frame is the heliocentric ecliptic system at ecliptic and
equinox of J2000.0.
e Units are meters.

< Equivalent to oapiGetGlobalPos(GetHandle(), &pos)

GetGlobalVel
Returns vessel's current velocity in the global reference frame.

void GetGlobalVel (VECTOR3 &vel) const
Parameters:

vel vector receiving velocity
Notes:

e The global reference frame is the heliocentric ecliptic system at ecliptic and
equinox of J2000.0.

e Units are meters/second.

« Equivalent to oapiGetGlobalVel (GetHandle(), &vel)

GetRelativePos
Returns vessel’'s current position with respect to another object.

void GetRelativePos (OBJHANDLE hRef, VECTOR3 &pos) const
Parameters:

hRef reference object handle

pos vector receiving position
Notes:

* Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.
« Equivalent to oapiGetRelativePos (GetHandle(), hRef, &pos)

GetRelativeVel
Returns vessel’'s current velocity relative to another object.

void GetRelativeVel (OBJHANDLE hRef, VECTOR3 &pos) const
Parameters:

hRef reference object handle

vel vector receiving relative velocity
Notes:

« Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.
« Egquivalent to oapiGetRelativeVel (GetHandle(), hRef, &vel)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 24

GetAngularVel
Returns vessel’'s current angular velocity components around its three principal axes.

void GetAngularVel (VECTOR3 &avel) const
Parameters:

avel vector receiving angular velocity components [rad/s]
Notes:

* The velocity components ware calculated from angular moments M by
Euler’s equations for rigid body motion:

\ghg)re_ gre_t\fpe wigpig%moments of inertia (J=PMI*mass). Note that the
diffefential eqd&tiéné’ are coupled which leads to a transfer of rotational
energy between the rotation axes.

GetEquPos
Returns vessel’'s current equatorial position (longitude, latitude and radius) with respect
to the closest planet or moon.

Synopsis:
OBJHANDLE GetEquPos (

double &longitude,
double &latitude,
double &radius) const

Parameters:
longitude variable receiving longitude value [rad]
latitude variable receiving latitude value [rad]
radius variable receiving radius value [m]

Return value:
Handle to reference body to which the parameters refer. NULL indicates failure
(no reference body available).

11.5 Fuel management

CreatePropellantResource
Creates a new propellant resource (“tank”) to be used for powering thrusters.
Synopsis:
PROPELLANT_HANDLE CreatePropellantResource (
double maxmass,
double mass=-1.0,
double efficiency=1.0) const

Parameters:
maxmass maximum propellant capacity of the resource [kg]
mass current propellant mass of the resource [kg]

efficiency fuel efficiency factor (> 0)

Return value:
propellant resource identifier

Notes:

e Orbiter doesn't distinguish between propellant and oxidant. A “propellant
resource” is assumed to be a combination of fuel and oxidant resources.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 25

e The interpretation of a propellant resource (liquid or solid propulsion system,
ion drive, etc.) is up to the vessel developer.

e The rate of fuel consumption depends on the thrust level and Isp of the
thrusters attached to the resource.

* The fuel efficiency rating, together with a thruster’s Isp rating, determines
how much fuel is consumed per second to obtain a given thrust:

R: fuBHSRe [kg/s], F: thrust [N], e efficiency, Isp: fuel-specific impulse [m/s]
* [|f mass < 0 then mass=maxmass is assumed.

DelPropellantResource

Remove a propellant resource and disable all thrusters which were linked to this
resource.

Synopsis:
void DelPropellantResource (PROPELLANT_ HANDLE &ph) const

Parameters:
ph propellant resource identifier (NULL on return)

ClearPropellantResources
Remove all propellant resources and unlink all thrusters from their resources.

void ClearPropellantResources (void) const

Notes:
e After a call to this function, all the vessel’s thrusters will be disabled until they
are linked to new resources.

GetPropellantHandleByIndex
Returns the handle of a propellant resource for a given index.

Synopsis:
PROPELLANT_HANDLE GetPropellantHandleByIndex (
DWORD idx) const

Parameters:
idx propellant resource index

Return value:
propellant resource handle

Notes:

e Theindex must be in the range between 0 and npropellant-1, where
npropellant is the number of propellant resources defined for the vessel (use
GetPropellantCount to obtain this value). If the index is out of range, the
returned handle is NULL.

* Theindex of a given propellant resource may change if any resources are
deleted. The handle remains valid until the corresponding resource is
deleted.

GetPropellantCount
Returns the number of propellant resources currently defined for the vessel.

DWORD GetPropellantCount (void) const

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 26

Return value:
Number of propellant resources currently defined for the vessel.

SetDefaultPropellantResource

Define a “default” propellant resource. This is used for the various legacy fuel-related

API functions, and for the “Fuel” indicator in the generic panel-less HUD display.

void SetDefaultPropellantResource (
PROPELLANT_HANDLE ph) const

Parameters:
ph propellant resource identifier

Notes:

< If this function is not used, the first propellant resource is used as default.

See also:

GetFuelMass(), GetFuelRate(), SetFuelMass(), SetMaxFuelMass(),
GetMaxFuelMass()

SetPropellantMaxMass
Reset the maximum capacity [kg] of a fuel resource.

Synopsis:
void SetPropellantMaxMass (
PROPELLANT_HANDLE ph,
double maxmass) const

Parameters:
ph propellant resource identifier
maxmass max. fuel capacity (= 0) [kqg]

SetPropellantEfficiency
Reset the efficiency factor of a fuel resource.

Synopsis:
void SetPropellantEfficiency (
PROPELLANT_HANDLE ph,
double efficiency) const

Parameters:
ph propellant resource identifier
efficiency fuel efficiency factor (> 0)

Notes:

e See Cre atePropellantResource() for an explanation of the fuel
efficiency factor.

SetPropellantMass
Set current mass of a propellant resource.

void SetPropellantMass (
PROPELLANT_HANDLE ph,
double mass) const

Parameters:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger

27

ph propellant resource identifier
mass propellant mass [kg]

Notes:
¢ 0 < mass < maxmass is required.
* This method should be used to simulate refuelling, fuel leaks, cross-feeding
between tanks, etc. but not for normal fuel consumption by thrusters (which
is handled internally by the Orbiter core).

GetPropellantMass
Returns the current mass of a propellant resource.

Synopsis:

double GetPropellantMass (PROPELLANT_HANDLE ph) const
Parameters:

ph propellant resource identifier

Return value:
current propellant mass [kg]

GetPropellantMaxMass
Returns the maximum capacity [kg] of a fuel resource.

Synopsis:

double GetPropellantMaxMass (PROPELLANT_HANDLE ph) const
Parameters:

ph propellant resource identifier

Return value:
max. fuel capacity [kg]

GetPropellantEfficiency
Returns the efficiency factor of a fuel resource.

Synopsis:

double GetPropellantEfficiency (PROPELLANT_HANDLE ph) const
Parameters:

ph propellant resource identifier

Return value:
fuel efficiency factor

GetPropellantFlowrate
Returns the mass flow rate of a fuel resource.

Synopsis:

double GetPropellantFlowrate (PROPELLANT_HANDLE ph) const
Parameters:

ph propellant resource identifier

Return value:
Propellant mass flow rate [kg/s].

GetTotalPropellantMass

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 28

Returns the vessel’s current total propellant mass.

Synopsis:
double GetTotalPropellantMass (void) const

Return value:
Current total propellant mass [kg]

GetTotalPropellantFlowrate
Returns the current total mass flow rate, summed over all propellant resources.

Synopsis:
double GetTotalPropellantFlowrate (void) const

Return value:
Total propellant mass flow rate [kg/s]

See also:
GetPropellantFlowrate(), GetFuelRate()

GetFuelMass
Returns the current mass of the vessel's default propellant resource.

Synopsis:
double GetFuelMass (void) const

Return value:
Current fuel mass of default propellant resource [kg]

See also:
GetPropellantMass(), SetDefaultPropellantResource()

GetFuelRate
Returns the vessel’s current propellant mass flow rate for the default propellant
resource.

Synopsis:
double GetFuelRate (void) const

Return value:
Propellant mass flow rate for default propellant resource [kg/s]

See also:
GetPropellantFlowrate()

SetFuelMass
Sets the current fuel mass of the vessel’s default propellant resource [kg].

void SetFuelMass (double m) const

Parameters:
m Current fuel mass [kg].

Notes:

e If the vessel has not defined any propellant resources then this function has
no effect.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 29

See also:
SetPropellantMass(), SetDefaultPropellantResource()

SetMaxFuelMass
Sets the maximum fuel capacity of the vessel's default propellant resource, or creates a
new resource if none exists.

Synopsis:

void SetMaxFuelMass (double m) const
Parameters:

m Maximum fuel mass [kg].
Notes:

< If the vessel already contains propellant resources, this function resets the
maximum capacity of the vessel’s default resource, otherwise it creates a
new resource with this capacity, and makes it the default resource.

See also:
SetPropellantMaxMass(), SetDefaultPropellantResource()

GetMaxFuelMass
Returns the maximum fuel capacity of the vessel's default propellant resource.

Synopsis:
double GetMaxFuelMass (void) const

Return value:
Maximum fuel mass of default propellant resource [kg].

Notes:
e The function returns 0 if no fuel resources are defined.

See also:
GetPropellantMaxMass(), SetDefaultPropellantResource()

11.6 Thruster management

CreateThruster
Add a logical thruster definition for the vessel.

Synopsis:
THRUSTER_HANDLE CreateThruster (

const VECTORS3 &pos,

const VECTORS3 &dir,

double maxthO,
PROPELLANT_HANDLE hp=NULL,
double isp0=0.0,

double isp_ref=0.0,

double p_ref=101.4e3) const;

Parameters:
pos thrust force attack point (vessel coordinates)
dir thrust force direction (vessel coordinates)
maxth0 max. vacuum thrust rating [N]
hp propellant resource for the thruster
isp0 vacuum Isp (fuel-specific impulse) rating [m/s]
isp_ref Isp rating at ambient pressure p_ref [m/s]

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 30

p_ref reference pressure for Isp rating [Pa]

Return value:
thruster identifier

Notes:

e The fuel-specific impulse defines how much thrust is produced by burning
1kg of fuel per second. If the Isp level is not specified or is < 0, a default
value is used (see SetISP()).

* To define the thrust and Isp ratings to be pressure-dependent, specify an
isp_ref value >0, and set p_ref to the corresponding atmospheric
pressure. Thrust and Isp at pressure p will then be calculated as
Isp(p) =Isp, (L= pn), Th(p) =Th,(1-pn), where

« Ifisp_ref <0 then no pressure-dependence is assum&di (5P 0)

* If no propellant resource is specified, the thruster is disabled until it is linked
to a resource by SetThrusterResource()

e Thrusters can now create simultaneous linear and angular moments,
depending on the attack point and direction.

e Use CreateThrusterGroup() to assemble thrusters into logical groups.

See also:
DelThruster(), CreateThrusterGroup(), AddExhaust(), SetISP(),
SetThrusterISP(), SetThrusterResource()

DelThruster
Delete a logical thruster definition.

Synopsis:

bool DelThruster (THRUSTER_HANDLE &th) const
Parameters:

th thruster identifier (NULL on return)

Return value:
true on success. The function will fail if the handle is invalid.

Notes:
» Deleted thrusters will be automatically removed from all groups they have
been assigned to.
* All exhaust render definitions which refer to the deleted thruster will be
removed.
See also:

CreateThruster(), AddExhaust(), CreateThrusterGroup()

ClearThrusterDefinitions
Removes all thruster and thruster group definitions.

void ClearThrusterDefinitions () const

Notes:
* This also removes all previously defined exhaust render definitions.

GetThrusterHandleBylndex
Returns the handle of a thruster specified by its index.

Synopsis:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 31

THRUSTER_HANDLE GetThrusterHandleBylndex (DWORD idx) const

Parameters:
idx thruster index

Return value:
Thruster handle

Notes:

e The index must be between 0 and nthruster-1, where nthruster is the thruster
count returned by VESSEL.::GetThrusterCount. If the index is out of range,
the returned handle is NULL.

* Note that the thruster indices change if vessel thrusters are deleted. A
thruster handle remains valid until the corresponding thruster is deleted.

GetThrusterCount
Returns the number of thrusters currently defined for the vessel.

DWORD GetThrusterCount (void) const

Return value:
Number of thrusters defined for the vessel.

SetThrusterResource
Connects the thruster to a fuel resource (tank).

void SetThrusterResource (

THRUSTER_HANDLE th,
PROPELLANT_HANDLE ph) const

Parameters:

th thruster identifier

ph fuel resource identifier
Notes:

* Todisconnect the thruster from its current tank, use ph=NULL.

SetThrusterRef
Reset the thrust force attack point of a thruster.

void SetThrusterRef (

THRUSTER_HANDLE th,
const VECTORS3 &pos) const

Parameters:
th thruster identifier
pos new attack point
Notes:

e This function should be used whenever a thruster has been physically
moved in the vessel's local frame of reference.

GetThrusterRef
Returns the thrust force attack point of a thruster.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 32

void GetThrusterRef (

THRUSTER_HANDLE th,
VECTOR3 &pos) const

Parameters:
th thruster identifier
pos attack point

SetThrusterDir
Reset the force direction of a thruster.

Synopsis:
void SetThrusterDir (

THRUSTER_HANDLE th,
const VECTORS3 &dir) const

Parameters:
th thruster identifier
dir new thrust direction
Notes:

e This function should be used to reflect a tilt of the thruster (e.g. for an
implementation of thrust vectoring)

GetThrusterDir
Returns the force direction of a thruster.

Synopsis:
void GetThrusterDir (

THRUSTER_HANDLE th,
VECTORS3 &dir) const

Parameters:
th thruster identifier
dir thrust direction
SetThrusterMax0

Reset the maximum vacuum thrust rating of a thruster.

void SetThrusterMax0 (THRUSTER_HANDLE th, double maxthQ)

const

Parameters:
th thruster identifier
maxth0 new maximum vacuum thrust rating [N]

Notes:
e The max. thrust rating in the presence of atmospheric ambient pressure may
be lower if a pressure-dependent Isp value has been defined.

See also:
CreateThruster, SetThrusterlsp

GetThrusterMax0
Returns the maximum vacuum thrust rating of a thruster.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 33

Synopsis:
double GetThrusterMax0 (THRUSTER_HANDLE th) const

Parameters:
th thruster identifier

Return value:
Maximum vacuum thrust rating [N]

Notes:
e To retrieve the actual current maximum thrust rating (which may be lower in
the presence of ambient atmospheric pressure) use GetThrusterMax.

GetThrusterMax (1)
Returns the current maximum thrust rating of a thruster.

Synopsis:

double GetThrusterMax (THRUSTER_HANDLE th) const
Parameters:

th thruster identifier

Return value:
maximum thrust rating at the current atmospheric pressure [N]

Notes:
e This function will return the vacuum max thrust rating, unless a pressure-
dependent Isp value has been defined for the thruster.

See also:
CreateThruster, SetThrusterlsp

GetThrusterMax (2)
Returns maximum thrust rating of a thruster for a specific ambient pressure.

Synopsis:
double GetThrusterMax (
THRUSTER_HANDLE th,
double p_ref) const

Parameters:
th thruster identifier
p_ref reference pressure [Pa]

Return value:
maximum thrust rating [N] at atmospheric pressure p_ref.

SetThrusterlsp (1)
Reset the fuel-specific impulse rating of a thruster, assuming no pressure-dependence.

Synopsis:

void SetThrusterlsp (THRUSTER_HANDLE th, double isp) const
Parameters:

th thruster identifier

isp new Isp rating [m/s]
Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 34

e The specified Isp value is assumed to be independent of ambient
atmospheric pressure. To define a pressure-dependent Isp value, use
SetThrusterlsp (2).

See also:

SetISP, SetThrusterlsp (2)

SetThrusterlsp (2)
Reset pressure-dependent fuel-specific impulse rating of a thruster.

Synopsis:
void SetThrusterlsp (
THRUSTER_HANDLE th,
double isp0,
double isp_ref,
double p_ref=101.4e3) const

Parameters:
th thruster identifier
isp0 new vacuum Isp rating [m/s]
isp_ref Isp rating at ambient pressure p_ref [m/s]
p_ref reference pressure for Isp rating [Pa]
Notes:

e See CreateThruster for equations of pressure-dependent thrust and Isp.

See also:
CreateThruster, SetISP, SetThrusterlsp (1)

GetThrusterlsp (1)
Returns current fuel-specific impulse (Isp) rating of a thruster.

Synopsis:

double GetThrusterlsp (THRUSTER_HANDLE th) const
Parameters:

th thruster identifier

Return value:
Current fuel-specific impulse [m/s]

Notes:

e The return value will depend on the current ambient atmospheric pressure if

a pressure-dependent Isp rating has been defined for this thruster.

See also:
SetThrusterlsp, GetThrusterlsp (2)

GetThrusterlsp (2)
Returns Isp rating for a thruster at a specific ambient pressure.

Synopsis:
double GetThrusterlsp (
THRUSTER_HANDLE th,
double p_ref) const

Parameters:
th thruster identifier
p_ref reference pressure [Pa]

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger

35

Return value:
Fuel-specific impulse [m/s] at ambient pressure p_ref.

Notes:
< Unless a pressure-dependent Isp rating has been defined for this thruster, it
will always return the vacuum rating, independent of the specified pressure.
e To obtain vacuum lIsp rating, set p_ref to 0.
e To obtain the Isp rating at (Earth) sea level, set p_ref to 101.4e3.

GetThrusterlsp0
Returns vacuum Isp rating for a thruster.

Synopsis:

double GetThrusterlsp0 (THRUSTER_HANDLE th) const
Parameters:

th thruster identifier

Return value:
Fuel-specific impulse in vacuum [m/s].

Notes:
e This function is equivalent to GetThrusterlsp (th, 0)

SetThrusterLevel
Set the current thrust level [0..1] for a thruster.

Synopsis:
void SetThrusterLevel (
THRUSTER_HANDLE th,
double level) const

Parameters:
th thruster identifier
level thrust level [0..1].

Notes:
* Atlevel 1 the thruster generates maximum force, as defined by its maxth
parameter.
» Certain thrusters are controlled directly by Orbiter via primary input controls
(e.g. joystick throttle control for main thrusters), which may override this
function.

IncThrusterLevel_SingleStep
Increment thrust level for the current time step only.

Synopsis:
void IncThrusterLevel_SingleStep (
THRUSTER_HANDLE th,
double dlevel) const

Parameters:
th thruster identifier
dlevel delta thrust level [0..1]
Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 36

e This method is applied only to the current time step, so it should normally
only be used in the body of the ovcTimestep callback function.

e This function may be overridden by manual user input via keyboard and
joystick, or by automatic attitude sequences.

e The resulting thrust level is clamped to range [0..1]

GetThrusterLevel
Returns the current thrust level for a thruster.

Synopsis:

double GetThrusterLevel (THRUSTER_HANDLE th) const
Parameters:

th thruster identifier

Return value:
Current thrust level [0..1]

Notes:

* To obtain the actual force [N] generated by the thruster in vacuum, multiply
the thrust level with its maximum thrust rating. However, the thrust force in
the presence of ambient atmospheric pressure may be lower if
SetThrustPressureDependency has been applied.

GetThrusterMoment
Returns the linear moment (force) and angular moment (torque) currently generated by
a thruster.

void GetThrusterMoment (
THRUSTER_HANDLE th,
VECTORS &F,
VECTORS3 &T) const

Parameters:
th thruster identifier
F force (linear moment)
T torque (angular moment)

Notes:
e The returned values include the influence of ambient pressure on the thrust
generated by the engine.

CreateThrusterGroup
Combine thrusters into a logical group.

Synopsis:
THGROUP_HANDLE CreateThrusterGroup (
THRUSTER_HANDLE *th,
int nth,
THGROUP_TYPE thgt) const

Parameters:
th array of thruster identifiers, as returned by CreateThruster()
nth number of thrusters in the array
thgt thruster group type (see notes)

Return value:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 37

thruster group identifier

Notes:

* The following group types are defined:

THGROUP_MAIN main thrusters
THGROUP_RETRO retro thrusters
THGROUP_HOVER hover thrusters
THGROUP_ATT_PITCHUP rotation: pitch up
THGROUP_ATT_PITCHDOWN | rotation: pitch down
THGROUP_ATT _YAWLEFT rotation: yaw left
THGROUP_ATT_YAWRIGHT rotation: yaw right
THGROUP_ATT BANKLEFT rotation: bank left
THGROUP_ATT BANKRIGHT rotation: bank right
THGROUP_ATT_RIGHT translation: move right
THGROUP_ATT_LEFT translation: move left
THGROUP_ATT UP translation: move up
THGROUP_ATT DOWN translation: move down
THGROUP_ATT FORWARD translation: move forward
THGROUP_ATT BACK translation: move back
THGROUP_USER user-defined group

« Thruster groups (except for user-defined groups) are engaged by Orbiter as
a result of user input. For example, pushing the stick backward in rotational
attitude mode will engage the thrusters in the THGROUP_ATT_PITCHUP
group.

* ltis the responsibility of the vessel designer to make sure that the thruster
groups are designed so that they behave in a sensible way.

e Thrusters can be added to more than one group. For example, an attitude
thruster can be simultaneously grouped into THGROUP_ATT_PITCHU&nd
THGROUP_ATT_UP

* Rotational thrusters should be designed so that they don't induce a
significant linear momentum. This means rotational groups require at least 2
thrusters each.

« Linear thrusters should be designed such that they don’t induce a significant
angular momentum.

* If avessel does not define a complete set of attitude thruster groups, certain
navmode sequences (e.g. KILLROT) may fail.

See also:

CreateThruster()

DelThrusterGroup (1)
Delete a thruster group and (optionally) all associated thrusters.

Synopsis:
bool DelThrusterGroup (

THGROUP_HANDLE &thg,
THGROUP_TYPE thgt,
bool delth = false) const

Parameters:
thg thruster group identifier (NULL on return)
thgt thruster group type (see CreateThrusterGroup)
delth thruster destruction flag

Return value:
true on success.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 38

Notes:
e If delth==true, all thrusters associated with the group will be destroyed. Note
that this can have side effects if the thrusters were associated with multiple
groups, since they are removed from all those groups as well.

DelThrusterGroup (2)
Delete a default thruster group and (optionally) all associated thrusters.

Synopsis:
bool DelThrusterGroup (

THGROUP_TYPE thgt,
bool delth = false) const

Parameters:
thgt thruster group type (excluding THGROUP_USER
delth thruster destruction flag

Return value:
true on success

Notes:
e This version can only be used for default thruster groups (< THGROUP_USER
e If delth==true, all thrusters associated with the group will be destroyed. Note
that this can have side effects if the thrusters were associated with multiple
groups, since they are removed from all those groups as well.

GetThrusterGroupHandle
Returns the handle of one of the default thruster groups, specified by its type.

Synopsis:
THGROUP_HANDLE GetThrusterGroupHandle (

THGROUP_TYPE thgt) const

Parameters:
thgt thruster group type (for a list, see notes to
CreateThrusterGroup)

Return value:
thruster group handle (or NULL if no group is defined for the specified type).

Notes:
e The thruster group type must not be THGROUP_USER. To retrieve the
handle of a nonstandard thruster group, use
GetUserThrusterGroupHandleBylndex

GetUserThrusterGroupHandleBylndex
Returns the handle of a user-defined (nonstandard) thruster group specified by its
index.

Synopsis:
THGROUP_HANDLE GetUserThrusterGroupHandleBylIndex (
DWORD idx) const

Parameters:
idx index of user-defined thruster group

Return value:
thruster group handle

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 39

Notes:

e Use this method only to retrieve handles for nonstandard thruster groups
(created with the THGROUP_USER flag). For standard groups, use
GetThrusterGroupHandle instead.

e The index must be in the range between 0 and nuserthgroup-1, where
nuserthgroup is the number of nonstandard thruster groups. Use
GetUserThrusterGroupCount to obtain this value.

GetUserThrusterGroupCount
Returns the number of user-defined (nonstandard) thruster groups.

DWORD GetUserThrusterGroupCount (void) const

Return value:
number of user-defined thruster groups.

Notes:
e The value returned by this method only includes user-defined thruster
groups (created with the THGROUP_USHiRg). It does not contain any of the
standard thruster groups (such as THGROUP_MAINetc.)

SetThrusterGroupLevel (1)
Set the thrust level for all thrusters in a group.

void SetThrusterGroupLevel (

THGROUP_HANDLE thg,
double level) const

Parameters:
thg thruster group identifier
level new thruster level

SetThrusterGroupLevel (2)
Set the thrust level for all thrusters in a standard group.

void SetThrusterGroupLevel (

THGROUP_TYPE thgt,
double level) const

Parameters:
thgt thruster group type
level new thruster level
Notes:

e This method can only be used for standard thruster group types (the types
listed in CreateThrusterGroup except THGROUP_USER

IncThrusterGroupLevel (1)
Increment the thrust level for all thrusters in a group.

void IncThrusterGroupLevel (

THGROUP_HANDLE thg,
double dlevel) const

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 40

Parameters:
thg thruster group identifier
dlevel thrust level increment

Notes:

e Thrust levels will automatically be truncated to the range [0..1]
e Use negative dlevel to decrement the thrust level.

IncThrusterGroupLevel (2)
Increment the thrust level for all thrusters in a standard group.

Synopsis:
void IncThrusterGroupLevel (
THGROUP_TYPE thgt,
double dlevel) const

Parameters:
thgt thruster group type
dlevel thrust level increment
Notes:

e This method can only be used for standard thruster group types (the types
listed in CreateThrusterGroup except THGROUP_USER

e Thrust levels will automatically be truncated to the range [0..1]

e Use negative dlevel to decrement the thrust level.

GetThrusterGroupLevel (1)
Retrieve the average thrust level for a thruster group.

Synopsis:

double GetThrusterGroupLevel (THGROUP_HANDLE thg) const
Parameters:

thg thruster group identifier

Return value:
Average thrust level [0..1]

Notes:

e This function is probably only useful if all thrusters in the group have the
same maximum thrust rating, otherwise it is difficult to interpret the average
value.

GetThrusterGroupLevel (2)
Retrieve the average thrust level for a default thruster group.

Synopsis:

double GetThrusterGroupLevel (THGROUP_TYPE thgt) const
Parameters:

thgt thruster group type

Return value:
Average thrust level [0..1]

GetManualControlLevel

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 41

Returns the thrust level of an attitude thruster group requested by the user via
keyboard or joystick input.

Synopsis:
double VESSEL::GetManualControlLevel (
THGROUP_TYPE thgt,
DWORD mode = MANCTRL_ATTMODE,
DWORD device = MANCTRL_ANYDEVICE) const

Parameters:
thgt thruster group identifier
mode attitude control mode (see notes)
device input device (see notes)

Return value:
Manual level for the specified thruster group (0..1)

Notes:
» device can be one of the following:
MANCTRL_KEYBOARD: retrieve keyboard thrust input
MANCTRL_JOYSTICK: retrieve joystick thrust input
MANCTRL_ANYDEVICE: retrieve input from any device
* mode can be one of the following:
MANCTRL_ATTMODE: retrieve level for the vessel's current attitude mode
MANCTRL_ROTMODE: retrieve level for rotational modes only
MANCTRL_LINMODE: retrive level for linear modes only
MANCTRL_ANYMODE: retrieve level for rotational and linear modes
* If mode is not MANCTRL_ANYMODE, only thruster groups which are of the
specified mode (linear or rotational) will return nonzero values.
AddExhaust (1)
Add an exhaust render definition for a thruster.

Synopsis:
UINT AddExhaust (

THRUSTER_HANDLE th,
double Iscale,

double wscale,
SURFHANDLE tex = 0) const

Parameters:
th thruster identifier
Iscale exhaust flame size (length) [m]
wscale exhaust flame size (width) [m]
tex texture handle for custom exhaust flames

Return value:
Exhaust identifier

Notes:

e Thrusters defined with CreateThruster do not by default render exhaust
effects, until an exhaust definition has been specified with AddExhaust.

e The size of the exhaust flame is automatically scaled by the thrust level.

e This version retrieves exhaust reference position and direction directly from
the thruster setting, and will therefore automatically reflect any changes
caused by SetThrusterRef and SetThrusterDir.

e To use a custom exhaust texture, set tex to a surface handle returned by
oapiRegisterExhaustTexture. If tex == 0, the default texture is used.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 42

See also:
CreateThruster(), SetThrusterRef(), SetThrusterDir(), SetThrusterLevel(),
oapiRegisterExhaustTexture()

AddExhaust (2)
Add an exhaust render definition for a thruster with explicit reference position and
direction.

Synopsis:
UINT AddExhaust (

THRUSTER_HANDLE th,
double Iscale,

double wscale,

const VECTORS3 &pos,

const VECTORS3 &dir,
SURFHANDLE tex = 0) const

Parameters:
th thruster identifier
Iscale exhaust flame size (length) [m]
wscale exhaust flame size (width) [m]
pos reference position in the local vessel frame
dir exhaust direction
tex texture handle for custom exhaust flames

Return value:
Exhaust identifier

Notes:
« Unlike AddExhaust (1), this version uses the explicitly provided reference
position and direction, rather than using the thruster parameters.
e This allows multiple exhaust render definitions to refer to a single thruster
definition, e.g. where multiple thrusters have been combined into a single
“logical” thruster definition. This technique can be used to simplify the

description of thruster groups which are always addressed synchronously.

e The exhaust direction should be opposite to the thrust direction of the
thruster it refers to.

» Exhaust positions and directions are fixed in this version, so they will not
react to changes caused by SetThrusterRef and SetThrusterDir.

e To use a custom exhaust texture, set tex to a surface handle returned by
oapiRegisterExhaustTexture. If tex == 0, the default texture is used.

See also:
oapiRegisterExhaustTexture()

DelExhaust
Removes an exhaust render definition.

Synopsis:

bool DelExhaust (UINT idx) const
Parameters:

idx exhaust identifier

Return value:
Error status; false if exhaust definition did not exist.

GetMaxThrust

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger

43

O EJEIs. Returns maximum thrust rating [N] for one of the vessel's engine groups,
defined by eng.

Synopsis:

double GetMaxThrust (ENGINETYPE eng) const
Parameters:

eng engine group identifier

Return value:
Maximum thrust rating [N]

Notes:
e This function has been replaced by GetThrusterGroupLevel()
* For eng==ENGINE_ATTITUDE, the function returns the group thrust rating
for the THGROUP_ATT_PITCHUgroup. Other attitude thrust groups may
have different parameters.

SetMaxThrust
EIERIET. Sets the maximum thrust rating for engine group eng to th [N].
This function has been superseded by CreateThruster() and
CreateThrusterGroup() . It is retained for backward compatibility and can still be
used to define a simplified thruster implementation (see notes).

Synopsis:

void SetMaxThrust (ENGINETYPE eng, double th) const
Parameters:

eng engine group identifier

th maximum thrust rating [N]
Notes:

e This method can still be used to implement a simple, idealised thruster
configuration, but it should not be mixed with the new thruster functions
CreateThruster() and CreateThrusterGroup()

< Inthe context of the new thruster interface, this function now performs the
following functions:

eng action

ENGINE_MAIN thr = CreateThruster (_V(0,0,0), _V(0,0,1), th);
CreateThrusterGroup (&thr, 1, THGROUP_MAIN);

ENGINE_RETRO thr = CreateThruster (_V(0,0,0), _V(0,0,-1), th);
CreateThrusterGroup (&thr, 1, THGROUP_RETRO);

ENGINE_HOVER thr = CreateThruster (_V(0,0,0), _V(0,1,0), th);
CreateThrusterGroup (&thr, 1, THGROUP_HOVER);

ENGINE_ATTITUDE This creates a complete set of linear and rotational attitude
thrusters and attitude thruster groups (see below)

* Calling SetMaxThrust for ENGINE_ATTITUDE will create all 12
THGROUP_ATT_xxxgroups (see CreateThrusterGroup()) and add one
thruster to each linear group (max. rating th), and 2 thrusters to each
rotational group (max. rating ¥2 th each), creating 18 thrusters in total. Any
previous THGROUP_ATT_xxdefinitions will be overwritten. Thrusters are
mounted in an ‘ideal’ configuration, such that linear groups do not induce
angular moments, and rotational groups do not induce linear moments. All
linear thrusters are mounted in the centre of gravity, all rotational thrusters
are mounted at a distance of Size() from the centre of gravity. (This means
that the vessel’s size must have been set by a previous call to SetSize()).

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 44

SetISP
Sets a default Isp value for subsequently created thrusters.

Synopsis:

void SetISP (double isp) const
Parameters:

isp fuel-specific impulse [m/s].
Notes:

e The Isp defines the amount of thrust [N] obtained by burning 1 kg of fuel per
second. (or conversely, the amount of fuel consumed to attain a given thrust
level)

e The effect of this function has changed from v.020419: previously it
redefined the global Isp value for all thrusters. Now it only takes effect for
subsequently defined thrusters which do not explicitly specify their own Isp
rating (see CreateThruster()).

- Before the first call to SetISP(), the default Isp value is 500" m/s.

See also:
CreateThruster(), SetThrusterISP()

GetISP
Returns vessel's current default fuel-specific impulse.

Synopsis:
double GetISP (void) const

Return value:

Fuel-specific impulse [m/s]. This is the amount of thrust [N] obtained by burning
1kg of fuel per second.

Notes:

e The effect of this function has changed from v.020419: previously it returned
the global Isp value for all thrusters. Now it returns the current default Isp
value which will be used for all subsequently defined thrusters which do not
define individual Isp settings.

e To obtain an actual Isp value for a thruster, use GetThrusterISP().

See also:
SetISP(), GetThrusterISP()

SetEnginelevel
Ol EYe][5(=. Sets the thrust level for an engine group.
This function has been replaced by SetThrusterGroupLevel.

Synopsis:

void SetEngineLevel (ENGINETYPE eng, double level) const
Parameters:

eng engine group identifier

level thrust level (0..1)
Notes:

* Main engine level —x is equivalent to retro engine level +x and vice versa.

IncEngineLevel
@lsEYel[5)(=. Increase or decrease the thrust level for an engine group.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 45

This function has been replaced by IncThrusterGroupLevel.

void IncEngineLevel (ENGINETYPE eng, double dlevel) const
Parameters:

eng engine group identifier

dlevel thrust increment
Notes:

e Use negative dlevel to decrease the engine’s thrust level.
e Levels are clipped to valid range.

GetEnginelLevel
Ol Eel5l(=. Returns the thrust level for an engine group.
This function has been replaced by GetThrusterGroupLevel.

Synopsis:

double GetEngineLevel (ENGINETYPE eng) const
Parameters:

eng engine group identifier

Return value:
thrust level (0..1)

Notes:

< For main engines, this does not include externally defined, module-controlled
thrusters
e This function does not work for attitude thrusters.

GetMainThrustModPtr
@lsfYel[5)(=. This function is no longer supported.

AddExhaustRef
PR, Replaced by AddExhaust.

DelExhaustRef
Ol Eel5)(=. Replaced by DelExhaust.

ClearExhaustRefs
Deletes all exhaust render definitions.

void ClearExhaustRefs (void)

Notes:
* This function clears the render definitions for all thrusters, but does not affect
the physical thruster behaviour. To remove thrusters physically, use
ClearThrusterDefinitions instead.

AddAttExhaustRef

Ol Eel5l(=. Adds an exhaust render definition for an attitude thruster. This function is
only retained for backward compatibility and may be removed in a future version. Use
AddExhaust instead.

UINT AddAttExhaustRef (

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 46

const VECTORS3 &pos,
const VECTORS3 &dir,
double wscale = 1.0,
double Iscale = 1.0) const

Parameters:
pos exhaust reference position (in local vessel coordinates)
dir exhaust direction (normalised)

wscale exhaust render width scaling factor
Iscale exhaust render length scaling factor

Return value:
Attitude exhaust id.

Notes:
e This function only affects the exhaust rendering, not the physical parameters
of the attitude engines.
» After creating an attitude thruster with AddAttExhaustRef, it must be
assigned to one or more attitude modes with AddAttExhaustMode.

See also:
AddExhaust

AddAttExhaustMode
Ol Yel[El(=. Assign an attitude thruster to an attitude mode. This function is only retained
for backward compatibility and may be removed in a future version. Use AddExhaust

instead.
Synopsis:
void AddAttExhaustMode (
UINT idx,
ATTITUDEMODE mode,
int axis,
int dir) const
Parameters:
idx attitude exhaust id, as returned by AddAttExhaustRef.
mode ATTMODE_ROT or ATTMODE_LIN
axis rotation/translation axis (0=x, 1=y, 2=2)
dir rotation/translation direction (0 or 1)
Notes:

< An attitude thruster can be assigned to more than one mode (e.g. a
rotational and a linear mode)

< Multiple attitude thrusters can be assigned to a single mode.

< The following attitude modes are available:

mode axis dir used for
ATTMODE_ROT 0 0 pitch up
ATTMODE_ROT 0 1 pitch down
ATTMODE_ROT 1 0 yaw left
ATTMODE_ROT 1 1 yaw right
ATTMODE_ROT 2 0 roll right
ATTMODE_ROT 2 1 roll left
ATTMODE_LIN 0 0 move right
ATTMODE_LIN 0 1 move left
ATTMODE_LIN 1 0 move up
ATTMODE_LIN 1 1 move down

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger

47

ATTMODE_LIN 2 0 move forward
ATTMODE_LIN 2 1 move back
See also:
AddExhaust

ClearAttExhaustRefs

PRI, Replaced by DelExhaust, DelThruster and ClearThrusterDefinitions. This
function does no longer have any effect.

11.7 Docking port management

CreateDock
Create a new docking port.

Synopsis:
DOCKHANDLE CreateDock (

const VECTORS3 &pos,
const VECTORS &dir,
const VECTOR3 &rot) const

Parameters:
pos dock reference position in vessel coordinates
dir approach direction in vessel coordinates
rot longitudinal rotation alignment vector

Return value:
dock identifier

Notes:
e Thedir androt vectors should be normalised to length 1.
e« Therot vector should be perpendicular to the di r vector.
* When two vessels connect at their docking ports, the relative orientation of
the vessels is defined such that their respective approach direction vectors
(dir) are anti-parallel, and their longitudinal alignment vectors (rot) are
parallel.

DockCount
Returns number of docking ports defined for the vessel.

Synopsis:
UINT DockCount (void) const

Return value:
Number of docking ports.

SetDockParams (1)

Set the parameters for the vessel's primary docking port (port 0), or create a new dock
if required.

void SetDockParams (

const VECTORS3 &pos,
const VECTORS &dir,
const VECTOR3 &rot) const

Parameters:
pos dock reference position in vessel coordinates
dir approach direction in vessel coordinates
rot longitudinal rotation alignment vector

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 48

Notes:
« This function creates a new docking port if none was previously defined.
Otherwise it overwrites the parameters for dock 0.
* See CreateDock for additional notes on the parameters.

SetDockParams (2)
Reset the parameters for for a vessel dock.

void SetDockParams (

DOCKHANDLE dock,

const VECTORS3 &pos,
const VECTORS &dir,

const VECTOR3 &rot) const

Parameters:

dock dock identifier

pos new dock reference position

dir new approach direction

rot new longitudinal rotation alignment vector
Notes:

e This function should not be called while the dock is engaged.

GetDockParams
Returns the parameters of a docking port.

Synopsis:
void GetDockParams (

DOCKHANDLE dock,
VECTORS &pos,
VECTORS3 &dir,
VECTORS &rot) const;

Parameters:
dock dock handle
pos dock reference position
dir approach direction
rot longitudinal rotation alignment vector

GetDockHandle
Returns a handle to a docking port.

Synopsis:

DOCKHANDLE GetDockHandle (UINT n) const
Parameters:

n docking port index (= 0)

Return value:
dock handle, or NULL if index was out of range.

GetDockStatus
Returns a handle to a docked vessel.

Synopsis:
OBJHANDLE GetDockStatus (DOCKHANDLE dock) const

Parameters:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 49

dock dock handle

Return value:
Handle to vessel docked at the specified port, or NULL if no vessel is docked at
that port.

DockingStatus

Returns a flag indicating whether a given dock is engaged.

Synopsis:

UINT DockingStatus (UINT port) const
Parameters:

port docking port index (=0)

Return value:
port status: O = free, 1 = docked

Notes:
e This function has the same functionality as
(GetDockStatus (GetDockHandle(port)) ? 1:0)

Undock

Release a docked vessel from a docking port.

Synopsis:

bool Undock (UINT n, const OBJHANDLE exclude = 0) const
Parameters:

n docking port index or ALLDOCKS

exclude optional handle of a vessel to be excluded from undocking

Return value:
true if at least one vessel was released from a port.

Notes:
e Ifnis setto ALLDOCKS, all docking ports are released simultaneously.
* If exclude is nonzero, this vessel will not be undocked. This is useful for
implementing remote undocking in combination with ALLDOCKS.

11.8 Attachment management

Similar to docking ports, attachment points allow to connect two or more vessel objects.
There are a few important differences:

Docking ports establish peer connections, attachments establish parent-child hierarchies:
A parent vessel can have multiple attached children, but each child can only be attached
to a single parent.

Attachments use a simplified physics engine: the root parent alone defines the object’s
trajectory (both for freespace and atmospheric flight). The children are assumed to have
no influence on flight behaviour.

Orbiter establishes docking connections automatically if the docking ports of two vessels
are brought close to each other. Attachment connections are only established by API
calls.

Currently, docking connections only work in freeflight. Attachments also work for landed
vessels.

Attachment connections are useful for attaching small objects to larger vessels. For example,
Orbiter uses attachments to connect payload items to the Space Shuttle’s cargo bay or the tip
of the RMS manipulator arm (see Orbitersdk\samples\Atlantis).

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger

50

Attachment points use an identifier string (up to 8 characters) which can provide a method to
establish compatibility. For example, the Atlantis RMS arm tip will only connect to attachment
points with an id string that contains “GS” in the first 2 characters (it ignores the last 6

characters).

Now let's assume somebody creates another Shuttle (say a Buran) with its own RMS arm. He

could then allow

it to

» grapple exactly the same objects as Atlantis, by checking for “GS”.

» grapple a subset of objects grapplable by Atlantis, by checking additional characters, for
example “GSX”.

» grapple all objects grapplable by Atlantis, plus additional objects, for example by checking
for “GS” or “GX”

» grapple entirely different objects, for example by checking for “GX".

To connect a satellite into the payload bay, Atlantis uses the id “XS” (This means that the
payload bay connection can not be used for grappling. To allow a satellite to be grappled and
stored in the payload bay, it must define both a “GS” and an “XS” attachment point).

CreateAttachment
Define a new attachment point for a vessel.

Synopsis:

ATTACHMENTHANDLE CreateAttachment (

bool toparent,

const VECTORS3 &pos,
const VECTORS &dir,
const VECTORS &rot,
const char *id,

bool loose = false) const

Parameters:
toparent If true, the attachment can be used to connect to a parent (i.e.

vessel acts as child). Otherwise, attachment is used to connect to a
child (i.e. vessel acts a parent).

pos attachment point position in vessel coordinates

dir attachment direction in vessel coordinates

rot longitudinal alignment vector in vessel coordinates
id compatibility identifier

loose If true, allow loose connections (see notes)

Return value:
Handle to the new attachment point

Notes:

A vessel can define multiple parent and child attachment points, and can
subsequently have multiple children attached, but it can only be attached to
a single parent at any one time.

the dir and rot vectors should both be normalised to length 1, and they
should be orthogonal.

The identifier string can contain up to 8 characters. It can be used to define
compatibility between attachment points.

If the attachment point is defined as loose, then the relative orientation
between the two attached objects is frozen to the orientation between them
at the time the connection was established. Otherwise, the two objects snap
to the orientation defined by their “dir” vectors.

SetAttachmentParams
Reset attachment position and orientation for an existing attachment point.

Synopsis:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 51

void SetAttachmentParams (
ATTACHMENTHANDLE attachment,
const VECTORS3 &pos,
const VECTORS &dir,
const VECTOR3 &rot) const

Parameters:

attachment attachment handle

pos new attachment point position in vessel coordinates

dir new attachment direction in vessel coordinates

rot new longitudinal alignment vector in vessel coordinates
Notes:

< If the parameters of an attachment point are changed while a vessel is
attached to that point, the attached vessel will be shifted to the new position
automatically.

» the dir and rot vectors should both be normalised to length 1, and they
should be orthogonal.

GetAttachmentParams
Retrieve the parameters of an attachment point.

Synopsis:
void GetAttachmentParams (

ATTACHMENTHANDLE attachment,
VECTORS &pos,

VECTORS &dir,

VECTORS &rot) const

Parameters:
attachment attachment handle
pos attachment point position
dir attachment direction
rot longitudinal alignment vector

GetAttachmentld
Retrieve attachment identifier string.

Synopsis:
const char *GetAttachmentid (

ATTACHMENTHANDLE attachment) const

Parameters:
attachment attachment handle

Return value:
pointer to attachment string (8 characters)

GetAttachmentStatus
Return the current status of an attachment point.

OBJHANDLE GetAttachmentStatus (

ATTACHMENTHANDLE attachment) const

Parameters:
attachment attachment handle

Return value:
Handle of the attached vessel, or NULL if no vessel is attached to this point.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 52

AttachmentCount
Return the number of child or parent attachment points defined for a vessel.

Synopsis:
DWORD AttachmentCount (bool toparent) const

Parameters:
toparent If true, return the number of attachment points to parents.
Otherwise, return the number of attachment points to children.

Return value:
Number of defined attachment points to connect to parents or to children.

GetAttachmentindex
Return the list index of a vessel's attachment point defined by its handle.

Synopsis:
DWORD GetAttachmentindex (

ATTACHMENTHANDLE attachment) const

Parameters:
attachment attachment handle

Return value:
List index (= 0)

Notes:

* Avessel defines separate lists for child and parent attachment points.
Therefore two different attachment points may return the same index.

GetAttachmentHandle
Return the handle of an attachment point identified by its list index.

Synopsis:
ATTACHMENTHANDLE GetAttachmentHandle (
bool toparent, DWORD i) const

Parameters:
toparent If true, return handle for attachment point to parent. Otherwise,
return handle for attachment point to child.
i attachment index

Return value:
Attachment handle

AttachChild
Attach a child vessel to an attachment point.

Synopsis:
bool AttachChild (

OBJHANDLE child,
ATTACHMENTHANDLE attachment,
ATTACHMENTHANDLE child_attachment) const

Parameters:
child handle of child vessel to be attached
attachment attachment point to which the child is to be attached
child_attachment attachment point on the child to which we want to attach

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 53

Return value:
true indicates success, false indicates failure (child refuses attachment)

Notes:

e The attachment handle must refer to an attachment “to child” (i.e. created
with toparent=false); the child_attachment handle must refer to an
attachment “to parent” on the child object (i.e. created with toparent=true). It
is not possible to connect two parent or two child attachment points.

« A child can only be connected to a single parent at any one time. If the child
is already connected to a parent, the previous parent connection is severed.

* The child may check the parent attachment’s id string and, depending on the
value, refuse to connect. In that case, the function returns false.

DetachChild
Break an existing attachment to a child.

Synopsis:
bool DetachChild (

ATTACHMENTHANDLE attachment,
double vel = 0.0) const

Parameters:
attachment attachment handle
vel separation velocity [m/s]

Return value:

true when detachment is successful, false if no child was attached, or if child
refuses to detach.

11.9 Orbital elements

Note: Calculating elements from state vectors is expensive. If possible, avoid calling the
functions in this group at each frame (e.qg. inside ovcTimestep). On the other hand, once any

function in this group has been called, calling other functions during the same time step is not
expensive.

GetGravityRef

Returns a handle to the main contributor of the gravity field at the vessel's current
position.

Synopsis:
const OBJHANDLE GetGravityRef () const

Return value:
Handle to gravity reference object.

GetElements
Returns vessel's primary orbital elements w.r.t. dominant gravitational source.

Synopsis:
OBJHANDLE GetElements (ELEMENTS &el, double &mjd_ref) const
Parameters:
el primary orbital elements (semi-major axis a, eccentricity e,
inclination i, longitude of ascending node 6, longitude of periapsis @,
mean longitude at epoch L)
mjd_ref reference epoch in MJD (Modified Julian Date) format

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 54

Return value:
Handle of reference object. NULL indicates failure (no elements available).

Notes:
e There are various ways to specify orbital elements. Note that here we use
the longitude of the ascending node (not anomaly of the ascending node),
and longitude of periapsis, and that the mean anomaly L refers to epoch

(mjd_ref), not to date (so it should not change over time unless the orbit itself
changes).

GetArgPer
Returns argument of periapsis.

Synopsis:
OBJHANDLE GetArgPer (double &arg) const

Parameters:
arg argument of periapsis for current orbit [rad]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

GetSMi
Returns semi-minor axis.

Synopsis:

OBJHANDLE GetSMi (double &smi) const
Parameters:

smi semi-minor axis for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

GetApDist
Returns apoapsis distance.
Synopsis:
OBJHANDLE GetApDist (double &apdist) const
Parameters:
apdist apoapsis distance for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

GetPeDist
Returns periapsis distance.

Synopsis:

OBJHANDLE GetPeDist (double &pedist) const
Parameters:

pedist periapsis distance for current orbit [m]

Return value:
Handle of reference object. NULL indicates failure (no elements available)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 55

11.10 Surface-relative parameters
GetSurfaceRef

Returns a handle to the closest planet or moon. This is the object to which all surface-
relative parameters refer.

Synopsis:
const OBJHANDLE GetSurfaceRef () const;

Return value:
Handle to surface reference object (planet or moon)

GetAltitude
Returns altitude above closest planet/moon.

Synopsis:
double GetAltitude (void) const

Return value:
altitude [m]

GetAirspeed

Returns magnitude of the freestream airflow velocity vector measured in ship-relative
coordinates.

Synopsis:
double GetAirspeed (void) const

Return value:
Magnitude of airflow velocity [m/s]

Notes:

* This function also works in the absence of an atmosphere. At low altitudes,
the returned value is a ground-speed equivalent. At high altitudes the value
diverges from ground speed, since an atmospheric drag effect is assumed.

* This function returns the length of the vector returned by
GetShipAirspeedVector.

GetHorizonAirspeedVector
Returns airspeed vector in local horizon coordinates.

Synopsis:

bool GetHorizonAirspeedVector (VECTOR3 &v) const
Parameters:

% variable receiving airspeed vector [m/s]

Return value:
false indicates error.

Notes:

* This function returns the airspeed vector in the reference frame of the local
horizon. x = longitudinal component, y = vertical component, z = latitudinal
component.

GetShipAirspeedVector
Returns airspeed vector in the vessel’s local coordinates.

Synopsis:
bool GetShipAirspeedVector (VECTOR3 &v) const

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 56

Parameters:
% variable receiving airspeed vector [m/s]

Return value:
false indicates error

Notes:
« This function returns the airspeed vector in local ship coordinates. x = lateral
component, y = vertical component, z = longitudinal component.

GetAOA
Returns AOA (angle of attack). This is the pitch angle between the velocity vector and
the vessel’s longitudinal axis.

Synopsis:
double GetAOA (void) const

Return value:
angle of attack [rad]

GetSlipAngle
Returns the lateral (yaw) angle between the velocity vector and the vessel's
longitudinal axis.

Synopsis:
double GetSlipAngle (void) const

Return value:
lateral slip angle [rad]

GetPitch
Returns pitch angle in local horizon frame.

Synopsis:
double GetPitch (void) const

Return value:
pitch angle [rad]

GetBank
Returns bank angle in local horizon frame.

Synopsis:
double GetBank (void) const

Return value:
bank angle [rad]

11.11 Transformations

ShiftCentreOfMass
Register a shift in the centre of mass after a structural change (e.g. stage separation)

void ShiftCentreOfMass (const VECTOR3 &shift)
Parameters:
shift CoM displacement vector.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 57

Notes:

e This function should be called after a vessel has undergone a structural
change which shifted the centre of mass, and which resulted in a change of
the mesh component offsets of -shift. It will do two things:

1. Translate the vessel's world reference point by +shift to compensate for
the mesh offset shift.

2. Drag the camera so that it centers at the new CoM (if in external mode
tracking the concerned vessel).

GetRotationMatrix

Returns the vessel’s current rotation matrix for transformations from the vessel’s local
frame of reference to the global (world) frame of reference.

void GetRotationMatrix (MATRIX3 &R) const
Parameters:

R rotation matrix
Notes:

e Totransform a point r o5 from local vessel coordinates to a global point
I'yiobal, the following formula is used:
Fgiobal = R Tocal + P,
where p is the vessel's global position.

e This transformation can be directly performed by a call to Local2Global

GlobalRot
Performs a rotation of a direction from the local vessel frame to the global frame.

void GlobalRot (
const VECTORS é&rloc,
VECTORS &rrot) const

Parameters:
rloc point in local vessel coordinates (input)
rrot rotated point (output)

Notes:

* This function is equivalent to multiplying rloc with the rotation matrix returned
by GetRotationMatri X.

e Should be used to transform directions. To transform points, use
Local2Global , which additionally adds the vessel's global position to the
rotated point.

HorizonRot

Performs a rotation of a direction from the local vessel frame to the current local
horizon frame.

Synopsis:
void HorizonRot (

const VECTORS é&rloc,
VECTORS &rhorizon) const

Parameters:

rloc vector in local vessel coordinates (input)
rhorizon vector in local horizon coordinates (output)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 58

Notes:
e The local horizon frame is defined as follows:
y is “up” direction (planet centre to vessel centre)
Z is “north” direction
X is “east” direction

Local2Global
Performs a transformation from local vessel to global coordinates.

void Local2Global (

const VECTORS3 &local,
VECTORS &global) const

Parameters:
local point in local vessel coordinates (input)
global transformed point in global coordinates (output)
Global2Local

Performs a transformation from global to local vessel coordinates.

void Global2Local (

const VECTORS3 &global,
VECTORS &local) const

Parameters:
global point in global coordinates (input)
local transformed point in local vessel coordinates (output)
11.12 Atmospheric parameters
GetAtmTemperature

Returns atmospheric temperature [K] at current vessel position.

Synopsis:
double GetAtmTemperature (void) const

Return value:
atmospheric temperature [K] at curremt vessel position.

Notes:
e This function returns 0 if the vessel is outside all planetary atmospheric hulls,
as defined by the planets’ AtmAltLimit parameters.

GetAtmDensity
Returns atmospheric density [kg/m3] at current vessel position.

Synopsis:
double GetAtmDensity (void) const

Return value:
atmospheric density [kg/m3] at current vessel position.

Note:

e This function returns 0 if the vessel is outside all planetary atmospheric hulls,
as defined by the planets’ AtmAltLimit parameters.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 59

GetAtmPressure
Returns static atmospheric pressure [Pascal] at current vessel position.

Synopsis:
double GetAtmPressure (void) const

Return value:
atmospheric pressure [Pa] at current vessel position.

Note:
e This function returns 0 if the vessel is outside all planetary atmospheric hulls,
as defined by the planets’ AtmAltLimit parameters.

11.13 Aerodynamics

GetDynPressure
Returns the current dynamic pressure for the vessel.

Synopsis:
double GetDynPressure (void) const

Return value:
Current vessel dynamic pressure [Pa].

Notes:
e The dynamic pressure is defined as q=% pV2 with density p and airflow
velocity V. Dynamic pressure is an important aerodynamic parameter.

GetMachNumber
Returns the vessel’s current Mach number.

Synopsis:
double GetMachNumber (void) const

Return value:
Mach number — the ratio of current freestream airflow velocity over speed of
sound.

Notes:
e The speed of sound depends on several parameters, e.g. atmospheric
composition and temperature. The Mach number can therefore vary even if
the airspeed is constant.

SetCW
Sets the vessel's wind resistance coefficients along the local reference axes
[dimensionless].

Synopsis:
void SetCW (

double cw_z_pos,
double cw_z_neg,
double cw_x,
double cw_y) const

Parameters:
CW_z pos resistance in positive z direction (forward)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 60

CW_z_neg resistance in negative z direction (back)
CW_X resistance in lateral direction
cw_y resistance in vertical direction

Notes:

e The first value (cw_z_pos) is the coefficient used if the vessel's airspeed z-
component is positive (vessel moving forward). The second value is used if
the z-component is negative (vessel moving backward).

» Lateral and vertical components are assumed symmetric.

* The cw coefficients are only used if no airfoils are defined (see CreateAirfoil),
in which case the flight model reverts to legacy parasite drag calculation.

GetCW
Returns the vessel’'s wind resistance coefficients in the principal directions
[dimensionless].

Synopsis:
void GetCW (

double &cw_z_pos,
double &cw_z_neg,
double &cw_x,
double &cw_y) const

Parameters:
CW_z pos resistance in positive z direction (forward)
CW_z_neg resistance in negative z direction (back)
CW_X resistance in lateral direction
cw_y resistance in vertical direction

Notes:

e The first value (cw_z_pos) is the coefficient used if the vessel's airspeed z-
component is positive (vessel moving forward). The second value is used if
the z-component is negative (vessel moving backward).

» Lateral and vertical components are assumed symmetric.

* The cw coefficients are only used if no airfoils are defined (see CreateAirfoil),
in which case the flight model reverts to legacy parasite drag calculation.

SetRotDrag
Sets the vessel's resistance against rotation around axes in atmosphere.
Synopsis:
void SetRotDrag (const VECTORS3 &rd) const
Parameters:
rd drag components for rotation around the 3 vessel axes
GetRotDrag
Returns the vessel's resistance ry,,, against rotation around axes in atmosphere.
Synopsis:
void GetRotDrag (VECTOR3 &rd) const
Parameters:
rd rotational drag coefficient in the three coordinate axes of the
vessel's frame of reference.
Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 61

CreateAirfoil

rd contains the components ry, , against rotation around axes in atmosphere,
where angular deceleration due to atmospheric friction is a(‘*’)x,y,Z = —aﬁ‘*’)x,y,z q
S ryy,z With angular velocity AR dynamic pressure g, and reference surface

S, defined by the vessel's cross section projected along the vertical (y) axis.

Define the lift and drag characteristics of an airfoil.

Synopsis:

void CreateAirfoil (

AIRFOIL_ORIENTATION align,
const VECTORS3 &ref,
AirfoilCoeffFunc cf,

double c,

double S,

double A) const

Parameters:
align lift vector orientation (LIFT_VERTICAL or LIFT_HORIZONTAL)
ref lift and drag vector attack point
cf pointer to coefficient callback function (see notes)
c airfoil chord length [m]
S wing area [mz]
A wing aspect ratio
Notes:

A vessel can define multiple airfoils (for wings, main body, tail stabilisators,
etc.). In general, it should define at least one vertical and one horizontal
component.

Airfoil definitions for wings and horizontal stabilisers set align to
LIFT_VERTICAL . Vertical stabilisers (vertical tail fin, etc) set align to
LIFT_HORIZONTAL.

The location of the attack point (together with the moment coefficient) is
important for the aerodynamic stability of the vessel. Usually the attack point
will be aft of the CG, and the moment coefficient will have a negative slope
around the trim angle of attack.

The AirfoilCoeffFunc is a callback function supplied by the application which
calculates the lift, moment and drag coefficients for the airfoil. It has the
following interface:

void AirfoilCoeffFunc (
double aoa, double M, double Re,
double *cl, double *cm, double *cd)

and returns the lift coefficient (cl), moment coefficient (cm) and drag
coefficient (cd) as a function of angle of attack aoa [rad], Mach number M
and Reynolds number Re. Note that aoa can range over the full circle (-1tto
). For vertical lift components, aoa is the pitch angle of attack (a), while for
horizontal components it is the yaw angle of attack (). Some useful
functions for calculating the coefficients can be found in Section 17.6.

If the wing area Sis set to 0, then Orbiter uses the projected vessel cross
sections to define a reference area. Let v=(v,,v,,V,) be the unit vector of
freestream air flow in vessel coordinates. Then the reference area is
calculated as S=v,C, +v, C fora LIFT_VERTICAL airfoil, and as

S=v,C, +v,C, for a LIFT_HORIZONTAL airfoil, where C,, C,, C, are the
vessel cross-sections in x, y and z direction, respectively.

The wing aspect ratio is defined as defined as A = b?/Swith wing span b.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 62

* Avessel should typically define its airfoils in the ovcSetClassCaps callback
function. If no airfoils are defined, Orbiter will fall back to its legacy (pre-
030601) drag calculation, using the cw coefficients defined in SetCW.
Legacy lift calculation is no longer supported.

e For more details, see the Programmer’s Guide.

CreateControlSurface
Create an airfoil control surface (elevator, rudder, aileron, flaps, etc.) which allows
atmospheric flight control.

Synopsis:
void CreateControlSurface (

AIRCTRL_TYPE type,

double area,

double dCl,

const VECTORS3 &ref,

int axis = AIRCTRL_AXIS_AUTO,
UINT anim = (UINT)-1) const

Parameters:

type Control type. This is a member of the AIRCTRL_TYPE enumeration

type (see notes).

area control surface area [m?]

dcCl shift in lift coefficient achieved by fully extended control

ref lift/drag force attack point for the control

axis Control rotation axis. This is a member of the

AIRCTRL_AXIS_AUTOenumeration type (see notes).
anim animation reference, if applicable
Notes:

* The following control types are available:
AIRCTRL_ELEVATOR elevator (pitch control)
AIRCTRL_RUDDER rudder (yaw control)
AIRCTRL_AILERON aileron (bank control)
AIRCTRL_FLAP flaps

* The following control axis types are available:
AIRCTRL_AXIS_AUTO automatic axis selection
AIRCTRL_AXIS_YPOS +Y axis (vertical)
AIRCTRL_AXIS_YNEG -Y axis (vertical)
AIRCTRL_AXIS_XPOS +X axis (transversal)
AIRCTRL_AXIS_XNEG -X axis (transversal)

where switching between positive and negative axes reverses the effect of
the control. Automatic axis control will select the following axes:

Elevator: XPOS

Rudder: YPOS

Aileron: XPOS if ref.x >0,
XNEG otherwise

Flap: XPOS

* Atleast 2 control surfaces must be defined for ailerons (e.g. on the left and
right wing) with opposite rotation axes, to obtain the angular moment for
banking the vessel.

e Elevators will usually use the XPOS axis, assuming the attack point is aft of
the CG. If pitch control is provided by a canard configuration ahead of the
CG, XNEG should be used instead.

« To improve performance, multiple control surfaces may sometimes be
defined by a single call to CreateControlSurface. For example, the elevator
controls on the left and right wing may be combined by setting a centered
attack point.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 63

« Control surfaces can be animated, by passing an animation reference to
CreateControlSurface. The animation reference is obtained from a call to
CreateAnimation(). The animation should support a state in the range from 0
to 1, with neutral surface position at state 0.5.

SetControlSurfacelLevel
Modify the position of a control surface.

Synopsis:
void SetControlSurfaceLevel (

AIRCTRL_TYPE type,
double level) const

Parameters:
type Control type. This is a member of the AIRCTRL_TYPE enumeration
type.
level new setting (-1 .. 1)
Notes:

* This function is only useful for flap and trim controls, because elevators,
rudder and ailerons are normally continuously scanned from the keyboard
and joystick inputs and overridden in each frame.

GetControlSurfaceLevel
Retrieve the current position of a control surface.

Synopsis:
double GetControlSurfacelLevel (AIRCTRL_TYPE type) const
Parameters:
type Control type. This is a member of the AIRCTRL_TYPE enumeration

type.

Return value:
Current control position (-1 to 1).

CreateVariableDragElement
Attach a drag force to the vessel whose magnitude is controlled by an external variable
which may vary between 0 (no drag) and 1 (full drag). Useful for defining drag
produced by movable parts such as landing gear.

Synopsis:
void CreateVariableDragElement (
double *drag,
double factor,
const VECTORS3 &ref) const

Parameters:
drag pointer to external control parameter
factor drag magnitude scale factor
ref drag attack point

Notes:

* The magnitude of the drag force is calculated as
D=d[f g,
where d is the control parameter (drag), f is the scale factor, and g is the
freestream dynamic pressure.

« Depending on the attack point, the drag force may induce an angular
moment.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 64

e Control parameter d should be restricted to values between 0 and 1.

ClearVariableDragElements
Remove all drag components previously defined with CreateVariableDragElement.

Synopsis:
void ClearVariableDragElements () const

SetWingAspect
IR, This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
It sets the wing aspect ratio (wingspan2 / wing area).

Synopsis:

void SetWingAspect (double aspect) const
Parameters:

aspect wing aspect ratio [dimensionless]
Notes:

« The value defined by this function is only used in legacy mode, i.e. if the
vessel does not define any airfoils via CreateAirfoil.
o Default value is 1.0

GetWingAspect
EIERIET. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
Returns the vessel’'s wing aspect ratio (wingspan2 / wing area).

Synopsis:
double GetWingAspect (void) const

Return value:
Wing aspect ratio (wingspan2 / wing area)

Notes:
e The value returned by this function is used by Orbiter only for legacy
vessels, i.e. vessels which do not define any airfoils via CreateAirfoil.

SetWingEffectiveness
IR, This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.
Sets the wing form factor. Used for lift and drag calculation.

Synopsis:

void SetWingEffectiveness (double we) const
Parameters:

we wing form factor.
Notes:

* The value defined by this function is only used in legacy mode, i.e. if the
vessel does not define any airfoils via CreateAirfoil.

e Typical values are: ~3.1 for elliptic wings, ~2.8 for tapered wings, ~2.5 for
rectangular wings.

GetWingEffectiveness

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 65

OJsEe]EIs. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.

Returns wing form factor: ~3.1 for elliptic wings, ~2.8 for tapered wings, ~2.5 for
rectangular wings.

Synopsis:
double GetWingEffectiveness (void) const

Return value:
Wing form factor.

Notes:
e The value returned by this function is used by Orbiter only for legacy
vessels, i.e. vessels which do not define any airfoils via CreateAirfoil.
* This form factor describes the wing'’s effectiveness in producing lift in an
atmosphere as a function of its shape.

SetLiftCoeffFunc

OJEe]EIs. This function is part of the legacy aerodynamics model and is retained for
backward compatibility only.

Installs callback function for calculation of lift coefficient as a function of angle of attack.

Synopsis:
void SetLiftCoeffFunc (LiftCoeffFunc Icf) const
Parameters:
Icf callback function pointer with the following interface:
double LiftCoeff (double aoa)
Notes:

* The preferred method for defining lift and drag characteristics is via the
CreateAirfoil method, which is much more versatile. Orbiter ignores the
SetLiftCoeffFunc function if any airfoils have been created with CreateAirfoil.

e The callback function must be able to deal with aoa values in the range —Tt...
T

< If the function is not installed, the vessel is assumed not to produce any lift.

11.14 Surface contact parameters
SetSurfaceFrictionCoeff
Set the surface friction coefficients in longitudinal and lateral direction.

Synopsis:
void SetSurfaceFrictionCoeff (
double mu_lIng,
double mu_lat) const

Parameters:
mu_Ing longitudinal coefficient
mu_lat lateral coefficient
Notes:

* The friction forces for each touchdown reference point which intersects the
surface are calculated by
f=ceMg
where cg: friction coefficient, M: vessel mass: g: surface g-force

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 66

* Vessels with landing gear should define mu_Ing < mu_lat. For isotropic
surface friction, mu_Ing = mu_lat should be used.
e The default values are mu_Ing = 0.1, mu_lat = 0.5.

SetMaxWheelbrakeForce
Define the maximum force which can be provided by the vessel's wheel brake system.

Synopsis:

void SetMaxWheelbrakeForce (double f) const
Parameters:

f maximum force [N]

SetWheelbrakeLevel
Apply the wheel brake.

Synopsis:
void SetWheelbrakeLevel (
double level,
int which =0,
bool permanent = true) const
Parameters:
level wheelbrake level (0..1)
which 0 = both, 1 = left, 2 = right main gear
permanent true sets the level permanently, false only applies to current time

step

GetWheelbrakeLevel
Returns the current wheel brake level.

Synopsis:
double GetWheelbrakeLevel (int which) const
Parameters:
which 0 = average of both main gear levels, 1 = left, 2 = right

Return value:
wheel brake level (0..1)

11.15 Communications/radio interface

InitNavRadios
Defines the number of NAV radio receivers supported by the vessel.

Synopsis:

void InitNavRadios (DWORD nnav) const
Parameters:

nnav number of NAV radio receivers
Notes:

* Avessel requires NAV radio receivers to obtain instrument navigation aids
such as ILS or docking approach information.

e Typically, a vessel should define 2-3 NAV receivers.

« If no NAV receivers are available, then certain MFD modes such as Landing
or Docking will not be supported.

o Default is 2 NAV receivers.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 67

SetNavRecv
Set the frequency step for a NAV receiver.

Synopsis:

bool SetNavRecv (DWORD n, DWORD step) const
Parameters:

n NAYV receiver index (= 0)

step frequency step (= 0)

Return value:
false if n = nnav (see InitNavRadios), otherwise true.

Notes:
¢ NAV radios can be tuned from 108.00 to 140.00 kHz in steps of 0.05 kHz.
The frequency corresponding to a receiver step is given by
f=108.0 kHz + step [0.05 kHz.
GetNavRecv

Returns the frequency step of a NAV receiver.

Synopsis:

DWORD GetNavRecv (DWORD n) const
Parameters:

n NAYV receiver index (= 0)

Return value:
frequency step (= 0). If index n is out of range, the return value is 0.

GetNavRadioFreq
Returns the current radio frequency of a NAV receiver [kHz]

Synopsis:

float GetNavRadioFreq (DWORD n) const
Parameters:

n NAYV radio index (=0)

Return value:
NAV radio frequency [kHZz]. If index n is out of range then the return value is 0.0.

EnableTransponder
Enable/disable a vessel's transponder. The transponder is a radio transmitter which
can be used by other vessels to obtain navigation information, e.g. for docking
rendezvous approaches.

Synopsis:

void EnableTransponder (bool enable) const
Parameters:

enable flag for enabling/disabling the transponder

11.16 Visual manipulation

ClearMeshes
Removes all previously declared meshes for the vessel’s visual representation.

Synopsis:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 68

void ClearMeshes () const

AddMesh (1)
Loads a new mesh from file and adds it to the vessel’s visual representation.

Synopsis:
int AddMesh (

const char *meshname,
const VECTORS3 *ofs=0) const

Parameters:
meshname mesh file name (without path and file extension) which must exist in
the Meshes subdirectory.
ofs optional pointer to a displacement vector which describes the offset
(in meter) of the mesh origin against the vessel origin.

Return value:
mesh index

AddMesh (2)
This version adds a preloaded mesh to the vessel's visual representation.

Synopsis:

void AddMesh (MESHHANDLE hMesh, const VECTOR3 *ofs=0) const
Parameters:

hMesh mesh handle

ofs optional pointer to a displacement vector which describes the offset

(in meter) of the mesh origin against the vessel origin.

Return value:
mesh index

See also:
oapiLoadMesh()

SetMeshVisibilityMode
Defines whether a mesh is visible for cockpit or external camera modes.

Synopsis:

void SetMeshVisibilityMode (UINT meshidx, WORD mode) const
Parameters:

meshidx mesh index as returned by AddMesh()

mode visibility mode
Notes:

¢ mode can be one of the following:
MESHVIS_EXTERNALThe mesh is only rendered if the the camera is not
inside the vessel's cockpit (default)
MESHVIS_COCKPITThe mesh is only rendered if the camera is inside the
vessel's cockpit (e.g. for rendering the flight deck interior)
MESHVIS_ALWAY:SThe mesh is always rendered.

SetMeshVisiblelnternal

@lsEYel[5l(=. This method has been replaced by SetMeshVisibilityMode.
Marks a mesh as visible from internal cockpit view.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 69

Synopsis:
void SetMeshVisiblelnternal (

UINT meshidx,
bool visible) const

Parameters:
meshidx mesh index as returned by AddMesh()
visible visibility flag

Notes:
e By default, a vessel is not rendered when the camera is in internal (cockpit)
view. This function can be used to force rendering of some or all of the
vessel's meshes.

SetExhaustScales
Sets the longitudinal and transversal scaling factors for exhaust rendering

void SetExhaustScales (

EXHAUSTTYPE exh,
WORD id,

double Iscale,

double wscale) const

Parameters:
exh engine group identifier (main, retro, hover, custom)
id engine identifier, as returned by AddExhaustRef

Iscale longitudinal scaling factor
wscale transversal scaling factor

Notes:
e This function must be called for custom engines to reflect changes in thrust
level. For standard engine types, this is done automatically.

MeshgroupTransform
Transform a mesh group of the vessel's visual. Transformations include translation,
rotation and scaling.

Synopsis:
bool MeshgroupTransform (
VISHANDLE vis,
const MESHGROUP_TRANSFORM &mt) const;
Parameters:
vis visual handle
mt transformation parameters
Notes:
¢ The MESHGROUP_TRANSFORM structure is defined as follows:
typedef struct {
union {
struct { /I rotation parameters
VECTORS3 ref; // rotation axis reference point
VECTORS3 axis; /I rotation axis direction
float angle; // rotation angle (rad)
} rotparam;
struct { /[translation parameters
VECTORS3 shift; /I translation vector
} transparam;
struct { I/ scaling parameters

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 70

VECTORS3 scale; /Il scaling factors along coordinate axes
} scaleparam;
}P;
int nmesh; /I mesh id
int ngrp; /I group id
enum { TRANSLATE, ROTATE, SCALE }
transform; /I transform type
} MESHGROUP_TRANSFORM,;

* If ngrpis set to < 0 then the complete mesh is transformed.

SetReentryTexture
Select a previously registered texture to be used for rendering reentry flames.

Synopsis:
void SetReentryTexture (
SURFHANDLE tex,
double plimit=6e7,
double Iscale=1.0,
double wscale=1.0) const

Parameters:
tex texture handle
plimit friction power limit
Iscale texture length scaling factor
wscale texture width scaling factor
Notes:

* The texture handle is obtained by a previous call to
oapiRegisterReentryTexture.

« If a custom texture is not explicitly set, Orbiter uses a default texture
(reentry.dds) for rendering reentry flames. To suppress reentry flames
altogether for a vessel, call SetReentryTexture(NULL).

See also:
oapiRegisterReentryTexture

RegisterAnimation
Logs a request for calls to ovcAnimate, while the vessel’s visual exists.

Synopsis:
void RegisterAnimation (void) const

Notes:

« This function allows to implement animation sequences in combination with
the ovcAnimate callback function. After a call to RegisterAnimation,
ovcAnimate is called at each time step, if the vessel's visual exists.

* Use UnregisterAnimation to stop further calls to ovcAnimate.

« Orbiter uses a reference counter to log animation requests. It calls
ovcAnimate as long as counter > 0,

« If ovcAnimate is not implemented by the module, RegisterAnimation has no
effect.

UnregisterAnimation
Unlogs an animation request.

Synopsis:
void UnregisterAnimation (void) const

Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 71

* This stops a request for animation callback calls from a previous
RegisterAnimation.

e The call to UnregisterAnimation should not be placed in the body of
ovcAnimate, since it may be lost if the vessel's visual doesn't exist.

CreateAnimation
Create a “semi-automatic” animation sequence. The sequence can contain multiple
components (rotations, translations, scalings of mesh groups) with a fixed temporal
correlation. The animation is driven by manipulating its “state”, which is a number
between 0 and 1 used to linearly interpolate the animation within its range. See API
User’s Guide for details.

UINT CreateAnimation (double initial_state) const

Parameters:
initial_state the animation state corresponding to the unmodified mesh

Return value:
Animation identifier

Notes:

e Once you have created an animation, use AddAnimationComponent to
add components.

e Use SetAnimation to manipulate the animation state.

* initial_state defines at which state the animation is stored in the mesh file.
Example: Landing gear animation between retracted state (0) and deployed
state (1). If the landing gear is retracted in the mesh file set initial_state to 0.
If it is deployed in the mesh file, set initial_state to 1.

AddAnimationComponent
Add a component (rotation, translation or scaling of mesh groups) to an animation.
Optionally, animations can be stacked hierachically, where transforming a parent
recursively also transforms all its children (e.g. a wheel spinning while the landing gear
is being retracted).

ANIMATIONCOMPONENT_HANDLE AddAnimationComponent (
UINT anim,
double stateO,
double statel,
MGROUP_TRANSFORM *trans,
ANIMATIONCOMPONENT_HANDLE parent = NULL) const

Parameters:
anim animation identifier, as returned by CreateAnimation
state0 animation cutoff state 0 for the component
statel animation cutoff state 1 for the component
trans transformation data (see notes)
parent parent transformation

Return value:
Animation component handle

Notes:
e stateO and statel (0..1) allow to define the temporal endpoints of the
component’s animation within the sequence. For example, state0=0 and
statel=1 perform the animation over the whole sequence animation, while

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 72

state0=0 and state1=0.5 perform the animation over the first half of the
seguence animation. This allows to build complex animations where different
components are animated in a defined temporal sequence.
MGROUP_TRANSFORNhe base class for mesh group transforms. The
following derived classes are available:

MGROUP_ROTAT§otation)

Constructor:

MGROUP_ROTATE (UINT mesh, UINT *grp, UINT ngrp,
const VECTORS &ref, const VECTOR3 &axis,
float angle)

where:
mesh mesh index (O=first mesh, etc.)
arp array of mesh group indices
ngrp number of mesh groups
ref rotation reference point
axis rotation axis
angle angular range of rotation [rad]

MGROUP_TRANSLAT@anslation)

Constructor:

MGROUP_TRANSLATE (UINT mesh, UINT *grp, UINT ngrp,
const VECTORS3 &shift)

where:
mesh mesh index
arp array of mesh group indices
ngrp number of mesh groups
shift translation vector

MGROUP_SCAL(scaling)
Constructor:
MGROUP_SCALE (UINT mesh, UINT *grp, UINT ngrp,
constV ECTORS3 &ref, const VECTOR3 &scale)
where:
mesh mesh index
arp array of mesh group indices
ngrp number of mesh groups
ref reference point for scaling origin
scale scaling factorsin x, y and z

To animate a complete mesh, rather than individual mesh groups, set the
“grp” pointer to NULL in the constructor of the corresponding
MGROUP_TRANSFOBpé&rator. The “ngrp” value is then ignored.

To define a transformation as a child of another transformation, set parent to
the handle returned by the AddAnimationComponent call for the parent.
Instead of adding mesh groups to an animation, it is also possible to add a
local VECTORS3 array. To do this, set “mesh” to LOCALVERTEXLIST, and
set “grp” to MAKEGROUPARRAY (vtxptr), where vtxptr is the VECTORS3
array. “ngrp” is set to the number of vertices in the array. Example:

VECTORS3 vix[2] = {_V(0,0,0), _V(1,0,-1)};

MGROUP_TRANSFORM *mt = new MGROUP_TRANSFORM (LOCALVERTEXLIST,
MAKEGROUPARRAY (vtx), 2);

AddAnimationComponent (anim, 0, 1, mt);

Transforming local vertices in this way does not have an effect on the visual
appearance of the animation, but it can be used by the module to keep track

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 73

of a transformed point during animation. The Atlantis module uses this
method to track a grappled satellite during animation of the RMS arm.

Bugs:
* When defining a scaling transformation as a child of a parent rotation, only
homogeneous scaling is supported, i.e. scale.x = scale.y = scale.z is
required.

DelAnimationComponent
Remove a component from an animation.

Synopsis:
bool DelAnimationComponent (
UINT anim,
ANIMATIONCOMPONENT_HANDLE hAC)

Parameters:
anim animation identifier
hAC animation component handle

Return value:
false indicates failure (anim out of range, or hAC invalid)

Notes:
« If the component has children belonging to the same animation, these will be
deleted as well.
* Inthe current implementation, the component must not have children
belonging to other animations. Trying to delete such a component will result
in undefined behaviour.

SetAnimation
Set the state of an animation.

Synopsis:
bool SetAnimation (UINT anim, double state) const

Parameters:
anim animation identifier
state animation state (0..1)

Return value:
false indicates failure (animation identifier out of range)

Notes:

« Each animation is defined by its state, with extreme points state=0 and
state=1. When setting a state between 0 and 1, Orbiter carries out the
appropriate transformations to advance the animation to that state. It is the
responsibility of the code developer to call SetAnimation in such a way as to
provide a smooth movement of the animated parts.

RegisterAnimSequence

O EJEIE. This method has been replaced by CreateAnimation. It is available for
backward compatibility only and will be removed in a future version.

UINT RegisterAnimSequence (double defstate) const

Parameters:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 74

defstate animation state stored in the mesh.

Return value:
Animation sequence identifier.

Notes:

* Unlike RegisterAnimation /UnregisterAnimation , this function allows
to create animation sequences which are processed by the Orbiter core,
rather than manually by the module. The user only needs to define the
components of the animation sequence once after creating the vessel, using
AddAnimComp() , and can then manipulate the animation state via
SetAnimState()

* Each animation sequence is defined by its state, which has a value between
0 and 1. For example, for an animated landing gear operation state 0 may
correspond to retracted gears, state 1 to fully deployed gears.

» defstate defines at which state the animation is stored in the mesh file.

AddAnimComp
OsEeIEIE. This method has been replaced by AddAnimationComponent. It is available
for backward compatibility only and will be removed in a future version.

Synopsis:
bool AddAnimComp (UINT seq, ANIMCOMP *comp)

Parameters:
seq sequence identifier, as returned by RegisterAnimSequence
comp animation component description (see notes)

Return value:
false indicates failure.

Notes:
« ANIMCOMP is a structure defining the component’s animation:

typedef struct {
UINT *grp; /[array of group indices to be included in component
UINT ngrp; /I number of groups in the grp array
double stateO; /I animation cutoff state 1
double statel,; /I animation cutoff state 2
MESHGROUP_TRANSFORM trans; // transformation parameters

} ANIMCOMP;

* For a complete description of the MESHGROUP_TRANSFORM structure
see method VESSEL::MeshgroupTransform().

* Note that in this case the angle or shift fields in
MESHGROUP_TRANSFORM describe the range of animation, e.g. the
angle over which a landing gear is rotated from fully retracted to fully
deployed.

» stateO and statel (0..1) allow to define the temporal endpoints of the
component’s animation within the sequence. For example, state0=0 and
state1=1 perform the animation over the whole sequence animation, while
state0=0 and state1=0.5 perform the animation over the first half of the
sequence animation.

11.17 Particle systems

AddExhaustStream (1)
Add a particle stream definition to generate an exhaust stream for a vessel. Exhaust
streams can be emissive (to simulate “glowing” ionised gases) or diffuse (e.g. for
simulating vapour trails).

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 75

Synopsis:
PSTREAM_HANDLE AddExhaustStream (

THRUSTER_HANDLE th,
PARTICLESTREAMSPEC *pss = 0) const

Parameters:
th thruster handle to which the exhaust stream is linked.
pss particle stream specification

Return value:
Handle to the newly created particle stream.

Notes:

e« The PARTICLESTREAMSPEC structure is defined in section 9. More details
can be found in the Programmer’s Guide.

e Multiple streams can be defined for a single engine. For example, an
emissive stream with short lifetime may represent the ionised exhaust gases,
while a diffuse stream with longer lifetime represents the vapour trail.

« To improve performance, closely packed engines may share a single
exhaust stream.

AddExhaustStream (2)

Add a particle stream definition to generate an exhaust stream for a vessel. This
version allows to specify an independent reference point for particle emission.

Synopsis:
PSTREAM_HANDLE AddExhaustStream (

THRUSTER_HANDLE th,
const VECTORS3 &pos,
PARTICLESTREAMSPEC *pss = 0) const

Parameters:
th thruster handle to which the exhaust stream is linked.
pos particle emission reference point
pss particle stream specification

Return value:
Handle to the newly created particle stream.

Notes:
» This version allows to pass an explicit particle emission reference position,
independent of the engine reference point.

AddReentryStream

Add a particle stream definition to generate a reentry stream for a vessel.

Synopsis:
PSTREAM_HANDLE AddReentryStream (

PARTICLESTREAMSPEC *pss) const

Parameters:
pss particle stream specification

Return value:
Handle to the newly created particle stream.

Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 76

* Vessels automatically define a default emissive particle stream, but you may
want to add further stream to customise the appearance.

DelExhaustStream
Delete a previously added particle stream.

Synopsis:

bool DelExhaustStream (PSTREAM_HANDLE ch) const
Parameters:

ch particle stream handle

Return value:
false indicates failure (particle stream does not exist)

Notes:
e If athruster is deleted (with DelThruster), any attached particle streams
are deleted automatically.
* Adeleted particle stream will no longer emit particles, but existing particles
persist until they expire.

12 Class MFD

This class acts as an interface for user defined MFD (multi functional display) modes. It
provides control over keyboard and mouse functions to manipulate the MFD mode, and
allows the module to draw the MFD display. The MFD class is a pure virtual class. Each user-
defined MFD mode requires the definition of a specialised class derived from MFD. An
example for a generic MFD mode implemented as a plugin module can be found in
orbitersdk\samples\CustomMFD.

Public member functions

12.1 Construction/creation

MFD
Constructor. Creates a new MFD.

Synopsis:

MFD (DWORD w, DWORD h, VESSEL *vessel)
Parameters:

w width of the MFD display (pixel)

h height of the MFD display (pixel)

vessel pointer to VESSEL interface associated with the MFD.
Notes:

 MFD is a pure virtual function, so it can’t be instantiated directly. It is used as
a base class for specialised MFD modes.

« New MFD modes are registered by a call to oapiRegisterMFDMode.
Whenever the new mode is selected by the user, Orbiter sends a
OAPI_MSG_MFD_OPENED signal to the message handler, to which the
module should respond by creating the MFD mode and returning a pointer to
it. Orbiter will automatically destroy the MFD mode when it is turned off.

12.2 Display repaint
Update
Callback function: Orbiter calls this method when the MFD needs to update its display.

Synopsis:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 77

virtual void Update (HDC hDC) =0

Parameters:
hDC Windows device context for drawing on the MFD display surface.

Notes:

* The frequency at which this function is called corresponds to the “MFD
refresh rate” setting in Orbiter's parameter settings, unless a redraw is forced
by InvalidateDisplay.

e This function must be overwritten by derived classes.

InvalidateDisplay
Force a display update in the next frame. This function causes Orbiter to call the MFD’s
Update method in the next frame.

Synopsis:
void InvalidateDisplay ()

Title
Displays a title string in the upper left corner of the MFD display.

void Title (HDC hDC, const char *title) const
Parameters:

hDC device context

title title string (null-terminated)
Notes:

e This method should be called from within Update()

e The title string can contain up to approx. 35 characters when displayed in the
default Courier MFD font.

e This method switches the text colour of the GDI context to white.

SelectDefaultFont
Selects a predefined MFD font into the device context.

Synopsis:

HFONT SelectDefaultFont (HDC hDC, DWORD i) const
Parameters:

hDC Windows device context

i font index

Return value:
Windows font handle

Notes:

e Currently supported are font indices 0-2, where

0 = standard MFD font (Courier, fixed pitch)
1 = small font (Arial, variable pitch)
2 = small font, rotated 90 degrees (Arial, variable pitch)

* In principle, an MFD mode may create its own fonts using the standard
Windows CreateFont function, but using the predefined fonts is preferred to
provide a consistent MFD look.

« Default fonts are scaled automatically according to the MFD display size.

SelectDefaultPen
Selects a predefined pen into the device context.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 78

Synopsis:
HPEN SelectDefaultPen (HDC hDC, DWORD i) const

Parameters:
hDC Windows device context
i pen index

Return value:
Windows pen handle

Notes:
e Currently supported are pen indices 0-5, where
0 = solid, HUD display colour
1 = solid, light green
2 = solid, medium green
3 = solid, medium yellow
4 = solid, dark yellow
5 = solid, medium grey
e In principle, an MFD mode may create its own pen resources using the
standard Windows CreatePen function, but using predefined pens is
preferred to provide a consistent MFD look.
ButtonLabel

Return the label for the specified MFD button.

Synopsis:

virtual char *ButtonLabel (int bt)
Parameters:

bt button identifier

Return value:
The function should return a 0-terminated character string of up to 3 characters,
or NULL if the button is unlabelled.

ButtonMenu
Defines a list of short descriptions for the various MFD mode button/key functions.

Synopsis:

virtual int ButtonMenu (const MFDBUTTONMENU **menu) const
Parameters:

menu on return this should point to an array of button menu items. (see

notes)

Return value:
number of items in the list

Notes:
e The definition of the MFDBUTTONMENU struct is:
typedef struct {
const char *linel, *line2;
char selchar;
} MFDBUTTONMENU;
containing up to 2 lines of short description, and the keyboard key to trigger
the function.
¢ Each line should contain no more than 16 characters, to fit into the MFD
display.
e If the menu item only uses one line, then line2 should be set to NULL.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 79

* menu==0 is valid and indicates that the caller only requires the number of
items, not the actual list.
« Atypical implementation would be

int MyMFD::ButtonMenu (const MFDBUTTONMENU **menu) const
{
static const MFDBUTTONMENU mnu[2] = {
{"Select target", 0, 'T'},
{"Select orbit", "reference", 'R}

b
if (menu) *menu = mnu;
return 2;
}
12.3 Input
ConsumeKeyBuffered

MFD keyboard handler for buffered keys.

Synopsis:
virtual bool ConsumeKeyBuffered (DWORD key)
Parameters:
key key code (see OAPI_KEY_xxx constants in orbitersdk.h)

Return value:
The function should return true if it recognises and processes the key, false
otherwise.

ConsumeKeylmmediate
MFD keyboard handler for immediate (unbuffered) keys.

Synopsis:

virtual bool ConsumeKeylmmediate (char *kstate)
Parameters:

kstate: keyboard state.

Return value:
The function should return true only if it wants to inhibit Orbiter’s default
immediate key handler for this time step completely.

Notes:
e The state of single keys can be queried by the KEYDOWN macro.
* The immediate key handler is useful where an action should take place while
a key is pressed.
ConsumeButton

MFD button handler. This function is called when the user performs a mouse click on a
panel button associated with the MFD.

Synopsis:
virtual bool ConsumeButton (int bt, int event)
Parameters:
bt button identifier.
event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)

Return value:
The function should return true if it processes the button event, false otherwise.

Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 80

* This function is invoked as a response to a call to
oapiProcessMFDButton in a vessel module.

e Typically, ConsumeButton will call ConsumeKeyBuffered or
ConsumeKeylmmediate to emulate a keyboard event.

12.4 Load/save state

WriteStatus
Called when the MFD should write its status to a scenario file.

Synopsis:

virtual void WriteStatus (FILEHANDLE scn) const
Parameters:

scn scenario file handle (write only)
Notes:

* Use the oapiWriteScenario_xxx functions to write MFD status parameters to
the scenario.

e The default behaviour is to do nothing. MFD modes which need to save
status parameters should overwrite this function.

ReadStatus
Called when the MFD should read its status from a scenario file.

Synopsis:

virtual void ReadStatus (FILEHANDLE scn)
Parameters:

scn scenario file handle (read only)
Notes:

« Use aloop with oapiReadScenario_nextline to read MFD status parameters
from the scenario.

e The default behaviour is to do nothing. MFD modes which need to read
status parameters should overwrite this function.

StoreStatus
Called before destruction of the MFD mode, to allow the mode to save its status to
static memory.

Synopsis:
virtual void StoreStatus (void) const

Notes:

e This function is called before an MFD mode is destroyed (either because the
MFD switches to a different mode, or because the MFD itself is destroyed). It
allows the MFD to back up its status parameters, so it can restore its last
status when it is created next time.

* Since the MFD mode instance is about to be destroyed, status parameters
should be backed up either in static data members, or outside the class
instance.

* In principle this function could be implemented by opening a file and calling
WriteStatus with the file handle. However for performance reasons file I/O
should be avoided in this function.

e The default behaviour is to do nothing. MFD modes which need to save
status parameters should overwrite this function.

RecallStatus

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 81

Called after creation of the MFD mode, to allow the mode to restore its status from the
last save.

Synopsis:
virtual void RecallStatus (void)

Notes:

e This is the counterpart to the StoreStatus function. It should be implemented
if and only if StoreStatus is implemented.

13 Class GraphMFD

This class is derived from MFD and provides a template for MFD modes containing 2D
graphs. An example is the ascent profile recorder in the samples\CustomMFD folder.

13.1 Construction/creation

GraphMFD
Constructor. Creates a new GraphMFD.

Synopsis:
GraphMFD (DWORD w, DWORD h, VESSEL *vessel)
Parameters:
w width of the MFD display (pixel)
h height of the MFD display (pixel)
vessel pointer to VESSEL interface associated with the MFD
13.2 Graph/plot management
AddGraph

Adds a new graph to the MFD.

Synopsis:
int AddGraph (void)

Return value:
graph identifier

Notes:

« This function allocates data for a new graph. To display plots in the new
graph, one or more calls to AddPlot are required.

AddPlot
Adds a plot to an existing graph.
Synopsis:
void AddPlot (
int g,
float *absc,
float *data,
int ndata,
int col,
int *ofs = 0)
Parameters:
g graph identifier
absc pointer to array containing the abscissa (x-axis) values.
data pointer to array containing the data (y-axis) values.
ndata number of data points

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 82

col plot colour index
ofs pointer to data offset (optional)

Notes:

« Data arrays are not copied, so they should not be deleted after the call to
AddPlot.

» colis used as an index to select a pen for the plot using the
SelectDefaultPen function. Valid range is the same as for SelectDefaultPen.

« If defined, *ofs is the index of the first plot value in the data array. The plot is
drawn using the points *ofs to ndata-1, followed by points 0 to *ofs-1. This
allows to define continuously updated plots without having to copy blocks of
data within the arrays.

SetRange
Sets a fixed range for the x or y axis of a graph.

Synopsis:
void SetRange (int g, int axis, float rmin, float rmax)

Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)
rmin minimum value
rmax maximum value

Notes:
* The range applies to all plots in the graph.

SetAutoRange
Allows the graph to set its range automatically according to the range of the plots.
Synopsis:
void SetAutoRange (int g, int axis, int p = -1)
Parameters:
g graph identifier
axis axis identifier (0=x, 1=y)
p plot identifier (-1=all)
Notes:

« If p=0, then p specifies the plot used for determining the graph range. If p =
-1, then all of the graph’s plots are used to determine the range.

FindRange
Determines the range of an array of data.

Synopsis:
void FindRange (

float *d,

int ndata,

float &dmin,

float &dmax) const

Parameters:
d data array
ndata number of data
dmin minimum value on return
dmax maximum value on return

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 83

SetAxisTitle
Sets the title for a given graph and axis.

Synopsis:

void SetAxisTitle (int g, int axis, char *title)
Parameters:

g graph identifier

axis axis identifier (0=x, 1=y)

title axis title
Notes:

* The MFD may append an extension of the form “x <scale>" to the title,
where <scale> is a scaling factor applied to the tick labels of the axis. It is
therefore a good idea to finish the title with the units applicable to the data of
this axis, so that for example a title “Altitude: km” may become “Altitude: km
x 1000".

SetAutoTicks
Calculates tick intervals for a given graph and axis.

Synopsis:

void SetAutoTicks (int g, int axis)
Parameters:

g graph identifier

axis axis identifier (0=x, 1=y)
Notes:

e This function is called from within SetRange and normally doesn’t need to be
called explicitly by derived classes.

Plot
Displays a graph.

void Plot (
HDC hDC,
int g,
int hO,
int h1,
const char *title = 0)
Parameters:
hDC Windows device context
g graph identifier
hO upper boundary of plot area (pixel)
hl lower boundary of plot area (pixel)
title graph title
Notes:

e This function should be called from Update to paint the graph(s) into the
provided device context.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 84

14 Plugin callback function reference

This is a list of callback functions which Orbiter will call for all activated plugin modules. (i.e.
DLLs in the Modules\Plugin subdirectory which were activated by the user via the Launchpad
dialog). Plugin callback functions use an opc (“orbiter plugin callback”) prefix.

opcDLLInit
Called after the DLL is loaded by Orbiter, before the simulation window is opened.
DLLs are loaded either during the program start, or when the user activates a DLL in
the Modules tab of the launchpad dialog.

Synopsis:
DLLCLBK void opcDLLInit (HINSTANCE hDLL)
Parameters:
hDLL DLL module handle
opcDLLEXxit

Called before the DLL is unloaded by Orbiter, after the simulation window has closed.
DLLs are unloaded either when Orbiter exits, or when the user deactivates a DLL in the
Modules tab of the launchpad dialog.

Synopsis:

DLLCLBK void opcDLLEXxit (HINSTANCE hDLL)
Parameters:

hDLL DLL module handle

opcOpenRenderViewport
Called after the simulation window has been opened. The DLL should use this function
for initialisations which depend on the size of the render window. The size remains
valid until the opcCloseRenderViewport method is called. Note that for windowed
modes the width and height parameters may be smaller than the user-defined window
size, to accommodate window borders and title line.

DLLCLBK void opcOpenRenderViewport (

HWND renderWnd,
DWORD width,
DWORD height,
BOOL fullscreen)

Parameters:
renderWnd render window handle
width width of the render viewport (pixel)
height height of the render viewport (pixel)
fullscreen TRUE if a fullscreen video mode is used, FALSE for a windowed

mode

opcCloseRenderViewport
Called before the simulation window is closed.

DLLCLBK void opcCloseRenderViewport (void)

opcTimestep
Called at each time step of the simulation. Note that this is not exactly the same as an
animation frame, because rendering may continue during a simulation pause if the
camera is movable during pause.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 85

Synopsis:
DLLCKBK void opcTimestep (

double SimT,
double SimDT,
double mjd)
Parameters:
SimT elapsed simulation time since simulation start (seconds)
SimDT time interval since last time step (seconds)
mjd simulation universal time in MJD (modified Julian date) format.
opcFocusChanged

Called when input focus (keyboard and joystick control) is switched to a new vessel (for
example as a result of a call to oapiSetFocus).

Synopsis:
DLLCLBK opcFocusChanged (

OBJHANDLE new_focus,
OBJHANDLE old_focus)

Parameters:
new_focus handle of vessel receiving the input focus
old_focus handle of vessel losing focus

Notes:
< Currently only objects of type “vessel” can receive the input focus. This may
change in future versions.
e This callback function is also called at the beginning of the simulation, where
new_focus is the vessel receiving the initial focus, and old_focus is NULL.

opcTimeAccChanged
Called when the simulation time acceleration factor changes.

Synopsis:
DLLCLBK void opcTimeAccChanged (

double nWarp,
double oWarp)

Parameters:
nWarp new time acceleration factor
oWarp old time acceleration factor

15 Vessel callback functions

This is a list of callback functions for vessel modules (i.e. modules referenced by the Module
entry in vessel class configuration files). Vessel callback functions use an ovc (“orbiter vessel
callback”) prefix.

ovclnit
Called during vessel creation. A vessel module must define this function in order to
create an instance of the VESSEL interface or a derived class.

DLLCLBK VESSEL *ovclnit (

OBJHANDLE hVessel,
int flightmodel)

Parameters:

hVessel handle identfying the newly created vessel.
flightmodel level of flight model realism (0O=simple, 1=realistic)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 86

Return value:
Module-generated instance of VESSEL or a derived class.

Notes:
A typical implementation will look like this:

class MyVessel: public VESSEL
{

}

DLLCLBK VESSEL *ovclnit (OBJHANDLE hVessel, int flightmodel)
{

}

return new MyVessel(hVessel, flightmodel);

oVvCEXit
Called before killing the vessel. Should be used for cleanup operations (memory
deallocation etc.) and for deallocating the VESSEL interface.

Synopsis:

DLLCLBK void ovcExit (VESSEL *vessel)
Parameters:

vessel vessel interface

ovcSetClassCaps
Called during vessel initialisation. This allows the module to define vessel class
capabilities, such as mass, size, aerodynamic specs, thruster ratings, etc.

DLLCLBK void ovcSetClassCaps (

VESSEL *vessel,
FILEHANDLE cfg)

Parameters:
vessel vessel interface
cfg handle for the vessel class configuration file.

Notes:

e This function should only set general parameters (like maximum fuel mass),
not the current state parameters for a specific ship (like current fuel mass).

* Generic parameters directly defined in the vessel class cfg file (e.g.
MaxFuel) override values set in ovcSetClassCaps. This allows to manipulate
values without need to recompile the module.

* The cfg file handle allows to read nonstandard parameters from the class
file.

ovcSetState
Called at vessel creation to allow initialisation of the initial state.

Synopsis:
DLLCLBK void ovcSetState (

VESSEL *vessel,
const VESSELSTATUS *status)

Parameters:
vessel vessel interface
status vessel state parameters

Notes:
e This function is called after ovcSetClassCaps

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 87

« If this function is not defined, Orbiter will perform default state initialisations.
* To perform Orbiter’'s default initialisation from within ovcSetState, call
vessel->DefSetState (status)

ovcSetStateEx
This callback function is invoked by Orbiter when a vessel is created during the
simulation with a call to oapiCreateVesselEXx(). It allows the vessel to initialise its state
according to the provided VESSELSTATUSX interface (version x = 2). To allow default
initialisation, the status can be passed to VESSEL.::DefSetStateEx().

Synopsis:
DLLCLBK void ovcSetStateEx (

VESSEL *vessel,
const void *status)

Parameters:
vessel vessel interface
status pointer to a VESSELSTATUSKX structure

Notes:

e This callback function receives the VESSELSTATUSKX structure passed to
oapiCreateVesselEx(). It must therefore be able to process the interface
version used by those functions.

e This function remains valid even if future versions of Orbiter introduce new
VESSELSTATUSKX interfaces.

» Atypical implementation may look like this:

DLLCLBK void ovcSetStateEx (VESSEL *vessel, const void *status)
{

/l specialised vessel initialisations
...

/I default initialisation:
vessel->DefSetStateEx (status);

ovcLoadState
Called when the vessel must read its initial status from a scenario file. New modules
should use ovcLoadStateEXx instead.

Synopsis:
DLLCLBK void ovcLoadState (
VESSEL *vessel,

FILEHANDLE scn,
VESSELSTATUS *def_vs)

Parameters:

vessel vessel interface

scn scenario file handle

def vs set of generic vessel parameters
Notes:

* This callback function is provided to allow the module to read non-standard
parameters from the scenario file.

e The function should define a loop which parses lines from the scenario file
via oapiReadScenario_nextline.

* Any lines which the module parser does not recognise should be forwarded
to Orbiter's default scenario parser via VESSEL::ParseScenariolLine, to allow
the processing of generic options.

< Alternatively, the module parser may intercept generic parameters and
directly write values into the generic set def_vs (dangerous!)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 88

See also:
ovclLoadStateEx

ovclLoadStateEx
Called when the vessel must read its initial status from a scenario file.

Synopsis:
DLLCLBK void ovcLoadStateEx (
VESSEL *vessel,
FILEHANDLE scn,
void *vs)
Parameters:
vessel vessel interface
scn scenario file handle
VS pointer to a VESSELSTATUSKX struct (x = 2)
Notes:

e This callback function allows to read module-specific status parameters from
a scenario file.

e The function should define a loop which parses lines from the scenario file
via oapiReadScenario_nextline.

* Any lines which the module parser does not recognise should be forwarded
to Orbiter's default scenario parser via VESSEL::ParseScenarioLineEx, to
allow the processing of generic options.

* Orbiter will always pass the latest supported VESSELSTATUSKX version to
ovcLoadStateEx. This is currently VESSELSTATUS2, but may change in
future versions. To maintain compatibility, vs should therefore not be used
other than to pass it on to ParseScenarioLineEX.

« Atypical parser implementation may look like this:

DLLCLBK void ovcLoadStateEx (VESSEL *vessel, FILEHANDLE scn,
void *vs)
{

char *line;
int my_value;

while (oapiReadScenario_nextline (scn, line)) {
if (Istrnicmp (line, “my_option”, 9)) {
sscanf (line+9, “%d”, &my_value);
}elseif (...) { // more items

} else { /] anything not recognised is passed on to Orbiter
vessel->ParseScenarioLineEx (line, vs);
}

See also:
VESSEL::ParseScenarioLineEx

ovcSaveState
Called when a vessel needs to save its current status to a scenario file.

DLLCLBK void ovcSaveState (

VESSEL *vessel,
FILEHANDLE scn)

Parameters:
vessel vessel interface
scn scenario file handle

Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 89

e This function only needs to be implemented if the vessel must save non-
standard parameters. Otherwise Orbiter invokes a default parameter save.

« To allow Orbiter to save its default vessel parameters, use
VESSEL::SaveDefaultState.

* To write custom parameters to the scenario file, use the oapiWriteLine
method.

ovcPostCreation
Called after a vessel has been created and its state has been set.

DLLCLBK void ovcPostCreation (VESSEL *vessel)
Parameters:

vessel vessel interface
Notes:

e This function can be used to perform the final setup steps for the vessel,
such as animation states and instrument panel states. When this function is
called, the vessel state (e.qg. thruster levels etc.) have been defined.

ovcFocusChanged
Called after a vessel gained or lost input focus.

DLLCLBK void ovcFocusChanged (

VESSEL *vessel,

bool getfocus,
OBJHANDLE hNewVessel,
OBJHANDLE hOldVessel)

Parameters:
vessel vessel interface
getfocus true if vessel gained focus, false if it lost focus
hNewVessel handle of vessel gaining focus
hOldVessel handle of vessel losing focus

Notes:
» If getfocus is true, then vessel is the interface to hNewVessel, otherwise it is
the interface to hOldVessel.
e Thisis also called at the beginning of the simulation to the initial focus
object. In this case hOldVessel is NULL.

ovcVisualCreated
Called after a the visual representation of a vessel has been created.

DLLCLBK void ovcVisualCreated (

VESSEL *vessel,
VISHANDLE vis,
int refcount)

Parameters:
vessel vessel interface
vis handle for the newly created visual
refcount visual reference count

Notes:
* The logical interface to a vessel exists as long as the vessel is present in the
simulation. However, the visual interface exists only when the vessel is

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 90

within visual range of the camera. Orbiter creates and destroys visuals as
required. This enhances simulation performance in the presence of a large
number of objects in the simulation.

* Whenever Orbiter creates a vessel’s visual it reverts to its initial configuration
(e.g. as defined in the mesh file). The module can use this function to update
the visual to the current state, wherever dynamic changes are required.

« More than one visual representation of an object may exist. The refcount
parameter defines how many visual interfaces to the object exist.

ovcVisualDestroyed
Called before the visual representation of a vessel is destroyed.

DLLCLBK void ovcVisualDestroyed (

VESSEL *vessel,
VISHANDLE vis,
int refcount)

Parameters:
vessel vessel interface
vis handle for the visual to be destroyed
refcount visual reference count

Notes:
« Orbiter calls this function before it destroys the vessel’s visual
representation, e.g. when it moves out of the visual range of the current
camera.

* The (logical) vessel may still exist, but it is no longer rendered.

ovcTimestep
Called at each simulation time step before the vessel updates its position and velocity.

DLLCLBK void ovcTimestep (VESSEL *vessel, double simt)
Parameters:

vessel vessel interface

simt simulation up time (seconds since simulation start)
Notes:

e This function, if implemented, is called at each frame for each instance of
this vessel class, and is therefore time-critical. Avoid any unnecessary
calculations here which may degrade performance.

ovcRCSmode
Called when the RCS (reaction control system) mode changes.

Synopsis:

DLLCLBK void ovcRCSmode (VESSEL *vessel, int mode)
Parameters:

vessel vessel interface

mode new RCS mode: O=disabled, 1=rotational, 2=linear
Notes:

e This callback function is invoked when the user switches RCS mode via the
keyboard (/" or “Ctrl-/” on numerical keypad) or after a call to
VESSEL.::SetAttitudeMode() or VESSEL::ToggleAttitudeMode()

ovcADCtrImode

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 91

Called when user input mode for aerodynamic control surfaces (elevator, rudder,
aileron) changes.

Synopsis:

DLLCLBK void ovcADCtrimode (VESSEL *vessel, DWORD mode)
Parameters:

vessel vessel interface

mode control mode
Notes:

e The returned control mode contains bit flags as follows:
bit O: elevator enabled/disabled
bit 1: rudder enabled/disabled
bit 2: ailerons enabled/disabled
Therefore, mode=0 indicates control surfaces disabled, mode=7 indicates
fully enabled.

ovcNavmode
Called at activation/deactivation of a navmode (see also VESSEL::ActivateNavmode)

Synopsis:
DLLCLBK void ovcNavmode (

VESSEL *vessel,
int mode,
bool active)

Parameters:
vessel vessel interface
mode navmode constant (see section 10)
active true for activation, false for deactivation.
ovcHUDmode
Called after a change of the vessel’'s HUD (head up display) mode.

Synopsis:

DLLCLBK void ovcHUDmode (VESSEL *vessel, int mode)
Parameters:

vessel vessel interface

mode new HUD mode
Notes:

e For currently supported HUD modes see HUD_xxx constants in section 10.
« mode HUD_NONInhdicates that the HUD has been turned off.

ovcMFDmode
Called after the display mode of one of the MFDs (multifunctional displays) has
changed.
Synopsis:
DLLCLBK void oveMFDmode (VESSEL *vessel, int mfd, int mode)
Parameters:
vessel vessel interface
mfd MFD identifier (see Section 10).
mode new MFD mode (see Section 10).
ovcDockEvent

Called after a docking or undocking event at one of the vessel’s docking ports.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 92

Synopsis:
void ovcDockEvent (

VESSEL *vessel,
int dock,
OBJHANDLE connected)

Parameters:
vessel vessel interface
dock docking port index

connected handle to docked vessel, or NULL for undocking event

ovcAnimate

Called at each simulation time step if the module has registered an animation request
and if the vessel's visual exists.

Synopsis:

DLLCLBK void ovcAnimate (VESSEL *vessel, double simt)
Parameters:

vessel vessel interface

simt simulation up time (seconds since simulation start)
Notes:

e This callback allows the module to animate the vessel's visual representation
(moving undercarriage, cargo bay doors, etc.)

« ltis only called as long as the vessel has registered an animation (between
matching VESSEL::RegisterAnimation and VESSEL::UnregisterAnimation
calls) and if the vessel's visual exists.

e The UnregisterAnimation call should not be placed within the body of
ovcAnimate, since it would be lost if the vessel's visual doesn't exist. This
should rather be placed in ovcTimestep.

ovcConsumeKey

Keyboard handler. Called at each simulation time step. This callback function allows
the installation of a custom keyboard interface for the vessel.

Synopsis:
DLLCLBK int ovcConsumeKey (

VESSEL *vessel,
const char *keystate)

Parameters:
vessel vessel interface
keystate keyboard state

Return value:
A nonzero return value will completely disable default processing of the key state
for the current time step. To disable the default processing of selected keys only,
use the RESETKEY macro (see orbitersdk.h) and return O.

Notes:
« The keystate contains the current keyboard state. Use the KEYDOWN
macro in combination with the key identifiers as defined in orbitersdk.h
(OAPI_KEY_xxx) to check for particular keys being pressed. Example:

if (KEYDOWN (keystate, OAPI_KEY_F10)) {
/I perform action
RESETKEY (keystate, OAPI_KEY_F10);
// optional: prevent default processing of the key

}

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 93

< This function should be used where a key state, rather than a key event is
required, for example when engaging thrusters or similar. To test for key
events (key pressed, key released) use ovcConsumeBufferedKey instead.

ovcConsumeBufferedKey

This callback function notifies the module of a buffered key event (key pressed or key
released).

Synopsis:
DLLCLBK int ovcConsumeBufferedKey (

VESSEL *vessel,
DWORD key,
bool down,

char *kstate)

Parameters:
vessel vessel interface
key key scan code (see OAPI_KEY_xxx constants in orbitersdk.h)
down true if key was pressed, false if key was released
kstate current keyboard state

Return value:
The function should return 1 if Orbiter’s default processing of the key should be
skipped, O otherwise.

Notes:
* The key state (kstate) can be used to test for key modifiers (Shift, Ctrl, etc.).
The KEYMOD_xxx macros defined in orbitersdk.h are useful for this
purpose.
e This function may be called repeatedly during a single frame, if multiple key
events have occurred in the last time step.

ovcLoadPanel

Called when Orbiter needs to load a custom instrument panel from the module.

Synopsis:

DLLCLBK bool ovcLoadPanel (VESSEL *vessel, int id)
Parameters:

vessel vessel interface

id panel identifier

Return value:
false indicates failure.

Notes:

« Inthe body of this function the module should define the panel background
bitmap, and panel capabilities, e.g. the position of MFDs and other
instruments, active areas (mouse hotspots) etc.

* Avessel which implements panels must at least support panel id 0 (the main
panel. If any panels register neighbour panels (see
oapiSetPanelNeighbours), all the neighbours must be supported, too.

e See also: oapiRegisterPanelBackground, oapiRegisterPanelArea,
oapiRegisterMFD.

ovcPanelMouseEvent

Called when a previously registered panel area receives a mouse button event.

DLLCLBK bool ovcPanelMouseEvent (

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 94

VESSEL *vessel,
intid,

int event,

int mx,

int my)

Parameters:
vessel vessel interface
id panel area identifier
event mouse event (see PANEL_MOUSE_xxx constants in orbitersdk.h)
mx, my relative mouse position in area at event

Return value:
The function should return true if it processes the event, false otherwise.

Notes:

* Mouse events are only sent for areas which requested notification during
definition (see oapiRegisterPanelArea).

ovcPanelRedrawEvent
Called when a panel area receives a redraw event.

Synopsis:
DLLCLBK bool ovcPanelRedrawEvent (

VESSEL *vessel,

int id,

int event,
SURFHANDLE surf)

Parameters:
vessel vessel interface
id panel area identifier
event redraw event (see PANEL_REDRAW_xxx constants in orbitersdk.h)
surf area surface handle.

Return value:
The function should return true if it processes the event, false otherwise.

Notes:

* This callback function is only called for areas which were not registered with
the PANEL_REDRAW_NEVER flag.

* All redrawable panel areas receive a PANEL_REDRAW _INIT redraw
notification when the panel is created, in addition to any registered redraw
notification events.

* The surface handle surf contains either the current area state, or the area
background, depending on the flags passed during area registration.

e The surface handle may be used for blitting operations, or to receive a
Windows device context (DC) for Windows-style redrawing operations.

See also:

oapiGetDC, oapiReleaseDC, oapiTriggerPanelRedrawArea

16 Planet callback function reference

This is a list of callback functions Orbiter will call for all planet modules (i.e. modules
referenced by the Module entry in the configuration files of planets or moons). See also the
Vsop87 entry in the “Standard Orbiter modules” section below.

In the following <Planet> is a placeholder for the planet’'s or moon’s name as defined in its
configuration file (case-sensitive!)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 95

16.1 Orbital parameters

<Planet>_SetPrecision
Define the relative error for the calculations for <Planet>.

DLLCLBK int <Planet>_SetPrecision (double prec)
Parameters:
prec module-specific

Return value:
not used by Orbiter

Notes:

* Orbiter calls this function at the start of each simulation with the value of the
ErrorLimit entry of the planet’s configuration file. The module can use this to
set its calculation precision.

« If the ErrorLimit entry is not defined in the cfg file, then
<Planet>_SetPrecision will not be called, so the module should initialise
some default precision.

e Itis up to the module how to interpret the passed precision value, but by
convention prec should specify the relative error for position and velocity
calculations.

e This function is optional. If the module doesn’t define it, Orbiter will ignore
the ErrorLimit entry in the cfg file.

<Planet>_ EclSphData
Calculate ecliptic positions and velocities in spherical coordinates. Reference frame is
ecliptic and equinox of J2000. For planets (i.e. objects defined as “Planet” in the solar
system cfg file) heliocentric coordinates should be calculated. For moons (i.e. objects
defined as “Moon” in the solar system cfg file) coordinates w.r.t. the moon'’s reference
planet should be calculated, e.g. geocentric for Earth’'s moon.

DLLCLBK int <Planet>_EclSphData (double mjd, double *ret)
Parameters:

mjd date in MJD format (MJD = JD-2400000.5)

ret array of results which the function should calculate as follows:

ret[0] = longitude [rad]

ret[1] = latitude [rad]

ret[2] = radius [AU]

ret[3] = velocity in longitude [rad/s]
ret[4] = velocity in latitude [rad/s]
ret[5] = radial velocity [AU/s]

Return value:
Error code (not used)

Notes:
e The function should calculate the values for ret in the J2000 ecliptic frame,
but Orbiter’s precision requirements are not very high, so the ecliptic of a
different epoch (or the ecliptic of date) is probably ok.
< Orbiter only calls this function directly to calculate positions at times other
than the current simulation time (e.g. for trajectory predictions). Otherwise it
calls <Planet>_CurrentData (see below).

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 96

<Planet>_CurrentData
This function is called by Orbiter at each frame to update planet positions and
velocities. Therefore the implementation can make use of interpolation methods to
increase the efficiency of the calculation.

Synopsis:
DLLCLBK int <Planet>_CurrentData (
double simt,
double *ret)
Parameters:
simt Time (in seconds) since simulation start
ret results (as in <Planet>_EcISphData)

Return value:
not used

Notes:

* Orbiter passes simt (simulation time in seconds) rather than mjd to this
function to allow more precise calculation of the interpolation point.

e The simplest way to implement this function is as
return <Planet>_EclSphData (oapiTime2MJD (simt), ret);

However this is not recommended. Instead the function should sample the
planet data in appropriate intervals and use an interpolation scheme to
calculate the data for a given time. This is more efficient and helps
smoothing rounding errors in the full updates.

« This function is called at every frame by Orbiter and is therefore extremely
time-critical. As a performance target, the execution of this function for all
planets should take < 10 milliseconds on a low-end machine.

e The sampling times for full position calculations should be staggered for
different planets, so that not all full updates occur at the same frame.

16.2 Physical parameters

<Planet>_ AtmPrm
If defined, this function returns atmospheric parameters as a function of altitude above
zero (“sea level”).

Synopsis:
DLLCLBK void <Planet>_AtmPrm (double alt, ATMPARAM *prm)

Parameters:
alt altitude [m]
prm structure to be filled with atmospheric parameters

Notes:
« The ATMPARAM structure contains the following fields:
double T absolute temperature [K]
double p pressure [N/m?]
double rho density [kg/m’]

17 API function reference

This is the reference list for the Orbiter API functions which can be used by modules to obtain
and set simulation parameters from the Orbiter kernel. See index for alphabetical listing.

17.1 Obtaining object handles

oapiGetObjectByName

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 97

Retrieve the handle for an object from its name. Objects may be vessels, orbital
stations, planets, moons or suns. The handle remains valid until the object is deleted or
the simulation terminates.

Synopsis:

OBJHANDLE oapiGetObjectByName (char *name)
Parameters:

name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

Notes:
« This function can not be used to obtain handles for surface bases. Use
oapiGetBaseByName or oapiGetBaseByIndex instead.

oapiGetObjectBylndex
Retrieve the handle for an object from its index. This is useful to construct loops over a
series of objects. The handle remains valid until the object is deleted or the simulation
terminates.

Synopsis:
OBJHANDLE oapiGetObjectBylndex (int index)

Parameters:
index object index (>= 0)

Return value:
object handle. (NULL indicates that the object does not exist)

Notes:
0 <= index < oapiGetObjectCount() is required. The function does not perform a
range check!

oapiGetObjectCount
Returns the number of objects currently present in the simulation.

Synopsis:
DWORD oapiGetObjectCount (void)

Return value:
object count

oapiGetVesselByName
Retrieve the handle for a vessel from its name. The handle remains valid until the
object is deleted or the simulation terminates.

Synopsis:

OBJHANDLE oapiGetVesselByName (char *name)
Parameters:

name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the vessel does not exist)

oapiGetVesselBylndex

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 98

Retrieve the handle for a vessel from its index. This is useful to construct loops over a
series of vessels. The handle remains valid until the object is deleted or the simulation

terminates.

Synopsis:
OBJHANDLE oapiGetVesselBylndex (int index)

Parameters:
index object index (>= 0)

Return value:
vessel handle. (NULL indicates that the vessel does not exist)

Notes:

0 <= index < oapiGetVesselCount() is required. The function does not perform a

range check!

oapiGetVesselCount
Returns the number of vessels currently present in the simulation.

Synopsis:
DWORD oapiGetVesselCount (void)

Return value:
vessel count

oapiGetStationByName
Retrieves the handle of an orbital station from its name.

Synopsis:

OBJHANDLE oapiGetStationByName (char *name)
Parameters:

name station name (not case-sensitive)

Return value:
object handle. (NULL indicates that the station does not exist)

oapiGetStationBylIndex
Retrieves the handle of an orbital station from its list index.

Synopsis:

OBJHANDLE oapiGetStationBylndex (int index)
Parameters:

index object index (>= 0)

Return value:
object handle. (NULL indicates that the station does not exist)

oapiGetStationCount
Returns the number of stations currently in the simulation.

Synopsis:
DWORD oapiGetStationCount (void)

Return value:
station count

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger

99

oapiGetGbodyByName
Retrieves the handle of a “massive” object (a gravitational field source: sun, planet or
moon) from its name.

Synopsis:

OBJHANDLE oapiGetGbodyByName (char *name)
Parameters:

name object name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

oapiGetGbodyBylIndex
Retrieves the handle of a massive object from its list index.

Synopsis:

OBJHANDLE oapiGetGbodyByIndex (int index)
Parameters:

index object index (= 0)

Return value:
object handle. (NULL indicates that the index is out of range)

oapiGetGbodyCount
Returns the number of massive objects (suns, planets and moons) currently in the
simulation.

Synopsis:
DWORD oapiGetGbodyCount ()

Return value:
Number of objects

oapiGetBaseByName
Returns the handle of a surface base on a given planet or moon.

Synopsis:
OBJHANDLE oapiGetBaseByName (OBJHANDLE hPlanet, char *name)
Parameters:
hPlanet handle of the planet or moon on which the base is located
name base name (not case-sensitive)

Return value:
object handle. (NULL indicates that the object does not exist)

oapiGetBaseBylndex
Returns the handle of a surface base on a given planet or moon from its list index.

Synopsis:
OBJHANDLE oapiGetBaseBylndex (OBJHANDLE hPlanet, int index)
Parameters:
hPlanet handle of the planet or moon on which the base is located.
index object index (= 0)

Return value:
object handle. (NULL indicates that the index is out of range)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 100

oapiGetBaseCount
Returns the number of surface bases located on the specified planet.

Synopsis:

DWORD oapiGetBaseCount (OBJHANDLE hPlanet)
Parameters:

hPlanet handle of a planet or moon.

Return value:
Number of surface bases.

oapiGetObjectName
Returns the name of an object.

Synopsis:
void oapiGetObjectName (
OBJHANDLE hObj,
char *name,
int n)

Parameters:
hObj object handle
name pointer to character array to receive object name
n length of string buffer

Notes:

name must be allocated to at least size n by the calling function.

If the string buffer is not long enough to hold the object name, the name is
truncated.

oapiGetFocusObject

Retrieve the handle for the current focus object. The focus object is the user-controlled
vessel which receives keyboard and joystick input.

Synopsis:
OBJHANDLE oapiGetFocusObiject (void)

Return value:

focus object handle. This is guaranteed to exist during the simulation (between
opcOpenRenderViewport and opcCloseRenderViewport)

Notes:
Currently the focus object is guaranteed to be a vessel. This may change in
future versions.

oapiSetFocusObject
Switches the input focus to a different vessel object.

OBJHANDLE oapiSetFocusObject (OBJHANDLE hVessel)

Parameters:
hVessel handle of vessel to receive the focus

Return value:
handle of vessel losing focus, or NULL if focus did not change

Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 101

hVessel must refer to a vessel object. Trying to set the focus to a different object
type (e.g. orbital station) will fail.

oapiGetVessellnterface
Returns the VESSEL class interface for a vessel handle.

VESSEL *oapiGetVessellnterface (OBJHANDLE hVessel)
Parameters:
hVessel vessel handle

Return value:
Pointer to VESSEL class interface for this vessel (see section 11).

oapiGetFocusinterface
Returns the VESSEL class interface for the current focus object.

Synopsis:
VESSEL *oapiGetFocusinterface ()

Return value:
Pointer to VESSEL class interface for focus object (see section 11).

oapiCreateVessel
Creates a new vessel. This version uses the original VESSELSTATUS interface.

Synopsis:
OBJHANDLE oapiCreateVessel (
const char *name,
const char *classname,
const VESSELSTATUS &status)

Parameters:
name vessel name
classname vessel class name
status status parameters

Return value:
handle of the newly created vessel

Notes:
« A configuration file for the specified vessel class must exist in the Config
subdirectory.
e This function replaces VESSEL.::Create().

See also:
oapiCreateVesselEx, ovcSetState, VESSELSTATUS

oapiCreateVesselEx

Creates a new vessel. This version allows to use a VESSELSTATUSKX interface
(version x = 2).

Synopsis:
OBJHANDLE oapiCreateVesselEx (
const char *name,
const char *classname,
const void *status)

Parameters:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 102

name vessel name
classname vessel class name
status pointer to a VESSELSTATUSKX structure

Return value:

« A configuration file for the specified vessel class must exist in the Config
subdirectory.

e status must point to a VESSELSTATUSKX structure. Currently only
VESSELSTATUS?2 is supported, but future Orbiter versions may add new
interfaces.

« During the vessel creation process Orbiter will call the module’s
ovcSetStateEx callback function if it exists. Orbiter will not try to call the
ovcSetState function.

See also:
oapiCreateVessel, ovcSetStateEx, VESSELSTATUS2

oapiDeleteVessel
Deletes an existing vessel.

Synopsis:
bool oapiDeleteVessel (

OBJHANDLE hVessel,
OBJHANDLE hAlternativeCameraTarget = 0)

Parameters:
hVessel vessel handle
hAlternativeCameraTarget optional new camera target

Return value:
true if vessel could be deleted.

Notes:
* The current focus object (i.e. the vessel receiving user input) cannot be
deleted. Trying to do so will return false.
« If the current camera target is deleted, a new camera target can be provided
in hAlternativeCameraTarget. If not specified, the focus object is used as
default camera target.

17.2 Generic object parameters

oapiGetSize
Returns the size (mean radius) of an object.

Synopsis:

double oapiGetSize (OBJHANDLE hObj)
Parameters:

hObj object handle

Return value:
Object size (mean radius) in meter.

oapiGetMass

Returns the mass [kg] of an object. For vessels, this is the total mass, including current
fuel mass.

Synopsis:
double oapiGetMass (OBJHANDLE hObj)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 103

Parameters:
hObj object handle

Return value:
object mass [kg]

17.3 Vessel fuel management

oapiGetEmptyMass
Returns empty mass of a vessel, excluding fuel.

Synopsis:
double oapiGetEmptyMass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
empty vessel mass [kg]

Notes:
« hVessel must be a vessel handle. Other object types are invalid.
« Do not rely on a constant empty mass. Structural changes (e.g. discarding a
rocket stage) will affect the empty mass.
< For multistage configurations, the fuel mass of all currently inactive stages
contributes to the empty mass. Only the fuel mass of active stages is
excluded.

oapiGetPropellantHandle
Returns an identifier of a vessel's propellant resource.

Synopsis:
PROPELLANT_HANDLE oapiGetPropellantHandle (
OBJHANDLE hVessel,

DWORD idx)
Parameters:
hVessel vessel handle
idx propellant resource index (= 0)

Return value:
propellant resource id, or NULL if idx = # propellant resources

oapiGetPropellantMaxMass
Returns the maximum capacity [kg] of a propellant resource.

Synopsis:

double oapiGetPropellantMaxMass (PROPELLANT_HANDLE ph)
Parameters:

ph propellant resource identifier

Return value:
maximum fuel capacity [kg] of the resource.

See also:
oapiGetPropellantHandle(), VESSEL::GetPropellantMaxMass()

oapiGetPropellantMass

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 104

Returns the current fuel mass [kg] of a propellant resource.

Synopsis:

double oapiGetPropellantMass (PROPELLANT_HANDLE ph)
Parameters:

ph propellant resource identifier

Return value:
current fuel mass [kg] of the resource.

oapiGetFuelMass
Returns current fuel mass of the first propellant resource of a vessel.

Synopsis:
double oapiGetFuelMass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
Current fuel mass [kg]

Notes:

« This function is equivalent to
oapiGetPropellantMass (oapiGetPropellantHandle (hVessel, 0))

« hVessel must be a vessel handle. Other object types are invalid.

« For multistage configurations, this returns the current fuel mass of active
stages only.

oapiGetMaxFuelMass
Returns maximum fuel capacity of the first propellant resource of a vessel.

Synopsis:
double oapiGetMaxFuelMass (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
Maximum fuel mass [kg]

Notes:

« This function is equivalent to
oapiGetPropellantMaxMass (oapiGetPropellantHandle (hVessel, 0))

« hVessel must be a vessel handle. Other object types are invalid.

* For multistage configurations, this returns the sum of the max fuel mass of
active stages only.

oapiSetEmptyMass
Set the empty mass of a vessel (excluding fuel)

Synopsis:

void oapiSetEmptyMass (OBJHANDLE hVessel, double mass)
Parameters:

hVessel vessel handle

mass empty mass [kg]
Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 105

« Use this function to register structural mass changes, for example as a result
of jettisoning a fuel tank, etc.

17.4 Object state vectors

oapiGetGlobalPos
Returns the position of an object in the global reference frame.

Synopsis:

void oapiGetGlobalPos (OBJHANDLE hObj, VECTOR3 *pos)
Parameters:

hObj object handle

pos pointer to vector receiving coordinates
Notes:

e The global reference frame is the heliocentric ecliptic system at ecliptic and
equinox of J2000.
e Units are meters.

oapiGetGlobalVel
Returns the velocity of an object in the global reference frame.

Synopsis:

void oapiGetGlobalVel (OBJHANDLE hObj, VECTORS3 *vel)
Parameters:

hObj object handle

vel pointer to vector receiving velocity data
Notes:

* The global reference frame is the heliocentric ecliptic system at ecliptic and
equinox of J2000.
e Units are meters/second.

oapiGetFocusGlobalPos
Returns the position of the current focus object in the global reference frame.

Synopsis:

void oapiGetFocusGlobalPos (VECTOR3 *pos)
Parameters:

pos pointer to vector receiving coordinates
Notes:

* The global reference frame is the heliocentric ecliptic system at ecliptic and
equinox of J2000.0.
* Units are meters.

oapiGetFocusGlobalVel
Returns the velocity of the current focus object in the global reference frame.

Synopsis:

void oapiGetFocusGlobalVel (VECTOR3 *vel)
Parameters:

vel pointer to vector receiving velocity data
Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 106

* The global reference frame is the heliocentric ecliptic system at ecliptic and
equinox of J2000.

* Units are meters/second.

oapiGetRelativePos
Returns the distance vector from hRef to hObj in the ecliptic reference frame.

Synopsis:
void oapiGetRelativePos (

OBJHANDLE hObj,
OBJHANDLE hRef,

VECTORS *pos)
Parameters:
hObj object handle
hRef reference object handle
pos pointer to vector receiving distance data
Notes:

Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetRelativeVel

Returns the velocity difference vector of hObj relative to hRef in the ecliptic reference
frame.

Synopsis:
void oapiGetRelativeVel (

OBJHANDLE hObj,
OBJHANDLE hRef,
VECTORS *vel)

Parameters:
hObj object handle
hRef reference object handle
vel pointer to vector receiving velocity difference data

Notes:
Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetFocusRelativePos
Returns the distance vector from hRef to the current focus object.

Synopsis:

void oapiGetFocusRelativePos (OBJHANDLE hRef, VECTOR3 *pos)
Parameters:

hRef reference object handle

pos pointer to vector receiving distance data
Notes:

Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

oapiGetFocusRelativeVel
Returns the velocity difference vector of the current focus object relative to hRef.

Synopsis:

void oapiGetFocusRelativeVel (OBJHANDLE hRef, VECTOR3 *vel)
Parameters:

hRef reference object handle

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 107

vel pointer to vector receiving velocity difference data

Notes:
Results are w.r.t. ecliptic frame at equinox and ecliptic of J2000.0.

17.5 Surface-relative parameters

oapiGetAltitude
Returns the altitude of a vessel over a planetary surface.

BOOL oapiGetAltitude (OBJHANDLE hVessel, double *alt)
Parameters:

hVessel vessel handle

alt pointer to variable receiving altitude value

Return value:
Error flag (FALSE on failure)

Notes:
e Unit is meter [m]
* Returns altitude above closest planet.
« Altitude is measured above mean planet radius (as defined by SIZE
parameter in planet’s cfg file)
* The handle passed to the function must refer to a vessel.

oapiGetFocusAltitude
Returns the altitude of the current focus vessel over a planetary surface.

Synopsis:
BOOL oapiGetFocusAltitude (double *alt)
Parameters:
alt pointer to variable receiving altitude value [m]

Return value:
Error flag (FALSE on failure)

oapiGetPitch
Returns a vessel's pitch angle w.r.t. the local horizon.

Synopsis:

BOOL oapiGetPitch (OBJHANDLE hVessel, double *pitch)
Parameters:

hVessel vessel handle

pitch pointer to variable receiving pitch value

Return value:
Error flag (FALSE on failure)

Notes:
e Unitis radian [rad]
e Returns pitch angle w.r.t. closest planet
e The local horizon is the plane whose normal is defined by the distance
vector from the planet centre to the vessel.
* The handle passed to the function must refer to a vessel.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 108

oapiGetFocusPitch
Returns the pitch angle of the current focus vessel w.r.t. the local horizon.

Synopsis:

BOOL oapiGetFocusPitch (double *pitch)
Parameters:

pitch pointer to variable receiving pitch value

Return value:
Error flag (FALSE on failure)

oapiGetBank
Returns a vessel’'s bank angle w.r.t. the local horizon.

Synopsis:

BOOL oapiGetBank (OBJHANDLE hVessel, double *bank)
Parameters:

hVessel vessel handle

bank pointer to variable receiving bank value

Return value:
Error flag (FALSE on failure)

Notes:
e Unit is radian [rad]
« Returns bank angle w.r.t. closest planet
e The local horizon is the plane whose normal is defined by the distance
vector from the planet centre to the vessel.
* The handle passed to the function must refer to a vessel.

oapiGetFocusBank
Returns the bank angle of the current focus vessel w.r.t. the local horizon.

Synopsis:
BOOL oapiGetFocusBank (double *bank)
Parameters:
bank pointer to variable receiving bank angle [rad]

Return value:
Error flag (FALSE on failure)

oapiGetHeading

Returns a vessel's heading (against geometric north) calculated for the local horizon
plane.

Synopsis:
BOOL oapiGetHeading (OBJHANDLE hVessel, double *heading)

Parameters:
hVessel vessel handle
heading pointer to variable receiving heading value [rad]

Return value:
Error flag (FALSE on failure)

Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 109

e Unitis radian [rad] O=north, Tv2=east, etc.
* The handle passed to the function must refer to a vessel.

oapiGetFocusHeading
Returns the heading (against geometric north) of the current focus vessel calculated for
the local horizon plane.

Synopsis:
BOOL oapiGetFocusHeading (double *heading)

Parameters:
heading pointer to variable receiving heading value [rad]

Return value:
Error flag (FALSE on failure)

oapiGetEquPos
Returns a vessel's spherical equatorial coordinates (longitude, latitude and radius) with
respect to the closest planet or moon.

Synopsis:
BOOL oapiGetEquPos (

OBJHANDLE hVessel,
double *longitude,
double *latitude,
double *radius)

Parameters:
hVessel vessel handle
longitude pointer to variable receiving longitude value [rad]
latitude pointer to variable receiving latitude value [rad]
radius pointer to variable receiving radius value [m]

Return value:
Error flag (FALSE on failure)

Notes:

* The handle passed to the function must refer to a vessel; stations are not
supported at present.

oapiGetFocusEquPos
Returns the current focus vessel’s spherical equatorial coordinates (longitude, latitude
and radius) with respect to the closest planet or moon.

BOOL oapiGetFocusEquPos (

double *longitude,
double *latitude,
double *radius)

Parameters:
longitude pointer to variable receiving longitude value [rad]
latitude pointer to variable receiving latitude value [rad]
radius pointer to variable receiving radius value [m]

Return value:
Error flag (FALSE on failure)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 110

17.6 Aerodynamics

oapiGetAirspeed
Returns a vessel's airspeed w.r.t. the closest planet or moon.

Synopsis:
BOOL oapiGetAirspeed (OBJHANDLE hVessel, double *airspeed)

Parameters:
hVessel vessel handle
airspeed pointer to variable receiving airspeed value [m/s]

Return value
Error flag (FALSE on failure)

Notes:

« This function works even for planets or moons without atmosphere. It returns
an “airspeed-equivalent” value.

oapiGetFocusAirspeed
Returns the current focus vessel's airspeed w.r.t. the closest planet or moon.

Synopsis:
BOOL oapiGetFocusAirspeed (double *airspeed)

Parameters:
airspeed pointer to variable receiving airspeed value [m/s]

Return value:
Error flag (FALSE on failure)

oapiGetAirspeedVector
Returns a vessel's airspeed vector w.r.t. the closest planet or moon in the local
horizon’s frame of reference.

BOOL oapiGetAirspeedVector (

OBJHANDLE hVessel,
VECTORS *speedvec)

Parameters:
hVessel vessel handle
speedvec pointer to variable receiving airspeed vector [m/s in Xx,y,z]

Return value:
Error flag (FALSE on failure)

Notes:

e This function returns the airspeed vector with respect to the local horizon
reference frame. To get the vector with respect to the local vessel
coordinates, use oapiGetShipAirspeedVector.

oapiGetFocusAirspeedVector

Returns the current focus vessel’s airspeed vector w.r.t. the closest planet or moon in
the local horizon’s frame of reference.

Synopsis:
BOOL oapiGetFocusAirspeedVector (VECTOR3 *speedvec)

Parameters:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 111

speedvec pointer to variable receiving airspeed vector [m/s in x,y,z]

Return value:
Error flag (FALSE on failure)

oapiGetShipAirspeedVector
Returns a vessel's airspeed vector w.r.t. the closest planet or moon in the vessel’s local
frame of reference.

Synopsis:
BOOL oapiGetShipAirspeedVector (

OBJHANDLE hVessel,
VECTORS *speedvec)

Parameters:
hVessel vessel handle
speedvec pointer to variable receiving airspeed vector [m/s in Xx,y,z]

Return value:
Error flag (FALSE on failure)

Notes:
* This function returns the airspeed vector with respect to the vessel's frame of
reference. The get the vector with respect to the local horizon’s frame of
reference, use oapiGetAirspeedVector.

oapiGetFocusShipAirspeedVector
Returns the current focus vessel’s airspeed vector w.r.t. closest planet or moon in the
vessel's local frame of reference.

Synopsis:
BOOL oapiGetFocusShipAirspeedVector (VECTOR3 *speedvec)

Parameters:
speedvec pointer to variable receiving airspeed vector [m/s in x,y,z]

Return value:
Error flag (FALSE on failure)

oapiGetAtmPressureDensity
Returns the atmospheric pressure and density caused by a planetary atmosphere at
the current vessel position.

Synopsis:
void oapiGetAtmPressureDensity (

OBJHANDLE hVessel,
double *pressure,
double *density)

Parameters:
hVessel vessel handle
pressure pointer to variable receiving pressure value [Pa]
density pointer to variable receiving density value [kg/m°]

Notes:

« Pressure and density are calculated using an exponential barometric
equation, without accounting for local variations.

oapiGetFocusAtmPressureDensity

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 112

Returns the atmospheric pressure and density caused by a planetary atmosphere at
the current focus vessel's position.

Synopsis:
void oapiGetFocusAtmPressureDensity (

double *pressure,
double *density)

Parameters:
pressure pointer to variable receiving pressure value [Pa]
density pointer to variable receiving density value [kg/ms]

oapiGetinducedDrag
This is a helper function which is useful when implementing the callback function
calculating the aerodynamics coefficients for an airfoil (see

VESSEL::CreateAirfoil). It computes the lift-induced component cp; of the drag
coefficient as a function of lift coefficient c., wing aspect ratio A, and wing efficiency
factor e, as
CZ
Cpj ==
" TAe
Synopsis:
double oapiGetinducedDrag (double cl, double A, double e)
Parameters:
cl lift coefficient
A wing aspect ratio
e wing efficiency factor

Return value:
Induced drag coefficient cp;

Notes:

* The full drag coefficient required by the airfoil callback function consists of
several components: profile drag cp e, induced drag cp,; and wave drag Cp
CD = CD,e +CD,i +CD,W
where cp is caused by skin friction and pressure components, and cp, is @
result of the shock wave and flow separation in transonic and supersonic
flight.

« The wing aspect ratio is defined as b%S, where b is the wing span, and Sis
the wing area.

* The efficiency factor depends on the wing shape. The most efficient wings
are elliptical, with e = 1. For all other shapes, e< 1.

* This function can be interpreted slightly differently by moving the angle of
attack-dependency of the profile drag into the induced drag component:
CD = CD,O +C;D,i +CD,W
where cp is the zero-lift component of the profile drag, and ¢'p; is a modified
induced drag obtained by replacing the shape factor e with the Oswald
efficiency factor. See Programmer’s Guide for more details.

oapiGetWaveDrag
This is a helper function which is useful when implementing the callback function
calculating the aerodynamics coefficients for an airfoil (see
VESSEL::CreateAirfoil). Ituses a simple model to compute the wave drag
component of the drag coefficient, cp . Wave drag significantly affects the vessel drag
around Mach 1, and falls off towards lower and higher airspeeds.
This function uses the following model:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 113

g .
0 if M <M,
0
O M-M,
P, -, MMM
CD’W:D 2 1
%m if M, <M <M,
0 2 1/2
(Ma_l) ;

where 0 < M; < M, < 1 < M3 are characteristic Mach numbers, and cm is the maximum
wave drag coefficient at transonic speeds.

Synopsis:
double oapiGetWaveDrag (

double M,
double M1, double M2, double M3,
double cmax)

Parameters:
M current Mach number
M1, M2, M3 characteristic Mach numbers
cmax maximum wave drag coefficient

Return value:
Wave drag coefficient cp

Notes:

e The model underlying this function assumes a piecewise linear wave drag
profile for M < M, and a decay with (M*-1)™"? for M > Ms. If this profile is not
suitable for a given airfoil, the programmer must implement wave drag
manually.

17.7 Engine status

oapiGetEngineStatus
Retrieve the status of main, retro and hover thrusters for a vessel.

Synopsis:
void oapiGetEngineStatus (

OBJHANDLE hVessel,
ENGINESTATUS *es)

Parameters:
hVessel vessel handle
es pointer to an ENGINESTATUS structure which will receive the
engine level parameters
Notes:

The main/retro engine level has a range of [-1,+1]. A positive value indicates
engaged main/disengaged retro thrusters, a negative value indicates engaged
retro/disengaged main thrusters. Main and retro thrusters cannot be engaged
simultaneously. For vessels without retro thrusters the valid range is [0,+1]. The
valid range for hover thrusters is [0,+1].

oapiGetFocusEngineStatus
Retrieve the engine status for the focus vessel.

Synopsis:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 114

void oapiGetFocusEngineStatus (ENGINESTATUS *es)

Parameters:
es pointer to an ENGINESTATUS structure which will receive the
engine level parameters

Notes:
See oapiGetEngineStatus

oapiSetEngineLevel
Engage the specified engines.

void oapiSetEnginelLevel (

OBJHANDLE hVessel,
ENGINETYPE engine,

double level)
Parameters:
hVessel vessel handle
engine identifies the engine to be set
level engine thrust level [0,1]
Notes:

* Not all vessels support all types of engines.

e Setting main thrusters >0 implies setting retro thrusters to 0 and vice versa.

e Setting main thrusters to —level is equivalent to setting retro thrusters to
+level and vice versa.

oapiGetAttitudeMode
Returns a vessel's current attitude thruster mode.

int oapiGetAttitudeMode (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
Current attitude mode (O=disabled or not available, 1=rotational, 2=linear)

Notes:
e The handle must refer to a vessel. This function does not support stations or
other object types.

oapiToggleAttitudeMode
Flip a vessel’s attitude thruster mode between rotational and linear.

int oapiToggleAttitudeMode (OBJHANDLE hVessel)

Parameters:
hVessel vessel handle

Return value:
The new attitude mode (1=rotational, 2=linear, 0O=unchanged disabled)

Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 115

* The handle must refer to a vessel. This function does not support stations or
other object types.

« This function flips between linear and rotational, but has no effect if attitude
thrusters were disabled.

oapiSetAttitudeMode
Set a vessel's attitude thruster mode.

Synopsis:

bool oapiSetAttitudeMode (OBJHANDLE hVessel, int mode)
Parameters:

hVessel vessel handle

mode attitude mode (O=disable, 1=rotational, 2=linear)

Return value:
Error flag; false indicates failure (requested mode not available)

Notes:

* The handle must refer to a vessel. This function does not support stations or
other object types.

oapiGetFocusAttitudeMode
Returns the current focus vessel’s attitude thruster mode (rotational or linear)

Synopsis:
int oapiGetFocusAttitudeMode ()

Return value:
Current attitude mode (O=disabled or not available, 1=rotational, 2=linear)

oapiToggleFocusAttitudeMode
Flip the current focus vessel’s attitude thruster mode between rotational and linear.

Synopsis:
int oapiToggleFocusAttitudeMode ()

Return value:
The new attitude mode (1=rotational, 2=linear, O=unchanged disabled)

Notes:

« This function flips between linear and rotational, but has no effect if attitude
thrusters were disabled.

oapiSetFocusAttitudeMode
Set the current focus vessel’s attitude thruster mode.

Synopsis:
bool oapiSetFocusAttitudeMode (int mode)
Parameters:
mode attitude mode (O=disable, 1=rotational, 2=linear)

Return value:
Error flag; false indicates error (requested mode not available)

oapiRegisterExhaustTexture
Request a custom texture for vessel exhaust rendering.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 116

Synopsis:
SURFHANDLE oapiRegisterExhaustTexture (char *name)

Parameters:
name exhaust texture file name (without path and extension)

Return value:
texture handle

Notes:
* The exhaust texture must be stored in DDS format in Orbiter’s default texture
directory.
* If the texture is not found the function returns NULL.
* The texture can be used to define custom textures in VESSEL::AddExhaust.
See also:

VESSEL::AddExhaust

oapiRegisterReentryTexture
Request a custom texture for vessel reentry flame rendering.

Synopsis:

SURFHANDLE oapiRegisterReentryTexture (char *name)
Parameters:

name reentry texture file name (without path and extension)

Return value:
texture handle

Notes:

¢ The exhaust texture must be stored in DDS format in Orbiter’s default texture
directory.

« If the texture is not found the function returns NULL.

* The texture can be used to define custom textures in
VESSEL::SetReentryTexture.

See also:
VESSEL::SetReentryTexture

17.8 Functions for planetary bodies

All OBJHANDLE function parameters used in this section must refer to planetary bodies
(planets, moons, astereoids, etc.) unless stated otherwise. Invalid handles may lead to
crashes.

Currently, the orientation of planetary rotation axes is assumed time-invariant. Precession,
nutation and similar effects are not currently simulated.

oapiGetPlanetPeriod
Returns the rotation period (the length of a siderial day) of a planet.

Synopsis:

double oapiGetPlanetPeriod (OBJHANDLE hPlanet)
Parameters:

hPlanet planet handle

Return value:
planet rotation period [seconds]

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 117

oapiGetPlanetObliquity
Returns the obliquity of the planet’s rotation axis (the angle between the rotation axis
and the ecliptic zenith).

Synopsis:

double oapiGetPlanetObliquity (OBJHANDLE hPlanet)
Parameters:

hPlanet planet handle

Return value:
obliquity [rad]

Notes:

< In Orbiter, the ecliptic zenith (at epoch J2000) is the positive y-axis of the
global frame of reference.

oapiGetPlanetTheta
Returns the longitude of the ascending node of the equatorial plane (denoted by 6),
that is, the angle between the vernal equinox and the ascending node of the equator
w.r.t. the ecliptic.

Synopsis:

double oapiGetPlanetTheta (OBJHANDLE hPlanet)
Parameters:

hPlanet planet handle

Return value:
longitude of ascending node of the equator [rad]

Notes:

* For Earth, this function will return 0. (The ascending node of Earth’s
equatorial plane is the definition of the vernal equinox).

oapiGetPlanetObliquityMatrix
Returns a rotation matrix which performs the transformation from the planet’s tilted
coordinates into global coordinates.

Synopsis:
void oapiGetPlanetObliquityMatrix (

OBJHANDLE hPlanet,
MATRIX3 *mat)

Parameters:

hPlanet planet handle

mat pointer to a matrix receiving the rotation data
Notes:

e The returned matrix is given by
[cos? 0 -sinfM O 0 C
R,=00 1 0 b cosp -singp
EBin6 0 cosd H) sing cosp E
where Bis the longitude of the ascending node of the equator, as returned by
oapiGetPlanetTheta, and ¢ is the obliquity as returned by
oapiGetPlanetObliquity.

* Ry does not include the current rotation of the planet around its axis. Ry is
therefore time-independent.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 118

oapiGetPlanetCurrentRotation
Returns the current rotation angle of the planet around its axis.

Synopsis:

double oapiGetPlanetCurrentRotation (OBJHANDLE hPlanet)
Parameters:

hPlanet planet handle

Return value:
Rotation angle [rad]

Notes:
e The complete rotation matrix from planet local to global (ecliptic) coordinates
is given by
[cosw 0 -sinwC
R=R,§0 1 0 F
Fsinw 0 cosw E

where R, is the obliquity matrix as returned by oapiGetPlanetObliquityMatrix,
and wis the rotation angle returned by oapiGetPlanetCurrentRotation.

oapiPlanetHasAtmosphere
Test for existence of planetary atmosphere.

Synopsis:

double oapiPlanetHasAtmosphere (OBJHANDLE hPlanet)
Parameters:

hPlanet planet handle

Return value:
true if an atmosphere has been defined for the planet, false otherwise.

oapiGetPlanetAtmParams
Returns atmospheric parameters as a function of distance from the planet centre.

Synopsis:
void oapiGetPlanetAtmParams (
OBJHANDLE hPlanet,
double rad,
ATMPARAM *prm)

Parameters:

hPlanet planet handle

rad radius from planet centre [m]

prm pointer to ATMPARAM structure receiving parameters
Notes:

e See section 9 for definition of ATMPARAM structure.
< If the planet has no atmosphere, or if the defined radius is beyond the
defined upper atmosphere limit, all parameters are set to 0.

17.9 Surface base functions

oapiGetBaseEquPos

Returns the equatorial coordinates (longitude, latitude and radius) of the location of a
surface base.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 119

Synopsis:
void oapiGetBaseEquPos (

OBJHANDLE hBase,
double *Ing,

double *lat,

double *rad = 0)

Parameters:
hBase surface base handle
Ing pointer to variable to receive longitude value [rad]
lat pointer to variable to receive latitude value [rad]
rad pointer to variable to receive radius value [m]
Notes:

< hBase must be a valid base handle (e.g. from oapiGetBaseByName)
e The radius pointer can be omitted if not required.
e Currently, rad will always return the planet mean radius.

oapiGetBasePadCount
Returns the number of VTOL landing pads owned by the base.

Synopsis:

DWORD oapiGetBasePadCount (OBJHANDLE hBase)
Parameters:

hBase surface base handle

Return value:
Number of landing pads

Notes:
« hBase must be a valid base handle (e.g. from oapiGetBaseByName)
e This function only counts VTOL pads, not runways.

oapiGetBasePadEquPos
Returns the equatorial coordinates (longitude, latitude and radius) of the location of a
VTOL landing pad.

Synopsis:
bool oapiGetBasePadEquPos (

OBJHANDLE hBase,
DWORD pad,
double *Ing,

double *lat,

double *rad = 0)

Parameters:
hBase surface base handle
pad pad index
Ing pointer to variable to receive longitude value [rad]
lat pointer to variable to receive latitude value [rad]
rad pointer to variable to receive radius value [m]

Return value:
false indicates failure (pad index out of range). In that case, the return values are
undefined.

Notes:
e hBase must be a valid base handle (e.g. from oapiGetBaseByName)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 120

* 0= pad < oapiGetBasePadCount() is required.
* The radius pointer can be omitted if not required.

oapiGetBasePadStatus
Returns the status of a VTOL landing pad (free, occupied or cleared).

Synopsis:
bool oapiGetBasePadStatus (

OBJHANDLE hBase,
DWORD pad,
int *status)

Parameters:
hBase surface base handle
pad pad index
status pointer to variable to receive pad status

Return value:
false indicates failure (pad index out of range)

Notes:
« hBase must be a valid base handle (e.g. from oapiGetBaseByName)
e 0= pad < oapiGetBasePadCount() is required.
« status can be one of the following:
0 =pad is free
1 = pad is occupied
2 = pad is cleared for an incoming vessel

oapiGetBasePadNav
Returns a handle to the ILS transmitter of a VTOL landing pad, if available.

Synopsis:

NAVHANDLE oapiGetBasePadNav (OBJHANDLE hBase, DWORD pad)
Parameters:

hBase surface base handle

pad pad index

Return value:
Handle of a ILS transmitter, or NULL if the pad index is out of range or the pad
has no ILS.

Notes:
e hBase must be a valid base handle (e.g. from oapiGetBaseByName)
e 0= pad < oapiGetBasePadCount() is required.

17.10 Navigation radio transmitter functions

oapiGetNavPos
Returns the current position of a NAV transmitter (in global coordinates, i.e. heliocentric
ecliptic).

void oapiGetNavPos (NAVHANDLE hNav, VECTORS3 *gpos)

Parameters:
hNav NAV transmitter handle
gpos pointer to variable to receive global position

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 121

oapiGetNavChannel
Returns the channel number of a NAV transmitter.

Synopsis:

DWORD oapiGetNavChannel (NAVHANDLE hNav)
Parameters:

hNav NAV transmitter handle

Return value:
channel number

Notes:
e Channel numbers range from 0 to 639.

e To convert a channel number ch into a frequency, use
f=(108.0 + 0.05 ch) kHz

oapiGetNavFreq
Returns the frequency of a NAV transmitter.

Synopsis:

float oapiGetNavFreq (NAVHANDLE hNav)
Parameters:

hNav NAV transmitter handle

Return value:
Transmitter frequency [kHz]

Notes:

* In Orbiter, NAV transmitter frequencies range from 108.0 to 139.95 kHz and
are incremented in 0.05 kHz steps.

oapiGetNavRange
Returns the range of a NAV transmitter.

Synopsis:

float oapiGetNavRange (NAVHANDLE hNav)
Parameters:

hNav NAV transmitter handle

Return value:
Transmitter range [m]

Notes:

* A NAV receiver will only receive a signal when within the range of a
transmitter.

e Variable receiver sensitivity is not currently implemented.

« Shadowing of a transmitter by obstacles between transmitter and receiver is
not currently implemented.

oapiNavinRange
Determines whether a given global coordinate is within the range of a NAV transmitter.

Synopsis:
bool oapiNavinRange (NAVHANDLE hNav, const VECTOR3 &gpos)

Parameters:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 122

hNav NAYV transmitter handle
gpos Global coordinates [m,m,m] of a point (cartesian heliocentric
ecliptic)

Return value:
true if the point is within range of the transmitter.

17.11 Simulation time

oapiGetSimTime
Retrieve simulation time (in seconds) since simulation start.

Synopsis:
double oapiGetSimTime ()

Return value:
Simulation up time (seconds)

Notes:
Since the simulation up time depends on the simulation start time, this parameter
is useful mainly for time differences. To get an absolute time parameter, use
oapiGetSimMJD.

oapiGetSimStep
Retrieve length of last simulation time step (from previous to current frame) in seconds.

Synopsis:
double oapiGetSimStep ()

Return value:
Simulation time step (seconds)

Notes:

This parameter is useful for numerical (finite difference) calculation of time
derivatives.

oapiGetSysTime
Retrieve system (real) time since simulation start.

Synopsis:
double oapiGetSysTime ()

Return value:
Real-time simulation up time (seconds)

Notes:

« This function measures the real time elapsed since the simulation was
started. Unlike oapiGetSimTime, it doesn’t take into account time
acceleration.

oapiGetSysStep
Retrieve length of last system time step in seconds.

Synopsis:
OAPIFUNC double oapiGetSysStep ()

Return value:
System time step (seconds)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 123

Notes:
* Unlike oapiGetSimStep , this function does not include the time
compression factor. It is useful to control actions which do not depend on the
simulation time acceleration.

oapiGetSimMJD
Retrieve absolute time measure (Modified Julian Date) for current simulation state.

Synopsis:
double oapiGetSimMJD ()

Return value:
Current Modified Julian Date (days)

Notes:
Orbiter defines the Modified Julian Date (MJD) as JD — 240 0000.5, where JD is
the Julian Date. JD is the interval of time in mean solar days elapsed since 4713
BC January 1 at Greenwich mean noon.

oapiTime2MJD
Convert a simulation up time value into a Modified Julian Date.

Synopsis:

double oapiTime2MJD (double simt)
Parameters:

simt simulation time (seconds)

Return value:
Modified Julian Date (MJD) corresponding to simt.

oapiGetTimeAcceleration
Returns simulation time acceleration factor.

Synopsis:
double oapiGetTimeAcceleration (void)

Return value:
time acceleration factor

Notes:
This function will not return 0 when the simulation is paused. Instead it will return
the acceleration factor at which the simulation will resume when unpaused.

oapiSetTimeAcceleration
Set the simulation time acceleration factor

Synopsis:

void oapiSetTimeAcceleration (double warp)
Parameters:

warp new time acceleration factor
Notes:

Warp factors will be clamped to the valid range [1,1000]. If the new warp factor is
different from the previous one, all DLLs (including the one that called
oapiSetTimeAcceleration) will be sent a opcTimeAccChanged message.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 124

oapiGetFrameRate
Returns current simulation frame rate (frames/sec).

Synopsis:
double oapiGetFrameRate (void)

Return value:
Current frame rate (fps)

17.12 Camera functions

oapiCameralnternal
Returns flag to indicate internal/external camera mode.

Synopsis:
bool oapiCameralnternal (void)

Return value:
true indicates an internal camera mode, i.e. the camera is located inside a vessel
cockpit. In this case, the camera target is always the current focus object.
false indicates an external camera mode, i.e. the camera points toward an object
from outside. The camera target may be a vessel, planet, spaceport, etc.

oapiCameraTarget
Returns a handle to the current camera target.

Synopsis:
OBJHANDLE oapiCameraTarget (void)

Return value:
Handle to the current camera target (i.e. the object the camera is pointing at in
external mode, or the handle of the vessel in cockpit mode)

Notes:
e The camera target is not necessarily a vessel, and if it is a vessel, it is not
necessarily the focus object (the vessel receiving user input).

oapiCameraGlobalPos
Returns current camera position in global coordinates.

Synopsis:
void oapiCameraGlobalPos (VECTORS3 *gpos)

Parameters:
gpos pointer to vector to receive global camera coordinates

Notes:
* The global coordinate system is the heliocentric ecliptic frame at epoch
J2000.0.

oapiCameraGlobalDir
Returns current camera direction in global coordinates.

Synopsis:
void oapiCameraGlobalDir (VECTOR3 *gdir)
Parameters:
gdir pointer to vector to receive global camera direction

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 125

oapiCameraTargetDist
Returns the distance between the camera and its target [m].

Synopsis:
double oapiCameraTargetDist (void)

Return value:
Distance between camera and camera target [m].

oapiCameraAzimuth
Returns the current camera azimuth angle with respect to the target.

Synopsis:
double oapiCameraAzimuth ()

Return value:
Camera azimuth angle [rad]. Value O indicates that the camera is behind the
target.

Notes:
e This function is useful only in external camera mode. In internal mode, it will
always return O.

oapiCameraPolar
Returns the current camera polar angle with respect to the target.

Synopsis:
double oapiCameraPolar ()

Return value:
Camera polar angle [rad]. Value 0 indicates that the camera is at the same
elevation as the target.

Notes:
e This function is useful only in external camera mode. In internal mode, it will
always return O.

oapiCameraAperture
Returns the current camera aperture (the field of view) in rad.

Synopsis:
double oapiCameraAperture (void)

Return value:
camera aperture [rad]

Notes:
« Orbiter defines the the aperture as ¥ of the vertical field of view, between
the viewport centre and the top edge of the viewport.

oapiCameraSetAperture
Change the camera aperture (field of view).

Synopsis:
void oapiCameraSetAperture (double aperture)

Parameters:
aperture new aperture [rad]

Notes:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 126

« Orbiter restricts the aperture to the range from RAD*5 to RAD*80 (i. e. field
of view between 10° and 160°. Very wide angles (> 90°) should only be used
to implement specific optical devices, e.g. wide-angle cameras, not for
standard observer views.

e The Orbiter user interface does not accept fields of view > 90°. As soon as
the user manipulates the aperture manually, it will be clamped back to the
range from 10° to 90°.

oapiCameraScaleDist
Moves the camera closer to the target or further away.

Synopsis:

void oapiCameraScaleDist (double dscale)
Parameters:

dscale distance scaling factor
Notes:

» Setting dscale < 1 will move the camera closer to its target. dscale > 1 will
move it further away.
e This function is ignored if the camera is in internal mode.

oapiCameraRotAzimuth
Rotate the camera around the target (azimuth angle).

Synopsis:
void oapiCameraRotAzimuth (double dazimuth)

Parameters:
dazimuth change in azimuth angle [rad]

Notes:
e This function is ignored if the camera is in internal mode.

oapiCameraRotPolar
Rotate the camera around the target (polar angle).

Synopsis:

void oapiCameraRotPolar (double dpolar)
Parameters:

dpolar change in polar angle [rad]
Notes:

e This function is ignored if the camera is in internal mode.

oapiCameraAttach
Attach the camera to a new target, or switch between internal and external camera

mode.
Synopsis:

void oapiCameraAttach (OBJHANDLE hObj, int mode)
Parameters:

hObj handle of the new camera target

mode camera mode (O=internal, 1=external, 2=don’t change)
Notes:

« If the new target is not a vessel, the camera mode is always set to external,
regardless of the value of mode.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 127

17.13 Keyboard input

oapiAcceptDelayedKey
EIERIET. This function is should no longer be used. See ovcConsumeBufferedKey for
handling buffered key events. May be removed in a future version.

17.14 Mesh management

oapiLoadMesh
Loads a mesh from file and returns a handle to it.

Synopsis:

MESHHANDLE oapiLoadMesh (const char *fname)
Parameters:

fname mesh file name

Return value:
Handle to the loaded mesh. (NULL indicates load error)

Notes:
e The file name should not contain a path or file extension. Orbiter appends
extension .msh and searches in the default mesh directory.

* Meshes should be deallocated with oapiDeleteMesh() when no longer
needed.

See also:
oapiDeleteMesh(), VESSEL::AddMesh()

oapiLoadMeshGlobal
Retrieves a mesh handle from the global mesh manager. When called for the first time
for any given file name, the mesh is loaded from file and stored as a system resource.
Every further request of the same mesh directly returns a handle to the stored mesh
without further file I/O.

Synopsis:

const MESHHANDLE oapiLoadMeshGlobal (const char *fname)
Parameters:

fname mesh file name

Return value:
mesh handle

Notes:

e Once a mesh is globally loaded it remains in memory until the user closes
the simulation window.

« This function can be used to pre-load meshes to avoid load delays during
the simulation. For example, parent objects may pre-load meshes for any
child objects they may create later.

* Do NOT delete any meshes obtained by this function with oapiDeleteMesh!
Orbiter takes care of deleting globally managed meshes.

oapiDeleteMesh
Removes a mesh from memory.

Synopsis:
void oapiDeleteMesh (MESHHANDLE hMesh)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 128

Parameters:
hMesh mesh handle

17.15 HUD, Panel and MFD management

oapiSetHUDMode
Set HUD (head up display) mode.

Synopsis:

bool oapiSetHUDMode (int mode)
Parameters:

mode new HUD mode

Return value:
true if mode has changed, false otherwise.

Notes:
e Mode HUD_NONE will turn off the HUD display.
* See constants HUD_xxx (section 10) for currently supported HUD modes.

oapiGetHUDMode
Query current HUD (head up display) mode.

Synopsis:
int oapiGetHUDMode ()

Return value:
Current HUD mode

oapiOpenMFD
Set an MFD (multifunctional display) to a specific mode.

void oapiOpenMFD (int mode, int id)
Parameters:

mode MFD mode (see Section 10)

id MFD identifier (see Section 10)
Notes:

¢« mode MFD_NONHill turn off the MFD.
* For the on-screen instruments, only MFD_LEFTand MAD_RIGHT are
supported. Custom panels may support (up to 3) additional MFDs.

oapiGetMFDMode
Get the current mode of the specified MFD.

Synopsis:
int oapiGetMFDMode (int id)
Parameters:
id MFD identifier (see Section 10)

Return value:
MFD mode (see Section 10)

oapiSendMFDKey
Sends a keystroke to an MFD.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 129

Synopsis:
int oapiSendMFDKey (int id, DWORD key)

Parameters:
id MFD identifier (see Section 10)
key key code (see OAPI_KEY_xxx constants in orbitersdk.h)

Return value:
nonzero if the MFD understood and processed the key.

Notes:
e This function can be used to interact with the MFD as if the user had pressed
Shift-key, for example to select a different MFD mode, to select a target
body, etc.

oapiProcessMFDButton
Requests a default action as a result of a MFD button event.

Synopsis:
virtual bool ProcessMFDButton (
int mfd,
int bt,
int event) const
Parameters:
mfd MFD identifier (see Section 10)
bt button number (= 0)
event mouse event (a combination of PANEL_MOUSE_xxx flags)

Return value:
Returns true if the button was processed, false if no action was assigned to the
button.

Notes:
e Orbiter assigns default button actions for the various MFD modes. For
example, in Orbit mode the action assigned to button 0 is Select reference.
Calling oapiProcessMFDButton (for example as a reaction to a mouse button
event) will execute this action.

oapiMFDButtonLabel
Retrieves a default label for an MFD button.

Synopsis:

const char *oapiMFDButtonLabel (int mfd, int bt)
Parameters:

mfd MFD identifier (see Section 10)

bt button number (= 0)

Return value:
pointer to static string containing the label, or NULL if the button is not assigned.

Notes:
e Labels contain 1 to 3 characters.
e This function can be used to paint the labels on the MFD buttons of a custom
panel.
* The labels correspond to the default button actions executed by
VESSEL::ProcessMFDButton.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 130

oapiRegisterMFD
Registers an MFD position for a custom panel.

Synopsis:

void oapiRegisterMFD (int id, const MFDSPEC &spec)
Parameters:

id MFD identifier (see Section 10)

spec MFD parameters (see below)
Notes:

* Should be called in the body of ovcLoadPanel for panels which define
MFDs.

* Defining more than 2 or 3 MFDs per panel can degrade performance.

« MFDSPEC is a struct with the following fields:

typedef struct {
RECT pos; /I position of MFD in panel (pixel)
int nbt_left; /I number of buttons on left side of MFD display
int nbt_right; /I number of buttons on right side of MFD display
int bt_yofs; /I y-offset of top button from top display edge (pixel)
int bt_ydist; /I y-distance between buttons (pixel)

} MFDSPEC;

oapiRegisterPanelBackground
Register the background bitmap for a custom panel.

Synopsis:
void oapiRegisterPanelBackground (

HBITMAP hBmp,
DWORD flag = PANEL_ATTACH_BOTTOM|PANEL_MOVEOUT_BOTTOM,
DWORD ck = (DWORD)-1)

Parameters:
hBmp bitmap handle
flag property bit flags (see notes)
ck transparency colour key
Notes:

e This function will normally be called in the body of ovcLoadPanel.

* Typically the bitmap will be stored as a resource in the DLL and obtained by
a call to the Windows function LoadBitmap(...).

« flag defines panel properties and can be a combination of the following
bitmasks:

PANEL_ATTACH_ {LEFT/RIGHT/TOP/BOTTOM}

PANEL_MOVOUT {LEFT/RIGHT/TOP/BOTTOM}

where PANEL_ATTACH_BOTTOM means that the bottom edge of the panel
cannot be scrolled above the bottom edge of the screen (other directions
work equivalently) and PANEL_MOVEOUT_BOTTOM means that the panel
can be scrolled downwards out of the screen (other directions work
equivalently)

* The colour key, if defined, specifies a colour which will appear transparent
when displaying the panel. The key is in (hex) OXRRGGBB format. If no key
is specified, the panel will be opaque. It is best to use black (0x000000) or
white (Oxffffff) as colour keys, since other values may cause problems in
16bit screen modes. Of course, care must be taken that the keyed colour
does not appear anywhere in the opaque part of the panel.

oapiRegisterPanelArea

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 131

Defines a rectangular area within a panel to receive mouse or redraw notifications.

Synopsis:

void oapiRegisterPanelArea (

int aid,

const RECT &pos,

int draw_event = PANEL_REDRAW_NEVER,
int mouse_event = PANEL_MOUSE_IGNORE,
int bkmode = PANEL_MAP_NONE)

Parameters:
aid area identifier
pos bounding box of the marked area

draw_event defines redraw events
mouse_event defines mouse events
bkmode redraw background mode

Notes:

Each panel area must be defined with an identifier aid which is unique within
the panel.

draw_event can have the following values:

PANEL_REDRAW_NEVER: do not generate redraw events.
PANEL_REDRAW_ALWAYS: generate a redraw event at every time step.
PANEL_REDRAW_MOUSE: mouse events trigger redraw events.

For possible values of mouse_event see orbitersdk.h.
PANEL_MOUSE_IGNORE prevents mouse events from being triggered.
bkmode defines the bitmap handed to the redraw callback:
PANEL_MAP_NONE: provides an undefined bitmap. Should be used if the
whole area is repainted.

PANEL_MAP_CURRENT: provides a copy of the current area.
PANEL_MAP_BACKGROUND: provides a copy of the panel background (as
defined by oapiRegisterPanelBackground).

oapiSetPanelNeighbours
Defines the neighbour panels of the current panels. These are the panels the user can
switch to via Ctrl-Arrow keys.

Synopsis:
void oapiSetPanelNeighbours (
int left,
int right,
int top,
int bottom)
Parameters:
left panel id of left neighbour (or —1 if none)
right panel id of right neighbour (or —1 if none)
top panel id of top neighbour (or —1 if none)
bottom panel id of bottom neighbour (or -1 if none)
Notes:

This function should be called during panel registration (in ovcLoadPanel) to
define the neighbours of the registered panel.

Every panel (except panel 0) must be listed as a neighbour by at least one
other panel, otherwise it is inaccessible.

oapiTriggerPanelRedrawArea
Triggers a redraw notification for a panel area.

Synopsis:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 132

void oapiTriggerPanelRedrawArea (int panel_id, int area_id)

Parameters:
panel_id panel identifier (=0)
area_id area identifier (=0)
Notes:
e The redraw notification is ignored if the requested panel is not currently
displayed.
oapiGetDC
Obtain a Windows device context handle (HDC) for a surface.
Synopsis:
HDC oapiGetDC (SURFHANDLE surf)
Parameters:
surf surface handle

Return value:
device context handle for the surface

Notes:
e The device context can be used to perform standard Windows drawing
operations (such as LineTo(), Rectangle(), TextOut(), etc.) on the surface.
* When the context is no longer needed it must be released with a call to
oapiReleaseDC.

oapiReleaseDC
Release a previously acquired device context for a surface.

Synopsis:

void oapiReleaseDC (SURFHANDLE surf, HDC hDC)
Parameters:

surf surface handle

hDC device context to be released
Notes:

* Use this function to release a device context previously acquired with
oapiGetDC.

« Standard Windows device context rules apply. For example, any custom
device objects loaded via SelectObject must be unloaded before calling
oapiReleaseDC.

oapiGetColour
Returns a colour value adapted to the current screen colour depth for given red, green
and blue components.

Synopsis:

DWORD oapiGetColour (DWORD red, DWORD green, DWORD blue)
Parameters:

red red component (0-255)

green green component (0-255)

blue blue component (0-255)

Return value
colour value

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 133

Notes:

* Colour values are required for some surface functions like
oapiClearSurface() or oapiSetSurfaceColourKey(). The colour key for a
given RGB triplet depends on the screen colour depth. This function returns
the colour value for the closest colour match which can be displayed in the
current screen mode.

« In 24 and 32 bit modes the requested colour can always be matched. The
colour value in that case is (red << 16) + (green << 8) + blue.

« For 16 bit displays the colour value is calculated as
((red*31)/255) << 11 + ((green*63)/255 << 5 + (blue*31)/255
assuming a “565” colour mode (5 bits for red, 6, for green, 5 for blue). This
means that a requested colour may not be perfectly matched.

e These colour values should not be used for Windows (GDI) drawing
functions where a COLORREF value is expected.

oapiCreateSurface (1)
Create a surface of the specified dimensions.

Synopsis:

SURFHANDLE oapiCreateSurface (int width, int height)
Parameters:

width width of surface bitmap (pixels)

height height of surface bitmap (pixels)

Return value
Handle to the new surface.

Notes:

* The bitmap contents are undefined after creation, so the surface must be
repainted fully before mapping it to the screen.

See also:
oapiDestroySurface()

oapiCreateSurface (2)
Create a surface from a bitmap. Bitmap surfaces are typically used for blitting
operations during instrument panel redraws.

Synopsis:
SURFHANDLE oapiCreateSurface (

HBITMAP hBmp,
bool release_bmp = true)

Parameters:
hBmp bitmap handle
release_bmp flag for bitmap release

Return value:
Handle to the new surface.

Notes:
* The easiest way to access bitmaps is by storing them as resources in the
module, and loading them via a call to LoadBitmap().
« Do not use this function with a bitmap generated by CreateBitmap(). To
create a surface of specified dimensions, use oapiCreateSurface (width,
height) instead.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 134

e If release_bmp == true, then oapiCreateSurface will destroy the bitmap after
creating a surface from it (i.e. the hBmp handle will be invalid after the
function returns), otherwise the module is responsible for destroying the
bitmap by a call to DestroyObject() when it is no longer needed.

e Surfaces should be destroyed by calling oapiDestroySurface() when they are
no longer needed.

oapiDestroySurface
Destroy a surface previously created with oapiCreateSurface.

Synopsis:

void oapiDestroySurface (SURFHANDLE surf)
Parameters:

surf surface handle

oapiSetSurfaceColourKey
Define a colour key for a surface to allow transparent blitting.

Synopsis:

void oapiSetSurfaceColourKey (SURFHANDLE surf, DWORD ck)
Parameters:

surf surface handle

ck colour key (OXRRGGBB)
Notes:

< Defining a colour key and subsequently calling oapiBIt with the
SURF_PREDEF_CK flag is slightly more efficient than passing the colour
key explicitly to oapiBIt each time, if the same colour key is used repeatedly.

See also:
oapiClearSurfaceColourKey(), oapiBlt()

oapiClearSurfaceColourKey
Clear a previously defined colour key.

void oapiClearSurfaceColourKey (SURFHANDLE surf)

Parameters:
surf surface handle

See also:
oapiSetSurfaceColourKey(), oapiBIt()

oapiBIt
Copy a surface into another surface.
Synopsis:
void oapiBIt (
SURFHANDLE tgt, SURFHANDLE src,
int tgtx, int tgty,
int srcx, int srcy,
int w, int h,
DWORD ck = SURF_NO_CK)
Parameters:
tgt target surface
src source surface

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 135

tgtx, tgty coordinates of upper left corner of copied area in target bitmap.
srcx, srcy coordinates of upper left corner of copied area in source bitmap.
w, h width, height of copied rectangle (pixel)

ck colour key (see notes)

Notes:

* Typically, this function is used to update panel instruments during processing
of ovcPanelRedrawEvent.

e This function must not be used while a device context is acquired for the
target surface (i.e. between oapiGetDC and oapiReleaseDC calls).

« If a blitting operation is necessary between oapiGetDC and oapiReleaseDC,
you may use the standard Windows BitBlIt function. However this does not
use hardware acceleration and should therefore be avoided.

e Transparent blitting can be performed by specifying a colour key in ck. The
transparent colour can either be passed explicitly in ck, or ck can be set to
SURF_PREDEF_CK to use the key previously defined with
oapiSetSurfaceColourKey().

See also:
oapiSetSurfaceColourKey()

17.16 Custom MFD modes

oapiRegisterMFDMode
Register a custom MFD mode.

Synopsis:

int oapiRegisterMFDMode (MFDMODESPEC &spec)
Parameters:

spec MFD specs (see notes below)

Return value:
MFD mode identifier

Notes:

e This function registers a custom MFD mode with Orbiter. There are two
types of custom MFDs: generic and vessel class-specific. Generic MFD
modes are available to all vessel types, while specific modes are only
available for a single vessel class. Generic modes should be registered in
the opcDLLInit callback function of a plugin module. Vessel class specific
modes are not implemented yet.

« MFDMODESPEC is a struct defining the parameters of the new mode:

typedef struct {
char *name; /I points to the name of the new mode
int (*msgproc)(UINT,UINT,WPARAM,LPARAM);
/I address of MFD message parser

} MFDMODESPEC;

e See orbitersdk\samples\CustomMFD for a sample MFD mode
implementation.

oapiUnregisterMFDMode
Unregister a previously registered custom MFD mode.

Synopsis:
bool oapiUnregisterMFDMode (int mode)
Parameters:
mode mode identifier, as returned by RegisterMFDMode

Return value:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 136

true on success (mode could be unregistered).

oapiDisableMFDMode
Disable an MFD mode.

Synopsis:

void oapiDisableMFDMode (int mode)
Parameters:

mode MFD mode to be disabled.
Notes:

¢ The list of disabled MFDs is cleared whenever the focus switches to a new

vessel. To disable MFD modes permanently for a particular vessel type,

oapiDisableMFDMode should be called from within the ovcFocusChanged

callback function

* For builtin MFD modes, mode can be any of the MFD_xxx constants. For

MFD modes defined in plugin modules, the mode id must be obtained by a
call to oapiGetMFDModeSpec.

oapiGetMFDModeSpec

Returns the mode identifier and spec for an MFD mode defined by its name.

Synopsis:

int oapiGetMFDModeSpec (

char *name,

MFDMODESPEC **spec = NULL)

Parameters:

name MFD name (as defined in MFDMODESPEC::name during

oapiRegisterMFDMode)
spec If defined, this will return a pointer to the MFDMODESPEC structure
for the mode.

Return value:
MFD mode identifier.

Notes:

e This function returns the same value as oapiRegisterMFDMode for the given

mode.

e The mode identifiers for custom MFD modes can not be assumed to persist

across simulation runs, since they will change if the user loads or unloads

MFD plugins.

¢ This function can also be used for built-in MFD modes, which are defined as
follows:
Name Mode identifier
Orbit MFD_ORBIT
Surface MFD_SURFACE
Map MFD_MAP
HSI MFD_HSI
VOR/VTOL MFD_LANDING
Docking MFD_DOCKING
Align Planes MFD_OPLANEALIGN
Sync Orbit MFD_OSYNC
Transfer MFD_TRANSFER
COM/NAV MFD_COMMS

ORBITER API Reference Manual

(c) 2001-2003 Martin Schweiger

137

17.17 File management
oapiWriteLine
Writes a line to a file.

Synopsis:

void oapiWriteLine (FILEHANDLE file, char *line)
Parameters:

file file handle

line line to be written (zero-terminated)

oapiWriteScenario_string
Writes a string-valued item to a scenario file.

Synopsis:
void oapiWriteScenario_string (
FILEHANDLE scn,
char *item,
char *string)

Parameters:
scn file handle
item itemid
string string to be written (zero-terminated)

oapiWriteScenario_int
Writes an integer-valued item to a scenario file.

Synopsis:
void oapiWriteScenario_int (
FILEHANDLE scn,
char *item,
int i)

Parameters:
scn file handle
item item id
i integer value to be written

oapiWriteScenario_float
Writes a floating point-valued item to a scenario file.

Synopsis:
void oapiWriteScenario_float (
FILEHANDLE scn,
char *item,
double d)

Parameters:
scn file handle
item itemid
d floating point value to be written

oapiWriteScenario_vec
Writes a vector-valued item to a scenario file.

Synopsis:
void oapiWriteScenario_vec (
FILEHANDLE scn,
char *item,

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 138

const VECTORS &vec)

Parameters:
scn file handle
item item id
vec vector to be written

oapiReadScenario_nextline
Reads an item from a scenario file.

Synopsis:
bool oapiReadScenario_nextline (

FILEHANDLE scn,
char *&line)

Parameters:
scn file handle
line pointer to the scanned line

Notes:
e The function returns true as long as an item for the current block could be
read. It returns false at EOF, or when an “END” token is read.
* Leading and trailing whitespace, and trailing comments (from “;” to EOL) are
automatically removed.
« ‘“line” points to an internal static character buffer.

17.18 User input

oapiOpenDialog
Open a dialog box defined as a Windows resource.

Synopsis:
HWND oapiOpenDialog (

HINSTANCE hDLLInst,
int resourceld,
DLGPROC msgProc,
void *context = 0)

Parameters:
hDLLInst module instance handle (as obtained from opcDLLInit)
resourceld dialog resource identifier
msgProc pointer to Windows message handler
context optional user-defined pointer

Return value:
handle of the new dialog box, or NULL if the dialog was open already.

Notes:

« Use oapiOpenDialog instead of standard Windows methods such as
CreateWindow or DialogBox, to make sure the dialog works in fullscreen
mode.

* Only one instance of a dialog box can be open at a time. A second call to
oapiOpenDialog with the same dialog id will fail and return NULL.

e The interface of the message handler is as follows:

BOOL CALLBACK MsgProc (

HWND hDlg, UINT uMsg,

WPARAM wParam, LPARAM |IParam)
See standard Windows documentation for usage of the dialog message
handler.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 139

* The context pointer can be set to user-defined data which can be retrieved
via the oapiGetDialogContext function. This allows to pass data into the
message handler.

* Note that oapiGetDialogContext can not be used when processing the
WM_INITDIALOG message. In this case, the context pointer can be acessed
via IParam instead.

oapiFindDialog
Returns the window handle of an open dialog box, or NULL if the specified dialog box is
not open.

Synopsis:
HWND oapiFindDialog (HINSTANCE hDLLInst, int resourceld)

Parameters:
hDLLInst module instance handle (as obtained from opcDLLInit)
resourceld dialog resource identifier

Return value:
Window handle of dialog box, or NULL if the dialog was not found.

oapiCloseDialog
Close a dialog box.

Synopsis:

void oapiCloseDialog (HWND hDIg)
Parameters:

hDIg dialog window handle (as obtained by oapiOpenDialog)
Notes:

e This function should be called in response to an IDCANCEL message in the
dialog message handler to close a dialog which was opened by
oapiOpenDialog.

oapiGetDialogContext
Retrieves the context pointer of a dialog box which has been defined during the call to
oapiOpenDialog.

Synopsis:
void *oapiGetDialogContext (HWND hDIg)

Parameters:
hDIg dialog window handle

Notes:
e This function returns NULL if no context pointer was specified in
oapiOpenDialog.

oapiDefDialogProc
Default Orbiter dialog message handler. This function should be called from the
message handler of all dialogs created with oapiOpenDialog to perform default actions
for any messages not processed in the handler.

Synopsis:
BOOL oapiDefDialogProc (
HWND hDlg,
UINT uMsg,

WPARAM wParam,
LPARAM IParam)

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 140

Parameters:
The parameters passed to the message handler.

Return value:
The value returned by oapiDefDialogProc should be returned by the message
handler.

Notes:
e Typical usage:

BOOL CALLBACK MsgProc (HWND hDlIg, UINT uMsg,
WPARAM wParam, LPARAM IParam)

switch (uMsg) {
case WM_COMMAND:
switch (LOWORD (wParam)) {
case IDCANCEL: // dialog closed by user
CloseDlg (hDlg);
return TRUE;
}
break;
/I add more messages to be processed here

}

return oapiDefDialogProc (hDlg, uMsg, wParam, IParam);

}

e oapiDefDialogProc currently only processes the WM_SETCURSOfessage,
and always returns FALSE.

oapiRegisterCustomCmd
Register a custom function. Custom functions can be accessed in Orbiter by pressing
Ctrl-F4. A common use for custom functions is opening plugin dialog boxes.

Synopsis:
DWORD oapiRegisterCustomCmd (
char *label,
char *desc,

CustomFunc func,
void *context)

Parameters:
label label to appear in the custom function list.
desc a short description of the function
func pointer to the function to be executed

context pointer to custom data which will be passed to func

Return value:
function identifier

Notes:

« The interface of the custom function is defined as follows:
typedef void (*CustomFunc)(void *context)
where context is the pointer passed to oapiRegisterCustomCmd

oapiUnregisterCustomCmd
Unregister a previously defined custom function.

Synopsis:
bool oapiUnregisterCustomCmd (int cmdid)
Parameters:
cmdld custom function identifier (as returned by oapiRegisterCustomCmd)

Return value:

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 141

false indicates failure (cmdld not recognised)

oapiOpeninputBox
Opens a modal input box requesting a string from the user.

Synopsis:
void oapiOpeninputBox (

char *title,

bool (*Clbk)(void*,char*,void*),
char *buf = 0,

int vislen = 20,

void *usrdata = 0)

Parameters:
title input box title
Clbk callback function receiving the result of the user input (see notes)
buf initial state of the input string
vislen number of characters visible in input box
usrdata user-defined data passed to the callback function
Notes:

Format for callback function:

bool InputCallback (void *id, char *str, void *usrdata)

where id identifies the input box, str contains the user-supplied string, and
usrdata contains the data specified in the call to oapiOpeninputBox.

The callback function should return true if it accepts the string, false
otherwise (the box will not be closed if the callback function returns false).
The box can be closed by the user by pressing Enter (“OK”) or Esc
(“Cancel”). The callback function is only called in the first case.

The input box is modal, i.e. all keyboard input is redirected into the dialog
box. Normal key functions resume after the box is closed.

17.19 Debugging

oapiDebugString
Returns a pointer to a string which will be displayed in the lower left corner of the

viewport.

Synopsis:
char *oapiDebugString ()

Return value:
Pointer to debugging string.

Notes:

This function should only be used for debugging purposes. Do not use it in
published modules!

The returned pointer refers to a global char[256] in the Orbiter core. It is the
responsibility of the module to ensure that no overflow occurs.

If the string is written to more than once per time step (either within a single
module or by multiple modules) the last state before rendering will be
displayed.

A typical use would be:

| sprintf (oapiDebugString(), "my value is %f”, myvalue);

18 Custom dialog controls

Orbiter defines custom dialog control classes which may come useful when defining dialog
box interfaces. To make use of the controls, you must include the Orbitersdk\include\DIgCtrl.h
header in your plugin code, and link with Orbitersdk\lib\DIgCtrl.lib.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 142

In order to use Orbiter custom dialog controls, your code must call the
oapiRegisterCustomControls function, usually inside the opcDLLInit callback
function. During cleanup (e.g. in opcDLLEXxit) you must call
oapiUnregisterCustomControls

oapiRegisterCustomControls
This allows to use Orbiter’s custom controls in dialog boxes. See section 18.

Synopsis:
#include “DlgCtrl.h”

void oapiRegisterCustomControls (HINSTANCE hinst)

Parameters:
hinst module instance handle
Notes:
The module should call oapiUnregisterCustomControls before exiting.

oapiUnregisterCustomControls
Unregister Orbiter custom dialog controls.

Synopsis:

void oapiUnregisterCustomControls (HINSTANCE hinst)
Parameters:

hinst module instance handle

18.1 Gauge control

This is similar to a standard scrollbar control. It consists of a horizontal or vertical bar with a
level indicator and arrow buttons on either end. The user can manipulate the control by either
pressing the arrow buttons, or by clicking and dragging the level indicator.

Unlike standard Windows scroll bars, the gauge control does not block the simulation while a
mouse button is pressed over the control. You should always use the gauge control in
preference to scroll bars to avoid jumps in the simulation.

The Rcontrol code in the SDK sample directory demonstrates the use of gauge controls.

Defining a gauge control in the dialog template
Place a custom control in the dialog window and sets its class to OrbiterCtrl_Gauge. The
control can be horizontal or vertical.

Addressing gauge controls from the module code

oapiSetGaugeParams
Initialises a gauge control once the dialog box has been opened (e.g. with
oapiOpenDialog).

Synopsis:
void oapiSetGaugeParams (

HWND hCitrl,
GAUGEPARAM *gp,
bool redraw = true)

Parameters:
hCtrl window handle of the control
ap parameter list (see notes)
redraw if true, the gauge is redrawn to reflect the parameter changes

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 143

Notes:
« The GAUGEPARAM struct has the following entries:
int rangemin, rangemax
min. and max. gauge values
enum GAUGEBASE { LEFT, RIGHT, TOP, BOTTOM } base

gauge orientation: LEFT: left to right, RIGHT: right to left, etc.

enum GAUGECOLOR { BLACK, RED } color
gauge indicator colour

oapiSetGaugeRange
Set minimum and maximum gauge values.

Synopsis:
void oapiSetGaugeRange (

HWND hCtrl,
int rmin, int rmax,
bool redraw)

Parameters:
hCtrl window handle of the control
rmin minimum gauge value
rmax maximum gauge value
redraw if true, the gauge is redrawn to reflect the range change

oapiSetGaugePos
Set the current gauge value.

Synopsis:
int oapiSetGaugePos (

HWND hCirl,
int pos,
bool redraw = true)

Parameters:
hCtrl window handle of control
pos new gauge value
redraw if true, the gauge is redrawn to reflect the value change

Return value:
The new gauge value, clamped to the gauge range.

oapilncGaugePos
Increment/decrement the current gauge value.

Synopsis:
int oapilncGaugePos (

HWND hCirl,
int dpos,
bool redraw = true)

Parameters:
hCitrl window handle of control
dpos value change
redraw if true, the gauge is redrawn to reflect the value change

Return value:
The new gauge value, clamped to the gauge range.

oapiGetGaugePos

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger

144

Returns the current gauge value.

Synopsis:

int oapiGetGaugePos (HWND hCitrl)
Parameters:

hCitrl window handle of control

Return value:
Current gauge value.

Control messages
Gauge controls send the following messages to the message queue of the owning dialog box:

WM_HSCROLL
Scrolling notification. This is sent while the user left-clicks and drags the gauge
indicator, or continuously (at a rate of 100Hz) while the left mouse button is held down
on one of the arrow buttons. Both horizontal and vertical gauges send the
WM_HSCROLL message to simplify message handling.

Message parameters:
LOWORD(wParam) event type
HIWORD(wParam) gauge value
(HWND)IParam window handle of control

Notes:
The event type can be one of the following:

SB_LINELEFT: The user has pressed an arrow button to decrement
the gauge value.

SB_LINERIGHT: The user has pressed an arrow button to increment the
gauge value.

SB_THUMBTRACK:
The user is dragging the gauge indicator with the
mouse.

19 Standard ORBITER modules

Vsop87.dll is a full implementation of the VSOP87 planetary solutions for Mercury to
Neptune.1 Orbiter uses the VSOP87 “B” series which computes the heliocentric positions for
the ecliptic and equinox of J2000. Positions and velocities are calculated by a perturbation
method which uses a series of trigonometric perturbation terms. The number of included
terms defines the precision of the result. Therefore the computation time will depend on the
selected precision. Vsop87.dll supports precision settings between 1le-3 and le-8.

Vsop87.dll supports the following planets: Mercury, Venus, Earth, Mars, Jupiter, Saturn,
Uranus and Neptune.

According to the VSOP documentation, at full precision (1e-8), the relative error is within 1”

for
* Mercury, Venus, Earth and Mars over 4000 years before and after 32000

» Jupiter and Saturn over 2000 years before and after J2000.
» Uranus and Neptune over 6000 years before and after J2000.
If you want to replace Vsop87 with your own code:

* Check section 15 for the callback interface.

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 145

* The code for different planets doesn't need to be implemented in a single DLL. You can
replace the calculations for a single planet by writing a module for it, and referencing this
module from the planet’s cfg file, while keeping the standard Vsop87 module for the other

planets.

19.2 Luna

Luna.dll calculates lunar positions and velocities using a perturbation method. The
implementation is derived from Elwood Downey’s xephem,” with time derivative terms added
by myself. Coordinates are for equinox and ecliptic of date.

20 Index

<
<Planet> AtmPrm...........oooeeeieeees 97
<Planet>_CurrentData...............cecvvveeeeerines 97
<Planet>_EclSphData..............cooeviiiiiiinen 96
<Planet>_ SetPredsion.........ccccoeeeeeeeeeeeienns 96
A
Airfoil COEffRUNC........oveeeiiieeeei e 62
AANLIS....oviiie e 5
D
Deltaglider.......coovvvieiieiiiiiceee e 5
E
ELEMENTS. ..o 6
ENGINESTATUS.......covviieeeeeee e, 7
ENGINETYPE ..o 7
EXHAUSTTYPE ... 7
G
Gauge
CUSEOM CONLIOlovvieeeieiieiei e 143
WM_HSCROLL......ccvvviiiieieieeeeeiceeeen, 145
GraphMFD
AdAGraphcooovviiiiiiiieeee e, 82
AdAPIOL.......cveiiiiee e 82
(0] 015 1 {101 (o] SR 82
FINARANGEcovveiiiiiiiiee e 83
o) TN 84
SEtAULORANGE. ..o vveeeeeeeiie e 33
SEAULOTICKS...utiiviiei e 84
SEtAXISTI€.unieeeieeeeeee e 84
SEtRANGE.cceeiiiiii e 83
H
HUD
mMode ONSLANES........ceevvviiiieeieeeeeemeeen, 11
L
|0 | = T 146
M
MATRIXS oo eeeeee e 6
MESHGROUP_TRANSFORM 70
MFD
ButtonLabelceovvviiiiiiiiiceeeeeees 79

ButtonMenu............ccoovvvvvviiiiiiceeeeeeees 79
CONSEIUCKON.......cevi i 77
ConsumeBULLON...........ccevvveiiiiiieieieeeenee 80
ConsumeKeyBuffered.............evveeeeeenenen. 80
ConsumeKeylmmediate................ueeeeeee. 80
identifier constants...........ccccveeevrireerenes 11
InvalidateDisplayeeeeeeeieiiiiiiiiieane. 78
Mode @NSLANES.oevveriiiirieeeeeeeeeiee 11
ReaStatus.........oocoeiiiiiiiiiiiiieeeiee 81
Recdl Statuscevvveiiiiiiiiiiee e, 81
SeledDefaultFontcoovvviiieieiiiiennns 78
SeledDefaultPen...........oocvveeeeiiiiiieenne, 78
SLOreSHALUSccoeeeeieeeire e 81
I =R 78
Update......coovvveeeeeeiiiiiiecceeeeenieeee e 1
WHEESLALUS.evvviiiieiiieeieeece e 81
N
Navmode
CONSLANES.vvviriiiiiiiiiiie e 10
@)
oapiAcceptDelayedKeyoocvveveeennnnne 128
08PIBIt.....ceiiiiiii e 135
08Pi CameraApPErtUre.ccvveeeeerinvveeeenns 126
oapiCameraAttach...........ccoocveeiieiiiiieenne, 127
oapiCameraAzZimuthccveeeeeiiiiiiieees 126
oapiCameraGlobalDir..........ccccvveeeeeiiinnene 125
oapiCameraGlobalPos...............evveeeeeeeneen. 125
oapiCameralnternalccccvvvvevieeeeinanns 125
oapiCameraPolar............cccooeiiiiiiieennes 126
oapiCameraRotAzimuth 127
oapiCameraRotPolar.............cccoeviiiiiies 127
oapiCameraScdeDist.........ooooeviiiiiiiiiiiis 127
oapi CameraSetAperture..........c.cocveevevveenne 126
oapiCameraTargel.......cccoevvvvveeeeenniiieenene 125
oapiCameraTargetDist...........cccvevvcverennne. 126
oapiCleaSurfaceColourKeyoeeee. 135
0apiCloseDialog........vvveeeiiiiiiiieeeieeeie, 140
oapiCredesurface(l)cccccovcvveeeerniinnns 134
oapiCredeSurface(2)ccccvvvvvveeeeeeeenn 134
0apiCredeVessE. ... 102
0apiCredeVesHEXccccuvvvvviiiiiieiiieiieeaes 102
0apiDEbUGSIING....ccoeeeeiiiiieee 142
0apiDefDialogProCccccvvviiiiiiiieeeeeeas 140
oapiDeleteMeshcceevviiiieeiiieeee, 128
oapiDeleteVesHEl.......coovviiiieiiiiiiieee 103
oapiDestroySurface...........cccecvvvvivineeninnnns 135

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 146

oapiDisableMFDMode............ccovveeennnnne. 137

0apiFINADIAl0g......uuvveieieiieeiieiieeee e, 140
08I GEtAITSPeE]......coiviieeee e 111
oapiGetAirspeadVedorcccveeeeeeeennee. 111
oapiGetAltitude........coovvviieeeeiiieeeiee, 108
oapiGetAtmPressureDensitycee..... 112
oapi GetAttitudeMode..........cooeeeeeeeieiiiinnnes 115
08PIGEtBANK.ccovviiiiiee et 109
oapiGetBaseByIndex..........ccvvvvvvieeieeennen. 100
oapiGetBaseByNamecccoeeeeieiiies 100
oapiGetBaseCount...........ccccuvvviiiiiiiiieennes 101
oapiGetBaseEquPos...........cooooiiiies 119
oapiGetBasePadCourt................oeeeeenneenee 120
oapiGetBasePadEqUPOS ... 120
oapiGetBasePadNaVvccoeevviiviieeieniaes 121
0apiGetBasePadStatus.ceeevvvvveeeeeenns 121
08PIGELCOIOUNcceoiiiiiiiee e 133
08PIGELDC......eevvieiiiiiiie e 133
0api GetDial 0gCoNteXt..........ccvveererveeernnen. 140
08PiGEtEMPLYyMaSS.......covvvveeeeeeiiiieeeeee 104
oapiGetEngineStatus............cvvvvvviieieeeeeen. 114
0api GEtEQUPOS.........evvieieiiieiieiieeeeeeeeeee, 110
oapi GetFocusAirspedlccevvvvieieeeeen. 111
oapi GetFocusAirspeadVedor.................... 111
oapiGetFocusAltitude..............oooeeviiiinnes 108
oapiGetFocusAtmPressureDensity 112
oapi GetFocusAttitudeMode...................... 116
0api GetFocUSBanKcc.cvvvvvvreereneeinnnns 109
0apiGetFocusENgineStatus.vveeeeennes 114
08Pi GEtFOCUSEQUPOS.cccoeviiiiiieeceie 110
0apiGetFocusGlobalPos............coovvvveeeen, 106
oapiGetFocusGlobal Velcccieies 106
oapiGetFocusHealing ..o 110
oapiGetFocusinterface..............ceoeeeeeeee 102
oapiGetFocusObjedoooeviiiiiiiiiiiees 101
oapi GetFocusPitch..........ocoiiiiiiiiieiieees 109
oapi GetFocusRelativePos.............cceeeee... 107
oapiGetFocusRelativeVduuveeveennn.. 107
oapi GetFocusShipAirspeedVedor 112
oapiGetFrameRate.cceevvviiiiiiiieees. 125
0api GetFUEIMaSS........evvvriiiieeeeeeee e 105
08PiGEtGAUQGEPOSevvee e eieees 144
oapi GetGbodyBylndex...........ccvvvvvvveeeneen. 100
oapiGetGbodyByName..........cccccceeeeeennn, 100
0api GetGbodyCoumt..........ooevveiiiiiiiiiiees 100
0apiGetGlobalPos..........coooveeeiiiiiiieee, 106
oapiGetGlobalVel ..., 106
oapiGetHeading..........oooevviiiiiiiicees 109
0apiGetHUDMOdEcoveeiiiiiiiieeeiieens 129
oapiGetinducedDrag..........cevveeviiiiieieeeniaes 113
08PIGELMESS.....ceee i 103
0apiGetMaxFUelMass.............ccovevrreeenne. 105
0aPIGEtMFDMOdE.........coveiiiiiiiieiee e, 129
0apiGetMFDModeSpec..........cvvvveeeenennee. 137
oapiGetNavChannelcoooeiiiiiiiiies 122
0apiGetNavVFreqoooovev e 122
08I GENAVPOS........eevieiiiieiiieiieece e, 121
oapiGetNavRangeccccvvvviriiiiiiieenans 122
0api GetObjedByIndex...........ccccuuvviviiiiinnnns! 98
0api GetObjedByName............ccccuvvvvevnennns! 97

0api GetOhjedCoUNtcceeeeeeieeiiiiiieenn, 98
0apiGetObjedName.evvveeeeeeeeerianans 101
08PIGELPItCN. ... 108
oapi GetPlanetAtmParams.............cccvvveee. 119
oapi GetPlanetCurrentRotation.................. 119
0apiGetPlanetObli qUIty..........ccoovvvveeeeennns 118
0apiGetPlanetObli quityMatriX.................. 118
oapiGetPlanetPeriod...........cc.eeveeviiiiiieeees 117
oapiGetPlanetTheta............cccvvvvviiiiiiiieens 118
oapiGetPropellantHandle.......................... 104
oapiGetPropellantMass..............coooeeeee 104
oapiGetPropellantMaxMass..................... 104
0api GetRelativePos............ccevvvvviiieiiiieas 107
oapiGetRelativeVelccvvvviiiiiiiiiieens 107
oapi GetShipAirspeadVedoreee.... 112
0aPIGELSIMMUIDocvviiiiiiiiiee e 124
0aPIGEtSIMSIED ... 123
08PIGELSIMTIME.....eevieiiiiiieee e 123
08PIGELSIZE.eevieiiiiiiiiie e 103
oapiGetStationByIndex............covvvveeeeernnne Q9
oapiGetStationByNameeeeveeeeeeenenn. 99
0api GetStationCouNt.........cceeeeeveeiiiiiiieenn, 99
08I GELSYSSEED......ceo et 123
08I GELSYSTIME.vvviiiiiiiieiieiee e 123
oapiGetTimeAccderation...............c.evveees 124
0apiGetVesEIByINdexcceeevviiiieeeennnns 98
oapiGetVessIByName.........ccccvvvveeeeeninne a8
0apiGetVesEICouNtccevveeeeeeeeeeieecieen, 99
oapiGetVesslInterface..........cccoeeeevvennes 102
0apIiGEtWaveDrag.........c.ccovvvveeeeeeiiiiieenene 113
08I INCGAUGEPOS ...t 144
oapiLoadMeshcoooviiiiiiieee e 128
oapiLoadMeshGlobal...............ccoeeiiiinins 128
oapiMFDButtonLabelc.c..evvveeeeeeeneen. 130
0apPiNaVvINRANGEceeeeeiieiiiiiieee 122
0apiOpenDIalog.......vvvvereeeeiiiiiiiieeieceeeeenn 139
0api Openi NPUEBOXccovveeeeeeiiiiiiieeee, 142
08PIOPENMFDoeveiiiiiiiiiie e 129
oapiPlanetHasAtmosphere...........cccooeeee. 119
oapiProcesdMFDBULtON..........cocvveerinenne 130
oapiRealScenario_nextline....................... 139
oapiRegisterCustomCmd...........ccocvvveennn. 141
oapiRegisterCustomControls.................... 143
oapiRegisterExhaustTexture..................... 116
oapiRegiterMFD.........ooiiiiiiiiieees 131
oapiRegisterMFDMode............cevvvvevieeeee. 136
oapiRegisterPanelArea........ccccceeeeeniinnn. 131
oapiRegisterPanelBackground.................. 131
oapiRegisterReentryTexture...................... 117
0apiREleaEDC......cevvieiiieee e 133
08PISENAMFDKEYcoovviiiiiiieeiiiiiiee 129
oapi SetAttitudeMode...............coeeeeeiiiins 116
08Pi SEEEMPLYMaSS........cvvveveeiiiiiiiee e, 105
oapiSetEngineLevelcoocvveeiiiiiiiinens 115
oapi SetFocusAttitudeMode....................... 116
oapi SetFocusObjedeevvieieieiiiiiianans 101
oapi SetGaugeParams............ooooeeeiiiiiiins 143
0api SetGaugePos ... 144
oapi SetGaugeRange.uvvviiiiieeeieiianans 144
0apiStHUDMOdE ... 129

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 147

oapi SetPanelNeighbours...............cccceeeees 132

oapi SetSurfaceColourKey ... 135
oapiSetTimeAccderation..........cccceevuveeee. 124
0aPITIME2MID ... 124
oapiTogg eAttitudeMode............ccevvveern... 115
oapi ToggeFocusAttitudeMode................. 116
oapiTriggerPanelRedrawArea................... 132
oapiUnregisterCustomCmd..............ceee.... 141
oapiUnregisterCustomControls................. 143
oapiUnregisserMFDMode...................... 136
0aPIWHEELING. ...coeviiiiieiiiii i 138
oapiWriteScenario_float...............cccceees 138
oapiWriteScenario_int...........cccceeeiiinnnes 138
oapiWriteScenario_string.............ccceeeeee.. 138
0apiWriteScenario_VeC.........occveeeeeeenneee 138
OBJIHANDLEcooiiiiiiiieiiiieeceee e, 5
opcCloseRenderViewport.........cceeeeevenennee. 85
OPCDLLEXIt......cvvviieiiiiiiiee e 85
OPCDLLINIt...ceiiiiiiiiieie e 85
opcFocusChangedceeeeviiiiieeiiiecene 86
opcOpenRenderViewport.........cccccveeeeeeennn. 85
opcTimeAccChangedeeeveevieiieeieeannaas 86
OPCTIMESLED ..ot 85
OVCADCHIIMOde........oooiiiiieeeeeei 91
OVCANIMALEoeieiieiiiiii e 93
ovcConsumeBufferedKeycccovvvveeenn. Q4
0OVCCONSUMEKEY.......coeeiiiiiree e 93
OVCDOCKEVENLcevieicciiieiveeeriee! 92
(010 (| 87
ovcFocusChangedeeevveviiiiiieiiiecene 90
OVCHUDMOGE.ceeeeeeeeeeeeie e 92
OVCINIt. ..o e 86
ovcLoadPanelcooooviiiiiiiiiiicen s 94
OVCLOBASHALE.......eevviiieiiiieiieiie e 88
OVCLOBASEALEEX.cieiieiieeiiiiiiei e 89
OVCMFDMOGE......coviiiiieiiiiiiiiieee e 92
OVCNAVMOOE.t 92
ovcPanelMouseEventcccveeeeeiiiiiienes 94
ovcPanelRedrawEvent................cooeeeienvnnns 95
OVCPOSICIeaiON. ..ccvvveveeeeeeeeee e 90
OVCRCSMOCE.cvvvriiiieiieeiieeee e e eeeeeeeeneeeeas 91
OVCSAVESIALE ... e 89
OVCSELCIASSCaPSvvvvvvreeieiiiieeieeee e e e 87
OVCSELSIAe.. ..o 87
OVCSELSIAEEX. . ..o e e eeeeeeeeeiiii e 88
OVCTIMESLED ..ottt 91
ovceVisualCrededccovvvvieeieeeiiiiiiiie, 90
ovcVisualDestroyedooooeviiiiiiiiiiieenn. 91
P

PARTICLESTREAMSPECcccvvvveeeenne 7
PROPELLANT_HANDLE.......cccoevieernann. 6
R

RCONLION ... 5
S

SURFHANDLE.......cccoiiiiiiiiee e 6

T

THGROUP_HANDLEccciiiiiieiiieeaee 6

THRUSTER_HANDLEocciiiiiiiieiiieeees 6

\%

VECTORS ...ttt seeeiee e 6

VESSEL ..o 11
ActivateNavmode...............oeeeveiciinieen, 22
AddAnimationComponent...................... 72
AddANIMCOMP...eeeiiiiiiiiiiiiaeieeee e 75
AddAttExhaustMode.............ccceeerineenns 47
AddAttEXhaustRefcocoveiiiiiiiiiien, 46
AdAEXNEUSE (1) .eeeeieiiieeiiiee e eeeeee 42
AdAEXNBUSE (2) ..eeeieviieiiiiie e eieeeee 43
AdAEXaUSLRESoeeiiiiiciiicc e 46
AddExhaustStream (1)ccccovevvveeeennn 5
AddExhaustStream (2)........ccccoevvveeeeen. B
FX o [0 o o SO 23
AdAMESh (1) .eeveeeiiiiiiieeeie e, 69
AdAMESH (2) .eeveeiiiiiiiieee e, 69
AddReentryStream..........ccccovvevvieeeeniieen 76
AttachChild.........ccooeiiiiiiiiiiicece e 53
AttachmentCountccceevvieiieierieeene. 53
CleaAttExhaustRefs..........cocoeveeeiiinnne 48
CleaExhaustRefs...........ccccvvviiiiiiiiiieenns 46
CleaMeshes........eeeeeeeieiiiiiiiieeieeeeeeeee 68
CleaPropellantResources...............ueee.... 26
CleaThrusterDefinitions..............ccuvvee... 31
CleaVariableDragElements................... 65
CONSLIUCLON ... 11
(O (T (R 12
CreadeAirfoilcooeeeeviiiiiiieeee s 62
CreadeAnimation.........ccceeeeeeeeiiiiiiiieennn, 72
CreaeAttachmentcccoceiiiiiinnn. 51
CreaeControlSurface............cccecevnnnnne 63
CredeDocKccccceeiiiiiiiiieee e 48
CreaePropellantResource................oee.... 25
CredeThrUSteSveeeeeeeieeeeeeeeeeee e 30
CredeThrusterGroupcceeevvuvveeeenn. 37
CredeVariableDragElement.................... 64
DeadivateNavmode.........ccccccvvvveeeeeennnnns 23
DefSEtStaecoooviiiiiee e, 18
DefSEtStAEEXvvvvieiiiiiiiieee e, 19
Del AnimationComponent.................eeee... 74
DEEXhAUSE ...t reeeiee e 43
DelExhaustRefccoveeviiiciiiiieee.. 46
DelExhaustStream..........ceeveeeeeieeeeeeiieaee. 77
DelPropellantResource.............ooeeeneee 26
DelThrustervveveieeeeiiiiiiiiieeceeeeeee 31
DelThrusterGroup (1)cocevvevvveeeeennnnne 38
DelThrusterGroup (2)coovvvvveeeeennnnne 39
DetadhChildcooevviiiiiiiiiiiieniie, 54
DockCount........cceeeeiieiiieeiieeeeeeeeeeas 48
DOCKIiNGSEALUS.evveeeeiiiiiiieeeeeseeeiee 50
EnableTransponderccoovvvveeeeeniinnn. 68
GetADCHIIMOGEceeviiieiiiiee e 20
GELAINSPEE] ... 56
GetAltitude.........ccvveviiieiiireeeee 56
GetAngularVel ... 25
GEAOA ... 57

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 148

GELAPDIS. ... 55

GELAIGPE .. 55
GetAtMDENSILY......evveeeeeeiiieeee e 59
GELATMPIESSUIE......v e eeemianas 60
GetAtmTemperature..............ooeeeeeeennnns 59
GetAttachmentHandle.................cvuveee.s 53
GetAttadhmentldccoovevevviiiieirieees 52
GetAttachmentINdeX.........ccevveeveevvevenens 53
GetAttachmentParams..........ccocevvvvevnnnnne. 52
GetAttadhmentStatus...........cceevvvneeennsnsd 52
GetAttitudeLinLevel.........ccueeeevivenenees 22
GetAttitudeMode...........ceveeeeevieiieeiiieeen. 20
GetAttitudeRotLevelcovveveriviinnnnnn. 20
GEBaANK.......oeiieiieeeeeeee e 57
GetCameraOff Set......vevveveeeeeieeeeeeeeee, 14
GetClassNaME.ceeveieieeeeieeeeveme e 12
GetCOG EleV..vviiieeeeeiiiiecceeee s 13
GetControlSurfacd_evel ... 64
GetCrosSSEQIONS. ...uuueveeveeeeeeeeiee e eeeens. 13
(€7 (01117 61
GetDockHandle...........ceeeevveiiiveiiieeennn. 49
GetDockParams...........cueeeevveiivneeiiemmnenn. 49
GetDOCKSIAUS.vveeeveeeiiieeivi e emmi s 49
GetDynPressure..........ovveeeeiieieeeeeieeee, 60
GetElementS.........oeeeeviiieeeeeeceeeeee 54
GetEMPtYMaESS........ouvvviiiiieiieeeeceeceeenee 13
GetEnableFOoCUS........coocveeeeeeeieeeeeeenen, 13
GetEngineLevelccccooviiiiiiiiiieee 46
GEtEQUPOS........eviiiiiiiieiieeee e 25
GetFlightModelccoovviiiiieiiieee 13
GEtFUEIM @SSccveeeeeeeeee e eeeee e 29
GetFUEIRALE. ... 29
GetGlobalPos..........oovvviiiieieiceeeee e, 24
GetGlobalVel........ccveveeeieieeeeieeeeees 24
GetGravityRef ... 54
GetHandle..........cooeveiviiiiieiiieeeceee 12
GetHorizonAirspeadVedor 56
GEUSP ... 45
GetMadhNUmMbEr ... 60
GetMainThrustModPrcoevevvvvieeennnnns 46
GetManualControlLevelcceeeeeee. 41
GEIMBSS....ieiiiii e 19
GetMaxFuelMass...........ccevveeeeeiiiviiene, 30
GEtMaXThIUSE ...ccevnieeeeeiee e 43
GEINAME.....ceviiic e 12
GetNavmodeState.cocovvvveivvnrerinnnnn. 23
GetNavRadioFreq.........oooeeeeveiiiiiieenn, 68
GEINAVREOV ...cvviviiii e 68
GEPEDIS......ccvveieeieee e 55
(€7 {1 (o o T 57
GEIPMI oo 14
GetPropellantCountcccvveeeerininnn. 26
GetPropellantEfficiencycccceevvinneen. 28
GetPropellantFlowrate.............ccoocvvvveeee. 28
GetPropell antHandleBylndex.................. 26
GetPropell antMass.........evvveeeeeeiieneeeeennas 28
GetPropellantMaxMass...........eeeeeeeeeeeenn. 28
GetReativePoS........ccocvveiieeieeeeeee, 24
GetRelativeVEoeevvieeeieeiieee 24
GetRotatioNMatriX.......eevvvnieeenieiiieeevinene 58

GetRotDrag.......cccvvvveiiinieieeeeeeeeee 61
GetShipAirspeadVedoreeveeeeeee. 56
GELSIZE...cco oo 13
GetSlipANgle......oeveeieiiiie e 57
GESMi i 55
GELSIAUS. ..o 18
GESIAUSEXceeveeeeeeeieiieee e 18
GetSurfaceRefvvvvvevieiieee e 56
GetThrusterCountcceeevrivrreeeeeniniiennns 32
GetThrusterDir........ccoevviivreeeeeeiieeeene. 33
GetThrusterGroupHandle........................ 39
GetThrusterGroupLevel (1)cceeeeeee 41
GetThrusterGroupLevel (2)cccvveeeeee 41
GetThrusterHandleByIndex..................... 31
GetThrusterISP (1) ...ceeeeviiiiieieeeeeiiieeeeee 35
GetThrusterISp (2).....vvveeeeeiiiriieeeeeinieenas 35
GetThrusterISpO0.......vvvveeeiiiiiiiee e 36
GetThrusterLevelccocvvvviiniiiiienens 37
GetThrusterMax (1) ...cvveeeeevvivieeeeennninns 34
GetThrusterMaX (2)eeeeeeevivveeeeeeniiins 34
GetThrusterMax0..........cvvvvveeiniiieeereeeees 33
GetThrusterMoment...........ooccvveeeeennnnn. 37
GetThrusterRefccvvvveeeiiiiieicceeee 32
GetTotalPropellantFlowrate.................... 29
GetTotalPropellantMass.............evveeeeeee. 28
GetUserThrusterGroupCount..................40
GetUserThrusterGroupHandleBylndex39
GetWhedbrakeLevelccccooviveeeenn. 67
GetWingasped........ccoevviveveeeeeiniiennnned 65
GetWingEffediveness.........cccveveeeenneee 65
Global2Locdccccvvvvviiiieieeees e 59
GlObAIROL......cevieeiiiiiiee e 58
GroundContad.............occvreereersnenninnen. 19
HOMZONROL......ceveiiiiiiiiieceeeee e 58
INCENgIiNELEVE!uuviiiiiiiiiiiiiiieeiied A5
IncThrusterGroupLevel (1)..........cc.......ee 40
IncThrusterGroupLevel (2)..................... 41
IncThrusterLevel_SingleStep.................. 36
INitNavRadioS.......ccovvvvveeeeieieieiiiieee e 67
Locd2Globalcevvvvvviiiiiiiiiiiiiaceeeen 59
MeshgroupTransform............occvveeeeennnnns 70
ParseScenarioLing..........ccvvvvvveeieeeeeesieee, 17
ParseScenarioLineEXc.cocvveveeinns 17
RegisterAnimation...............oooeiiviiiienn 71
RegisterAnimSequence...............eeeeeeeeeen. 14
SaveDefaultState.coovcvvveveeiiriieenne, 19
SetADCHIMOde. ... 20
SEtANIMALIONcceveeiiiiiieeee e A 4
SetAttachmentParams............ccccceeeeneee. 51
SetAttitudeLinLevel (1)c...cccceveueee... 21
SetAttitudeLinLevel (2).....ccoovcvveeeeeenns 22
SetAttitudeMode..........ccoeeeeeeiiiiiiiiiceen, 20
SetAttitudeRotLevel (1)......c.c.ccceveunee.. 21
SetAttitudeRotLevel (2).......coovcvvveeeeenns 21
SetBankMomentScae.............occvveeeeenne 16
SetCameraOffset.......ccveevvviiieree e 17
SEtCOG_ElEV ..o 15
SetControlSurfaceLevelcoocvveeen 64
SetCrosSSedions.vvvveeeirrreeeeeeeieeeene 16
SEECW ..t 60

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 149

SetDefaultPropell antResource................. 27 SASIZE oot 14
SetDockParams (1)cooeevvvvvviiiiiieeeenns 48 SetSurfacerictionCoeff.................... 15, 66
SetDockParams (2)eeeveevvviiieeeeeiniiens 49 SetThrusterDir........cvvveeeiiiiiiiiee e, 33
SEtEMpPtyMass........cccciviiiiieee e 14 SetThrusterGroupLevel (1)ccccovueeee. 40
SetENableFOCUSvvvveeiiiiiiieee e 14 SetThrusterGroupLevel (2)........ccovvueeee. 40
SetEngineLevel.........ccccoovviiiiiiii e 45 SetThrusterlsp (1) «.oovvveeeeeiiiiiiieeeeeiees 34
SetExhaustScaes.........oovveiiiiiiieiieiiieenns 70 SetThrusterlsp (2) ..oovvveeeeeiiiiiieeeeeiees 35
SEtFUEIMESScoeeeiiiiiieee e 29 SetThrusterLevel ..., 36
SEHSP ... 45 SetThrusterMax0........ccovevveeiiieeeiiiieeens 33
SetLiftCoeff FUNC.........ccvvveeeeeiiieceee 66 SetThrusterRef ..o, 32
SetMaxFuelMass.........cccevveeiviiiieiieeeen, 30 SetThrusterResource............ccveveeeviinneee 32
SetMaxTRrUSE ... 44 SetTouchdownPoints............c.ceveeevninnnen. 15
SetMaxWhedbrakeForce...........ccccceeee 67 SetTrimSCale.......cvvveeiee e 17
SetMeshVisibilityMode............ccceeeeee. 69 SetWhedbrakeLevelcocoveeiiiines 67
SetMeshVisiblelnternalccoeeeee. 69 SetWingasped........ccceeeevvvieeeeeieiceenene, 65
SEINAVRECVccoeeiiiiiiiieee 68 SetWingEffediveness..........oocvveeeeennnee 65
SetPitchMomentScae...........ccccvvveeennnee. 16 ShiftCentreOfMass.........veveeeeviiiiiiieeenies 57
SEPMI .. 16 ToggdeNavmode...........ccvvveeeeeiniiiiieenen 23
SetPropell antEfficiencyccccoeeeeenee. 27 UNAOCK......eveeeeeeeiiiieeee et 50
SetPropellantMass..........c..vveveeviiiiiieneeees 27 UnregisterAnimation............ccccooevveeeenne 71
SetPropellantMaxMass.........c.eeevveeeenee. 27 VESELSTATUS. ..ot 8
SetReentry TEXUre.vvveeriieee e 71 VISHANDLE.......cciiiiiiiee e 5
SEtROIDIAg ..o vvee et 61 VSOPBT...eiiie ettt 145

tp. Bretagnon (pierre@bdl.fr) and G. Francou (francou@bdl.fr), Bureau des Longitudes,
CNRS URA 707, Planetary Solution VSOP87
% Elwood Downey, www.clearskyinstitute.com/xephem/xephem.html

ORBITER API Reference Manual (c) 2001-2003 Martin Schweiger 150

